housing in extreme environments

197

Upload: erin-pellegrino

Post on 05-Apr-2016

234 views

Category:

Documents


2 download

DESCRIPTION

 

TRANSCRIPT

  • 22

  • 33

    The extreme climatic conditions of the North introduce a design paradox for architects. The fragile environmental conditions require incisive designs that respond to irregular loading from strong winds, heavy snowfalls, avalanche risk zones, and extreme cold. These phenomena are often instantaneous, sudden, and unpredictable. Risk of severe weather increases the vulnerability of human habitation to natural surroundings. Housing, in particular, must achieve levels of self-sufficiency in such environments in order to decrease dependency upon external infrastructure networks that can be severed during periods of harsh weather. At the same time, complications in material provision and inaccessible, remote terrain introduce ideas of prefabrication and economy of construction within these very particular contexts. Designing living environments must therefore consolidate solutions to scarcity, inaccessibility, and self-sufficiency with innovation particular to extreme climates. The existing dichotomy between vernacular housing traditions and the latest innovation in building technology establishes an interesting terrain for the design of comfortable living environments in the most harsh weather conditions.

    The first part of the studio will investigate architectural solutions and responses within extreme climatic conditions. Students will research traditional building designs that respond to risks associated with avalanches, heavy snowfalls, strong winds, and low temperatures. As an introduction to building in these conditions, the studio will construct several prototypical designs of a smallest-possible habitable unit that will be a temporary living space for mountaineers and hikers. The process will involve structural engineers (for the design of minimal foundations, lightweight structure for simple transportation, wind and avalanche resistance, etc.) and elements of sustainable architecture (intelligent building skins, vernacular building traditions, etc.) to produce a shelter with strict design constraints, minimum energy consumption, minimum envelope exposure, lightweight structure, and adherence to limits of remote transportation (helicopter, etc.). The prototype will be given a real site on the peak of a mountain exposed to the most severe weather conditions.

    The studio will transition to larger scale housing designs in a similar harsh climate. Sites will be provided in Juneau, Alaska, where the outward expansion of the small city has caused peripheral development to encroach on the steep slopes of the surrounding mountains. The area faces many challenges in relation to avalanche zones; it is the city with the highest risk of avalanche disaster in the USA. Modes of self-sufficient and structurally integral design will be explored that can adapt to this risk and respond to disasters such as the recent 2008 avalanche in Juneau that destroyed the power supply of the entire municipality. Studio groups will focus on four design topics: a mountaineer village at the peak of Juneau Mountain, visitor housing at the edge of Juneau in close proximity to the cruise ship docks, seasonal housing for workers to the north of the city, and social housing for permanent residents at the foot of Juneau Mountain.

    Studio Brief

  • 44

  • 55

    The extreme climatic conditions of the North introduce a design paradox for architects. The fragile environmental conditions require incisive designs that respond to irregular loading from strong winds, heavy snowfalls, avalanche risk zones, and extreme cold. These phenomena are often instantaneous, sudden, and unpredictable. Risk of severe weather increases the vulnerability of human habitation to the natural surroundings. Housing, in particular, must achieve levels of self-sufficiency in such environments in order to decrease dependency upon external infrastructure networks that can be severed during periods of harsh weather. At the same time, complications in material provision and inaccessible, remote terrain introduce ideas of prefabrication and economy of construction within these very particular contexts. Designing living environments must therefore consolidate solutions to scarcity, inaccessibility, and self-sufficiency with innovation particular to extreme climates. The existing dichotomy between vernacular housing traditions and the latest innovation in building technology establishes an interesting terrain for the design of comfortable living environments in the most harsh weather conditions.

    Housing

    and

    climate

  • 66

    Within a context of extreme risk to environmental forces, it is important to design buildings within the system that the surrounding natural environment has mandated. Responding to environmental flows is not only a protective measure benefitting future generations in the midst of dramatic climate shifts- it also translates into a matter of immediate life safety for housing existing populations.

    In such an extreme environment, the design of living environments must integrate structural, environmental, and planning considerations to consolidate environmental conditions within the chosen architectural language. New cross-disciplinary tools can help to inform comprehensive solutions to a complex design challenge.

    Confrontations between manmade systems and environmental systems often result in temporary shortages of essential services for dwellings in the North, for example in the case of power blackouts and severed transportation of necessary material goods. In response to these deficiencies, the design of remote settlements in the North must be constructed in accordance with ideas of self-sufficiency and supplementary, back-up energy systems. Many vernacular building traditions can serve as a reference for designing environments that are self-sufficient and sustainable within the extreme climatic conditions challenging human habitation in the North.

