icme presentation

Upload: aashiquear

Post on 06-Apr-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 ICME Presentation

    1/28

    STUDY OF TRANSIENT HEAT TRANSFEROF A SOLID WITH PROTECTIVE FABRIC

    UNDER HOT AIR JET IMPINGEMENT

    MA Islam, AA Rezwan, S Hossain and AKMN Islam

    Dept. of Mechanical Engineering

    Bangladesh University of Engineering & Technology

    Dhaka, Bangladesh

    ICME 11-TH-042

  • 8/3/2019 ICME Presentation

    2/28

    Outline

    Motivation

    Background of the Study

    Methodology

    Mathematical Model

    Experimental Setup

    Results

    Comparison with the Standards

    Further Improvement

    ICME 11-TH-04220 December 2011

  • 8/3/2019 ICME Presentation

    3/28

    Motivation

    Fire Fighters against the Inferno

    ICME 11-TH-04220 December 2011

  • 8/3/2019 ICME Presentation

    4/28

    Background

    The most frequent injuries that the firefighters and alsothe employees working in many hazardous chemicalenvironment suffers are burns

    The most obvious reason for their burn injuries is thehigh heat flux exposures

    The present study focuses on the measurement of heatflux on a surface that can be imitated as a skin for ahigh heat flux exposure with a protective fabric support

    How far can we prevent the fire burn wound?

    ICME 11-TH-04220 December 2011

  • 8/3/2019 ICME Presentation

    5/28

    Skin

    ICME 11-TH-04220 December 2011

  • 8/3/2019 ICME Presentation

    6/28

    Skin Burn Injuries

    BurnInjuries

    LayerInvolved

    Appearance Texture Sensation Time toHealing

    First

    DegreeEpidermis Redness Dry Painful

    1 week

    or less

    Second

    DegreeDermis

    Red with

    clear blisterMoist Painful

    2-3

    weeks

    Third

    Degree

    Extend

    through

    entire

    Dermis

    Stiff and

    white /

    brown

    Dry,Leathery

    PainlessRequires

    excision

    Fourth

    Degree

    Extends

    through

    skin,

    subcutane

    ous tissue

    Charred

    with escharDry Painless

    Requires

    excision

    ICME 11-TH-04220 December 2011

  • 8/3/2019 ICME Presentation

    7/28

    Methodology

    ICME 11-TH-04220 December 2011

    Thermocouple

    Position

    Schematic Diagram of the Experiment

  • 8/3/2019 ICME Presentation

    8/28

    Mathematical Model

    Semi- Infinite Solid Model

    1

    Boundary Condition T(x,0) = Ti

    |=0

    ICME 11-TH-04220 December 2011

  • 8/3/2019 ICME Presentation

    9/28

    Mathematical Model

    The solution for the case

    , 2

    4

    1erf

    2

    On the surface (x = 0) this equation reduces to

    2

    20 December 2011 ICME 11-TH-042

  • 8/3/2019 ICME Presentation

    10/28

    Mathematical Model

    Newtons law of cooling is used to calculate

    the local heat transfer coefficient, h.

    ( (0,))

    Nusselt Number

    20 December 2011 ICME 11-TH-042

  • 8/3/2019 ICME Presentation

    11/28

    Experimental Setup

    ICME 11-TH-04220 December 2011

  • 8/3/2019 ICME Presentation

    12/28

    Experimental Setup: Heater Section

    Cut-way View of Heater SectionICME 11-TH-04220 December 2011

  • 8/3/2019 ICME Presentation

    13/28

    Experimental Setup: Fabric Holder

    Connection

    with the PicoSystem

    ICME 11-TH-04220 December 2011

    Fabric Holder

    Assembly

    (Wooden

    Frame)

  • 8/3/2019 ICME Presentation

    14/28

    Experimental ConditionParameters Values

    Jet Velocity (m/s)

    Temperature (C)

    Nozzle Dia (mm)

    l/dr/d

    19, 15

    125

    25.4

    2, 4, 6-4.5 ~ 4.5

    Environment Temp. (C) 25 ~ 32

    Protective FabricAluminized glass fiber withvapor absorbent stitched with

    Kevlar fiber (NAFFCO)

    Base Plate Hardboard (Massonite)ICME 11-TH-04220 December 2011

  • 8/3/2019 ICME Presentation

    15/28

    Protective Fabric

    20 December 2011 ICME 11-TH-042

    Brand: NAFFCO

    Model: KA 800 (PO 300)

    Aluminized glass fiber with vapor

    absorbent stitched with Kevlar fiber

    Exposed Surface

    Inner Surface

  • 8/3/2019 ICME Presentation

    16/28

  • 8/3/2019 ICME Presentation

    17/28

    20

    40

    60

    80

    100

    0 20 40 60 80 100 120 140 160 180 200

    Temperature

    (C)

    Time (sec)

    4.5

    31.5

    Center

    -1.5

    -3

    -4.5

    20

    40

    60

    80

    100

    0 20 40 60 80 100 120 140 160 180 200

    Temperat

    ure(C)

    Time (sec)