    LIVING IN EXTREME

    Environments

  • 77

    Northern settlements have suffered a history of material destruction as well as death and injury on account of avalanche catastrophes. High-speed cur-rents of snow have blocked access to these settlements, annihilated build-ings, and buried entire communities in their paths. It is important to avoid designing in avalanche high risk zones, but in some areas of development positioned at important trading points or economic centers, it may be difficult to completely avoid building in areas susceptible to some avalanche risk.

    In the event of an avalanche, building design must be capable of withstand-ing extreme and concentrated lateral forces. Streamlined designs parallel to these forces as well as reinforced foundation design can reduce a buildings vulnerability to small-scale avalanches. Vernacular building traditions in the North provide references for designing in a similar environmental context today. Traditional building forms, as well as structural design, for example, both address important considerations for construction within avalanche risk zones.

    The design of the surrounding site must also consider access to the building in the case of heavy snow and avalanches. Accessibility for buildings can be completely blocked if site planning has not been carefully considered in response to climatic conditions and avalanche risk. Challenges facing both site planning and architectural design must be met with innovative solutions that can protect against often unexpected climatic disasters.

    BUILDING IN AVALANCHE

    RISK ZONES

  • 88

  • 99

    Avalanches pose a variety of threats to human habitation. Different types of avalanches occur in different terrains and contexts and can be understood as unique reactions to unique environments.

    This section will analyze traditional building designs in their response to risks associated with avalanches, heavy snowfalls, strong winds, and extreme cold. Various formal solutions have been developed to respond to avalanche risk- solutions both integrated with building design and solutions that act as separate, isolated structures.

    EXTREME

    WEATHER

    PROTECTION

  • 1010snow protection:

    traditional methods

    SNOW DRIFTING

    Snow is deposited on the lee (downwind) side of hills or in downwind depressions. Snow drifts form when the flow of wind is interrupted by obsta-cles or barriers. The snow is swept away in areas of high wind speeds and deposited when wind speeds drop, often some distance behind the object. Obstacles and barriers can be in the form of hedges, trees, fences, buildings, and even snow deposited from snow removal processes.19 After time, snow drifting will form a streamlined enclosure and will not build up further so long as the wind direction and flow remains the same and the surface of the snow is lower than surrounding obstacles.

    SNOW FENCES

    Collector FencesFences must be arranged perpendicular to the direction of the prevailing winds. Winds will slow after passing the fence, causing wind-blown snow to settle before reaching the site. Most of the snow will be deposited behind the fence, so the fence should be positioned a great enough distance to avoid snow accumulation in the area surrounding the building. Fences should be positioned approximately 15 times the fence height from the building volume. A decrease in solid fence area will produce a longer and shallower the drift. Open fences with a density ratio between 40 and 60 percent have maximum collecting capacity. Two rows of fences between 4-6 feet are usually more cost-effective than a higher fence. If space is limited, a more solid collector fence can be placed before the building to cause greater accumulation in front of the fence as opposed to behind. Solid fences require stronger and more expensive foundations and can result in strong winds keeping the area behind the fence clear of snow.

    Blower FencesThe wind passing below the fence is accelerated and the snow behind the fence is cleared up to an approximate distance of 20 feet. Blower fences are most often used in preventing snow accumulation behind ridges and depressions. The incline of the fence should be similar to the lee side of the depression, but not less than 30 degrees.

    Deflector Fences8-10 feet high fences can deflect the wind to cause accelerated winds behind the fence and the erosion of snow. In the case of changing winds, the po-sitioning of deflector fences should be such that they do not act as collector

    fences and deposit snow close to the building.

  • 11

    POSITIONING THE BUILDING

    The walls facing a descending avalanche must be constructed in the correct form and with adequate strength to resist the applied force of an avalanche. The larger the surface of the resisting wall, the larger the pressure this wall will be exposed to in the event of an avalanche. Therefore, it is ideal to position the building in a way so as to minimize the length of the impact surface. For example, when a wall is perpendicular to the avalanche direction, it must bear the entire kinetic force of this avalanche, while orientating the walls differently lessens the required strength of resistance. Acute angles or curved forms are also capable of splitting the course of a descending avalanche and reducing the applied force.

    WEDGE FORMS

    Structures with strength equal to the kinetic force of avalanches in the form of dams, walls, galleries, and deflecting walls can deviate, divide, or channel an avalanche. These protective structures can be built against isolated buildings or constructed in their immediate vicinity in order to divide an avalanche and alter its track to avoid the building. A stone wedge positioned on the hill-ward side of a building is a traditional avalanche proofing method with a long history. The interior angle of the wedge should not exceed 60 degrees in order to effectively split the avalanche. The sides of the wedge must be long enough to prevent snow from eddying and engulfing the protected building.

    DEVIATING WALLS

    Deviating walls are intended to alter the path of an avalanche. Their deviating capacity is relative to their height as well as the gradient of the slope and the angle of deviation. Deviating walls can be most effective when they raise the edges of a natural depression or gully and preventing the avalanche from leaving the already-existing channel. Similar to wedge forms, the angle of deviation should not be greater than 30 degrees. A smaller angle of deviation will reduce the applied force of the avalanche that the deviating structure must resist.

    PARTIALLY BELOW-GRADE CONSTRUCTION

    Another long-established method for protecting living spaces from avalanches is to build houses that are embedded into the hillside. In semi-subterranean construction, roofs are traditionally flat or follow the sloping angle of the terrain, allowing the avalanche to flow over the building without causing great damage to the building. In this case, the roof and the wall structure must be reinforced in order to bear the weight of the snow. Vernacular traditions of partially below-grade construction can be reinterpreted in various ways in contemporary design.

    fORMAL

    sOLUTIONS11

  • 12

  • 13

    Explorations of prototypical designs of a smallest-possible habitable unit explore modern translations of traditional construction strategies in the extreme North. The shelter will be programmed for mountaineers and hikers seeking shelter in remote locations and at high altitudes and it is designed to withstand harsh winter conditions.

    The prototype will be given a real site in the Kamnik-Savinja Alps, Slovenia, a location that faces severe winter weather. The alpine shelter will be accessed primarily in the summer months. However, the design must be also be accessible during the winter months. The building must be self-sufficient, independent from external energy sources, for example, which may fail in harsh winter weather.

    site

    information

  • 1414project

    introduction

    PURPOSE

    The prototypical design will investigate architectural solutions in extreme climatic conditions as well as traditional building designs that respond to risks associated with avalanches, heavy snowfalls, strong winds, and extreme cold. The shelter will be given a real site on the peak of a mountain exposed to the harshest climatic conditions.

    FUNCTIONALITY

    The prototype unit will accommodate up to 8 people, offering space for sleeping and cooking, and designed as a smallest-possible-habitable unit. Even in extreme weather conditions, it will provide a safe shelter for mountaineers and hikers for durations of one to three days. The unit should be self-sufficient without the need for external electrical and heating supply networks and it must minimize future maintenance costs. It can make use of both primitive or vernacular building practices as well as advanced technology to achieve designs with full self-sufficiency and zero site impact.

    DESIGN CONSTRAINTS

    The process will involve structural engineers and elements of sustainable architecture (intelligent building skins, etc) to produce a shelter with strict design constraints.

    The shelter must be designed for easy transportation, low maintenance, and harsh weather conditions. The volume must weigh less than 1800 kg to be transported via helicopter to the destination site. If it is heavier, it can be transported as a series of smaller parts that can be easily assembled on site. Designs must enable low maintenance throughout the shelters lifespan since the unit will be isolated from any other man-made construction and will not have access to electricity or heating. The shelter will also be built in an area susceptible to harsh weather conditions. It must be resilient in the case of avalanches, heavy snowfalls, rainfalls, and ice storms and have the capacity to carry heavy snow loads.

  • 15site

    CONDITIONS

    LOCATION

    The site is a destination center for hikers and climbers in all seasons. The present site with the existing shelter is located under the Skuta Mountain in Kamnike Alpe, Slovenia at an elevation of 2070 meters. It sits on the karst plateau of Mali Podi along an unmarked trail leading to the summit of Skuta with an altitude of 2532 meters.31 Each year a few hundred mountaineers and hikers stop at the existing shelter, some for the night, some only for a brief break. This particular site is valued for its spectacular views of the surrounding mountains and the valley of Kamnika Bistrica.

    EXISTING ALPINE SHELTER

    The existing shelter provides 12 sleeping places (6 bunk beds) with blankets, a table, and a bench. The shelter is open all year round, though it is very rarely used between December and May. The most crowded months are July, August and September. The first shelter in this location was built in 1946. In 1981, The Mountaineering and climbing club Ljubljana-Matica built the present shelter that was larger and better protected from the weather than the previous one.

    CLIMATE

    Winter climatic conditions are very harsh at the altitude of the site location. Snow cover exists for more than half of the year. In winter, the depth of snow cover in the area may reach several meters. The average temperature of the year is close to 0 C. In summer, the average temperature rises close to 8-10 C and in winter drops to -6 C, but colder days may reach temperatures less than -20 C.

    15

  • 1616minimum living

    space design

    Minimum space design is characteristic of a variety of living spaces - for boats, motor caravans, trains, etc., where available space is limited. This design approach can also be advantageous for economic or functional reasons. Minimum space design has also developed a kind of minimalist design aesthetic that both reinforces and is derived from economic and functional efficiency.