    4.5

    3

    1.5

    Center

    -1.5

    -3

    -4.5

    l/d = 2V = 19m/s

    Without

    FR Fabric

    l/d = 2

    V = 19m/sWithout

    FR Fabric

    Temperature Variation with Time

    ICME 11-TH-04220 December 2011

  • 8/3/2019 ICME Presentation

    18/28

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    0 30 60 90 120 150 180

    SurfaceHeatFlux,

    q(kW/m)

    Time, t (sec)

    Surface Heat Flux variation with Time

    for different l/d Position

    l/d=2

    l/d=4

    l/d=6

    l/d=2 wf

    l/d=4 wf

    l/d=6 wf

    V = 15 m/s

    ICME 11-TH-04220 December 2011

  • 8/3/2019 ICME Presentation

    19/28

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    0 30 60 90 120 150 180

    SurfaceHeatFlux,

    q(kW/m)

    Time, t (sec)

    Surface Heat Flux variation with Time

    for different Velocity

    V=15 m/s

    V=19 m/s

    Dashed Line: With FR Suit

    Solid Line: Without FR Suit

    l/d = 2

    ICME 11-TH-04220 December 2011

  • 8/3/2019 ICME Presentation

    20/28

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    0 30 60 90 120 150 180

    Su

    rfaceHeatFlux,q(kW/m)

    Time, t (sec)

    Surface Heat Flux variation with Time

    for different Velocity

    V=15 m/s

    V=19 m/s

    Dashed Line: With FR Suit

    Solid Line: Without FR Suit

    l/d = 6

    ICME 11-TH-04220 December 2011

  • 8/3/2019 ICME Presentation

    21/28

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    -4.50 -3.00 -1.50 0.00 1.50 3.00 4.50

    Nu

    r/d

    Nusselt Number variation across Radial Position

    for different Exposure Time

    t=30s

    t=65s

    t=180s

    l/d = 4

    V = 19 m/s

    ICME 11-TH-04220 December 2011

  • 8/3/2019 ICME Presentation

    22/28

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    -4.50 -3.00 -1.50 0.00 1.50 3.00 4.50

    Nu

    r/d

    Nusselt Number variation across Radial Position

    for different l/d Position

    l/d=2

    l/d=4

    l/d=6

    Time = 65s

    V = 19 m/s

    ICME 11-TH-04220 December 2011

  • 8/3/2019 ICME Presentation

    23/28

    THE SAFETY COMPARISON

    How far can we prevent the fire burn

    wound?

    ICME 11-TH-04220 December 2011

  • 8/3/2019 ICME Presentation

    24/28

    0

    5

    10

    15

    20

    25

    30

    0 10 20 30 40 50

    HeatFlux(kW/m)

    Exposure Time (sec)

    Human Tissue Tolerance to Pain Sensation

    Stoll Criterion Without FR With FR

    *Stoll, A. M. and Chianta, M. A. Method and Rating System for evaluations of Thermal Protection Aerospace Medicine,

    Vol. 40, 1969

    *ASTM Standard: F1060-05 Standard Test Method for Thermal Protective Performance of Materials for Protective Clothingfor Hot Surface Contact

    ICME 11-TH-04220 December 2011

    l/d = 2

    V = 19 m/s

  • 8/3/2019 ICME Presentation

    25/28

    0

    5

    10

    15

    2025

    30

    35

    4045

    50

    0 5 10 15 20 25 30

    HeatFlux(kW/m)

    Exposure Time (sec)

    Human Tissue Tolerance to Second Degree Burn

    Stoll Criterion Without FR With FR

    *Stoll, A. M. and Chianta, M. A. Method and Rating System for evaluations of Thermal Protection Aerospace Medicine,

    Vol. 40, 1969

    *ASTM Standard: F1060-05 Standard Test Method for Thermal Protective Performance of Materials for Protective Clothingfor Hot Surface Contact

    ICME 11-TH-04220 December 2011

    l/d = 2

    V = 19 m/s

  • 8/3/2019 ICME Presentation

    26/28

    Related Work

    1. Lee, S., Park, C., Kulkarni, D., Tamanna, S., Knox, T.,2010, Heat and Mass Transfer in a Permeable Fabric

    System under Hot Air Jet Impingement, Proc. Int.Heat Transfer Conf. (IHTC14)

    2. Anguiano, R. M., 2006, Transient Heat Transferthrough Thin Fibrous Layer, M.Sc. Thesis, University

    of Alberta, Emonton, Albarta, Canada

    3. Torvi, D. A., 1997, Heat Transfer in Thin Fibrous

    Materials Under High Heat Flux Conditions, Ph.DThesis, University of Alberta, Calgary, Alberta

    20 December 2011 ICME 11-TH-042

  • 8/3/2019 ICME Presentation

    27/28

    Future Work

    Develop a model for computational technique

    and validate the simulated result for the

    improvement of protective fiber

    Study the heat & mass transfer of the fire

    resistive fabric under Steam Exposure

    Study the heat transfer of the fire resistive

    fabric under diffusion flame using different

    flammable liquid

    20 December 2011 ICME 11-TH-042

  • 8/3/2019 ICME Presentation

    28/28

    Thank You