    At the beginning of the 20th century, spatial efficiency became an increasingly important topic of discussion in relation to the housing question. Immediate demand for housing in the post-war period led to economy of design and a scientific approach to architecture as a means to determine the minimum requirements of life. Particularly at the end of the 1920s, the social and economic situation led many architects to think about the question of Existenzminimum; while designing minimal and standardized apartments for the working class. Existenzminimum was defined in terms of the minimal acceptable floor space, density, fresh air, access to green space, access to transit, etc. required to support life and create a habitable dwelling. During the same period, the aspiration for a more simple, rational, and efficient living model was expressed in Le Corbusiers house as a machine for living.

    Continued reflection on minimum living spaces has been developed by various architects throughout the past half century. Efforts in making living environments more functional, for example, have led to the evolution of ergonomics as a new scientific field in order to maximize spatial efficiency and well-being. With continued densification of contemporary cities, multi-functional designs have also led to a reduction in necessary allocation of

    space.

    train cabin

    petit cabanon

    capsule tower, kikusha kurokawa

    boat house

  • 17SHELTER

    STRUCTURE

    TRANSPORTATION

    Structural design must be lightweight in order to facilitate easy transportation to remote locations that may not have automobile access. Transport by helicopter is common practice where other vehicular modes of transportation are not possible or hazardous. In these cases, transportation and construction must occur outside of winter months, when weather conditions are more favorable for flying.

    Structural systems must also be consolidated within the buildings volume where possible to allow compact movement and transportation. A higher degree of prefabrication and reduced on-site assembly will also reduce the complications associated with building on steep and uneven terrain. This also reduces the necessary transportation of construction workers, materials, and tools for assembly.

    Shelters can be transported as a whole or in numerous parts. However, increasing the number of parts will also increase the on-site construction and expense of the building. Prefabrication allows greater quality control outside of a hazardous and an uneven construction site.

    AFFIXMENT

    Small buildings can be raised off of a steep slope or embedded within it. When a foundation wall is embedded within a hillside, it is important to provide sufficient anchorage, reinforcement, backfill, and drainage to prevent the wall from collapsing or toppling over.

    The most secure foundations will fix the building to bedrock whether at the ground surface or below loose rock or soil. If grade conditions are susceptible to freeze-thaw action, it is important to fix the building to a more secure and stable ground layer.

    If footings and foundations are designed with enough strength and security, large cantilevers are possible. However, designs must determine and consider extreme and maximum wind and/or snow loads. In the case of strong winds and lateral forces, buildings can also be tied down with cables or structural steel to provide additional lateral stability.

    Traditional construction is sometimes built above grade using a stone foundation. However, if the foundation is not tied to bedrock below, the form of the building and site positioning must be carefully considered so as not to expose the building to extreme lateral forces applied by strong winds or avalanches.

    17

  • 18

  • 19

    STEP CASEFred Kim, Katie MacDonald, & Erin Pellegrino

    TWIN HOUSEZheng Cui

    Extreme AdaptabilityOliver Bucklin

    Harmonika RewindTianghang Ren

    InterlockElizabeth Wu

    CUBEXin Su

    The WindLauren McClellan

    POP HOUSEFred Kim, Katie MacDonald, & Erin Pellegrino

    ROTATEMyrna Ayoub

    ARK I REVISITEDNadia Perlepe

    LEDGE HOUSEElizabeth Pipal

    TREE/HOUSEMike Meo

  • 20

  • 21STEP CASE

    Fred Kim, Katie MacDonald, & Erin Pellegrino

    Step Case is an economical, single-unit shelter that can exist both as a solitary unit and as an assembly, conglomerating in a variety of configurations to adapt to various alpine slopes. Shaped by the human form, the shelter accommodates sleeping, sitting, and standing. A slide-out table and fold-out chair double as additional seating and shelving devices, providing a combination of pragmatism and flexible social space. With its stepped form, the roof becomes an extension of the mountain topography, allowing mountaineers to scale the building as well as gather and socialize in the warmer months.

  • 22

  • 23STEP CASE

    WEIGHT................................................2000 KGDIMENSIONS..........2.5m x 2.5m x .8m/moduleMATERIALS.........................alucobond & woodOCCUPANCY...........................1 person/module

    2.5

    0.1

    2.5

    0.8 0.8

    0.8

    0.8

    0.8

    1.1

    1.4

    1.7

    2.0

    0.3

    1.8

    1.0

    0.9

    0.7

    0.3

    PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

    PRO

    DU

    CED

    BY

    AN

    AU

    TOD

    ESK

    ED

    UC

    ATI

    ON

    AL

    PRO

    DU

    CT

    PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

    PRO

    DU

    CED

    BY A

    N A

    UTO

    DESK

    EDU

    CA

    TION

    AL PR

    OD

    UC

    T

    Specifications

  • 24

    PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCTPR

    OD

    UC

    ED B

    Y A

    N A

    UTO

    DES

    K E

    DU

    CA

    TIO

    NA

    L PR

    OD

    UC

    TPRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

    PRO

    DU

    CED

    BY A

    N A

    UTO

    DESK

    EDU

    CA

    TION

    AL PR

    OD

    UC

    T

    2000 KG - 2.5m x 2.5m - 4 TRIPS TO SITE

    2000 KG - 2.5m x 2.5m - 4 TRIPS TO SITE

    2000 KG - 2.5m x 2.5m - 1 TRIP TO SITE

    Fig. 1. Deployment Strategies

  • 25

    Fig. 2. Slope Types & Hazards

    PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

    PRO

    DU

    CED

    BY

    AN

    AU

    TOD

    ESK

    ED

    UC

    ATI

    ON

    AL

    PRO

    DU

    CT

    PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

    PRO

    DU

    CED

    BY A

    N A

    UTO

    DESK

    EDU

    CA

    TION

    AL PR

    OD

    UC

    T

    50 Slope - Snow Pile & Avalanche Hazards

    35 Slope - Snow Pile Hazards

    20 Slope - Wind Hazards

  • 26

    Fig. 3. Modular Assemblies

    PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCTPR

    OD

    UC

    ED B

    Y A

    N A

    UTO

    DES

    K E

    DU

    CA

    TIO

    NA

    L PR

    OD

    UC

    TPRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

    PRO

    DU

    CED

    BY A

    N A

    UTO

    DESK

    EDU

    CA

    TION

    AL PR

    OD

    UC

    T

  • 27

    Fig. 4. Modular Assemblies

    PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

    PRO

    DU

    CED

    BY

    AN

    AU

    TOD

    ESK

    ED

    UC

    ATI

    ON

    AL

    PRO

    DU

    CT

    PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

    PRO

    DU

    CED

    BY A

    N A

    UTO

    DESK

    EDU

    CA

    TION

    AL PR

    OD

    UC

    T

  • 28

    Fig. 3. Modular Assemblies

    PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCTPR

    OD

    UC

    ED B

    Y A

    N A

    UTO

    DES

    K E

    DU

    CA

    TIO

    NA

    L PR

    OD

    UC

    TPRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

    PRO

    DU

    CED

    BY A

    N A

    UTO

    DESK

    EDU

    CA

    TION

    AL PR

    OD

    UC

    T

  • 29

    Fig. 4. Modular Assemblies

    PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

    PRO

    DU

    CED

    BY

    AN

    AU

    TOD

    ESK

    ED

    UC

    ATI

    ON

    AL

    PRO

    DU

    CT

    PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

    PRO

    DU

    CED

    BY A

    N A

    UTO

    DESK

    EDU

    CA

    TION

    AL PR

    OD

    UC

    T

  • 30

    Fig. 3. Modular Assemblies

    PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCTPR

    OD

    UC

    ED B

    Y A

    N A

    UTO

    DES

    K E

    DU

    CA

    TIO

    NA

    L PR

    OD

    UC

    TPRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

    PRO

    DU

    CED

    BY A

    N A

    UTO

    DESK

    EDU

    CA

    TION

    AL PR

    OD

    UC

    T

  • 31

    Fig. 4. Modular Assemblies

    PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

    PRO

    DU

    CED

    BY

    AN

    AU

    TOD

    ESK

    ED

    UC

    ATI

    ON

    AL

    PRO

    DU

    CT

    PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

    PRO

    DU

    CED

    BY A

    N A

    UTO

    DESK

    EDU

    CA

    TION

    AL PR

    OD

    UC

    T

  • 32

    Fig. 5. Stepping Module1m1:40

  • 33

    Fig. 6. Podium Module1m

    1:40

  • 34

    0.8

    0.8

    1.5

    0.8

    2.5

    0.8

    0.8 0.1

    2.5

    0.1

    2.5

    0.80.8 0.8

    0.8

    0.8

    0.8

    0.6

    0.8

    0.8

    0.6

    0.8

    2.5

    0.1

    0.8

    2.5

    0.1

    0.8

    0.8

    0.8

    PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

    PRO

    DU

    CED

    BY

    AN

    AU

    TOD

    ESK

    ED

    UC

    ATI

    ON

    AL

    PRO

    DU

    CT

    PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

    PRO

    DU

    CED

    BY A

    N A

    UTO

    DESK

    EDU

    CA

    TION

    AL PR

    OD

    UC

    T

    Fig. 7. Module Assembly

  • 35

    Extruded metal panels, as used in airplanes, serve as a lightweight structural system for the stepped module. The generic geometries of hexagon, circle, or triangle extrusions can be densified to protect

    against lateral wind loads and vertical loads on the feet.

    0.8

    0.8

    1.5

    0.8

    2.5

    0.8

    0.8 0.1

    2.5

    0.1

    2.5

    0.80.8 0.8

    0.8

    0.8

    0.8

    0.6

    0.8

    0.8

    0.6

    0.8

    2.5

    0.1

    0.8

    2.5

    0.1

    0.8

    0.8

    0.8

    PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

    PRO

    DU

    CED

    BY

    AN

    AU

    TOD

    ESK

    ED

    UC

    ATI

    ON

    AL

    PRO

    DU

    CT

    PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

    PRO

    DU

    CED

    BY A

    N A

    UTO

    DESK

    EDU

    CA

    TION

    AL PR

    OD

    UC

    T

    Fig. 8. Material Detail

    Hexcel Fiberlam Panel

    Connection Magnet

    Level Adjustable Foundation

    Wood Veneer

    Hexcel Fiberlam Insulation Layer

  • 36

    Fig. 9. Animated Sections of Stepping Module1m1:40

  • 37

    Fig. 10. Animated Sections of Podum Module1m

    1:40

  • 38

  • 39Harmonika Rewind

    Tianghang Ren

    The shelter design is essentially an organic combination of rotation and folding structure. Instead of being static, the shelter derives from the perspectives of industrial design. By rotating two walls around the axis with beds attached to them, the shelter pushes the limits of materality and space. It, as well, maximizes its versatility by changing the volume of interior space and multiple combinations with several units. The envelope of the shelter is inspired by the concertina, which surprisingly resonates with the slovenian traditional instrument Harmonika. The concept of the envelope is functionally and culturally in the sync with Slovenian context.

  • 40

  • 41Harmonika Rewind

    Specifications

    DIMENSIONS......................4.8m x 3.0m x 1.4mMATERIALS............................Gore-tex & woodOCCUPANCY....................4 persons per module

  • 42

    Fig. 1 Module Assembly

  • 43

    Fig. 2 Module Assembly

  • 44

    Fig. 3 Section1m1:40

  • 45

    Fig. 4 Plan1m

    1:30

  • 46

  • 47

  • 48

  • 49

  • 50

  • 51cube

    Xin Su

    The CUBE is a compact shelter including two levels, each of which contains four beds, arranged according to the Pinwheel pattern. It not only maximize the efficiency of space, but also make space transferable between private and social. The structure is consistent with the logic of spatial elements. The detail, which is designed to adapt to the installation procedure, is carefully treated, so that all the components could be prefabricated in the factory, transported to the site and easily assembled there.

  • 52

  • 53cube

    WEIGHT................................................3500 KGDIMENSIONS.................................3.2m x 3.3mMATERIALS..................cross laminated timberOCCUPANCY.........................8 people per cube

    Specifications

  • 54

    Fig. 1. Deployment Strategies

    3500 Kg - 3.2M X 3.3M - 2 Trips To Site

    3500 Kg - 3.2M X 3.3M - 6~8 Trips To Site

    3500 Kg - 3.2M X 3.3M - 1 Trip To Site

  • 55

    1 BED x 8 = 4 BEDS x 2 PINWHEEL

    SLEEPING - PRIVATE

    LYING

    PARTITION

    CHATTING - SOCIAL

    SITTING & STANDING

    1m1:30Fig. 2. Arrangement and Scale

    With the Pinwheel pattern, two goals are achieved:1. To make the 8-beds-shelter as compact as possible.

    2. To create private and social space and make it transferable by the ways people use it. The central square is used as common area for climbing up and down.

    Considering the heavy snow in the winter, except for the door, there is another entrance on the top of the shelter.

  • 56

  • 57

    Fig. 2. Floor Plan1m

    1:30

  • 58

    Fig. 3. Section 11m1:30

  • 59

    Fig. 4. Section 21m

    1:30

  • 60

    Fig. 5. Installation Steps

    Stand bar - fixed to level adjustable foundation (pre-installed and attached to the ground)

    Step 1 Main Structure

    Step 0 Foundation

    Step 2 Lower Window & Enclosure Panel

  • 61

    Fig. 6. Installation Steps

    To better perform the shelter and further simplified the installation, wooden joints are considered preferentially, for they could be assembled without complicated tools. Especially when in the extreme cold weather, operation of some device can be very difficult.

    Step 4 Partition Panel

    Step 5 Roof

    Step 3 Upper Window & Enclosure Panel

  • 62

    1m1:40 Fig. 7. Axonometric

  • 63

    Furthermore, the possibility to adapt to variant terrains is also considered. Based on types of structure. This cubic shelter could be located in different places of the mountain.

  • 64

  • 65LEDGE HOUSE

    Elizabeth Pipal

    Ledge House is an eight person shelter that seeks to distill the joy of the climbing experience while providing a brief respite from its sometimes too harsh reality. It hangs from a cliff, minimizing its impact on the natural landscape while simultaneously allowing spectacular views from within. Its seeming precariousness alludes to the adrenaline of mountaineering. It is a warm home for a moment of contemplation, before the climber forges on.

  • 66

  • 67ledge house

    WEIGHT.................................................2500 kgDIMENSIONS.................................5.5m x 5.5mMATERIALS....wood, structural aerogel panels OCCUPANCY........................................8 people

    Specifications

  • 68

    2500 KG - 5.5m x 5.5m - 2 TRIPS TO SITE

    2500 KG - 5.5m x 5.5m - 2 TRIPS TO SITE

    2500 KG - 5.5m x 5.5m - 1 TRIP TO SITE

    Fig. 3. Deployment Strategies

  • 69

    Fig. 4. Portaledge

    Fig. 5. Formal Derivation

  • 70

    top view1:40

    A

    B

    B

    A

  • 71

    Fig. 6-8. Top View and Plans2.5, 1.5m

    1:40

    245

    545

    225

    342

  • 72

    Fig. 9. Long Section

    569

    187

    35

    102

    345

    545

    53

    section AA1:40

  • 73

    Fig. 10. Cross Section

    570

    207

    229

    149

    105

    345

    section BB1:40

  • 74

    Fig. 11. View of Approach Under Snowy Conditions

  • 75

    Fig. 13. Detail of Floor and Cable Connections

    structural panel

    structural panel

    aerogel insulation

    aerogel insulation

    interior finishes

    spacer

    waterproof insulation

    steel platesteel support

    steel bearing plate

    moisture barrier

    moisture barrier

    high strength grout

    thermal break (wood poss.)

    cables

    Fig. 12. Detail of Hanging Connection Between Cliff and Bivak

  • 76

  • 77

  • 78

  • 79pop house

    Pop Haus is a climbable, modular shelter that adapts to various alpine sites. Deployed by helicopter as a planar assembly, the shelter folds open on site to become a three dimensional space. The structures modular system allows for units to be placed along slopes of varying heights. Wooden joints are moved into place and secured with dowels. Inside, beds fold out to accommodate both sleeping and socializing.

    Fred Kim, Katie MacDonald, & Erin Pellegrino

  • 80

  • 81POP HOUSE

    Specifications

    WEIGHT..................................1000 KG/moduleDIMENSIONS.................................2.5m x 2.5mMATERIALS............................................LVL OCCUPANCY.......................1-4 people/module

  • 82

    PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCTPR

    OD

    UC

    ED B

    Y A

    N A

    UTO

    DES

    K E

    DU

    CA

    TIO

    NA

    L PR

    OD

    UC

    TPRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

    PRO

    DU

    CED

    BY A

    N A

    UTO

    DESK

    EDU

    CA

    TION

    AL PR

    OD

    UC

    T

    Fig. 1. Deployment Strategies

    1000 KG - 2.5m x 2.5m - 2 TRIPS TO SITE

    1000 KG - 2.5m x 2.5m - 2 TRIPS TO SITE

    4000 KG - 5m x 2.5m - 1 TRIPS TO SITE

  • 83

    Fig. 3. Panel pops openFig. 2. Flat panel arrives on site Fig. 4. Assembly is secured

    Fig. 6. Sloped site module assemblyFig. 5. Flat site module assembly Fig. 7. Steep site module assembly

  • 84

    Fig. 8. Elevation & Section1m1:40

  • 85

    Fig. 9. Connection details

    Level adjustable foundation

    1m1:40

  • 86

    Fig. 10. Planometric views1m1:40

  • 87

    1m1:40Fig. 11. Sectional views1m

    1:40

  • 88

    Fig. 12. Occupancy diagrams1m1:80

  • 89

    Fig. 13. Cladding assemblies Fig. 14. Switchback roof profiles1m

    1:80

  • 90

  • 91

  • 92

  • 93TREE/HOUSE

    Mike Meo

    The Tree/House is an ultralight, vertical safe haven for the hiker that loves to climb. The scheme organizes sleeping and storage spaces around a central circulation atrium. The pinwheel allows for the minimization of the interior volume while simul-taneously maximizing the hikers personal space. The hiker can experience both connectivity with the other hikers occupying the Tree/House while still being able to retreat to their own unique level and viewport within the tower. Each L bed unit has one leg for sleeping and another for storage of the hikers personal gear. The outer form reflects the inner tectonic. A simple triangulated arm rotates in tandem with the beds.

    The Tree/House is light in its material composition. A tight weather-proof fabric stretches between the aluminum structural elements. The textile membrane decreases the shelters thermal mass and exterior surface area. With the lowered thermal mass, heat generated by bodies can quickly warm the vertical volume.

    A welcomed surprise, the Tree/House provides the hiker with a sheltering tree well above the treeline.

  • 94

  • 95TREE/HOUSE

    WEIGHT.......................................................2000 KGDIMENSIONS.....................................3mx3mx5mMATERIALS...........................aluminum or wooden structure, wood platform, tent membraneOCCUPANCY......................................8-10 people

    Specifications

  • 96

    Transportation to site1m1:40

    1000 KG - 2.5m x 2.5m - 2 TRIPS TO SITE

    1000 KG - 2.5m x 2.5m - 2 TRIPS TO SITE

    4000 KG - 5m x 2.5m - 1 TRIPS TO SITE

  • 97

    Construction sequence

    The Tree/House is composed of two interwoven structural elements: four main posts, and one repeated triangulated space frame module. These provide for an open central area and a rigid, cross-braced periphery. Unlike a tree, the Tree/Houses structural integrity is more dependent on its periphery than its core.

  • 98

    1m1:40

  • 99

    Cross bracing between the four vertical members occurs at the periphery of the shell, allowing the central circulation atrium to be free of diagonal members. The hiker can freely pass the central core to their bed surface.

    The pinwheel plans allows for a compressed vertical space above the feet and generous open space from the knees to the head. The hiker can layout, sit up, and stretch without feeling the crowding typical in bunk beds.

    1m1:40

  • 100

    Early iteration compose of wood module and steel structural module, rotated about a central atrium.

  • 101

  • 102

  • 103

  • 104

    Fig. 1. Rendering

  • 105THE WIND

    Lauren McClellan

    wind \wind\ 1a: to weave; 1c: to introduce sinuously or stealthily; 2a: to encircle or cover with something pliable; 2b: to turn completely or repeatedly about an object- coil, twine; 2e: to raise to a high level (as of excitement or tension)- usually used with up; 3a: to cause to move in a curving line or path.

    The Wind is a shelter composed of modules - or the smallest possible inhabitable unit -that stack and turn about a central social space. Each module is a planar ring that thickens on one side to accomodate sleeping, sitting, standing, eating and circulating. The stacking aggregation both defines the spiraling circulation and gives the surfaces their dynamic character through their relationship to one another.

    The following pages illustrate different site and material tectonic realizations of the shelter. One programmatic appointment of The Wind is inspired by Slovenian bivaks and engenders a hiking shelter. The round form and diagrid structure bear extreme climatic loading (snow and wind).

  • 106

  • 107

    WEIGHT................................................2000 KGDIMENSIONS.................................3.6m x 3.6mMATERIALS.................................................TBDOCCUPANCY......................1 person per module

    Specifications

    THE WIND

  • 108

    PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

    PRO

    DU

    CED

    BY

    AN

    AU

    TOD

    ESK

    ED

    UC

    ATI

    ON

    AL

    PRO

    DU

    CT

    PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

    PRO

    DU

    CED

    BY A

    N A

    UTO

    DESK

    EDU

    CA

    TION

    AL PR

    OD

    UC

    T

    2000 KG - 3.6m diameter - 1 TRIP TO SITE

    500 KG - 3.6m diameter - 4 TRIPS TO SITE

    2000 KG - 3.6m diameter - 1 TRIP TO SITE

    Fig. 7. Deployment Strategies

  • 109

    Fig. 8. Construction Detail

  • 110

    605 cm

    360 cm

    1m1:40 Fig. 1. Side Elevation

  • 111

    1m1:40Fig. 2. Front Elevation

    605 cm

    360 cm

  • 112

    605

    cm

    50 c

    m

    1m1:40 Fig. 5. Unrolled Structural Skin

  • 113

    605

    cm

    50 c

    m

    1m1:40Fig. 6. Section

  • 114

    Fig. 3. Plan1m1:40

    605 cm

    360 cm

  • 115

    Fig. 4. Module Stack Exploded1m

    1:40

  • 116

  • 117

    1m1:40

  • 118

  • 119

  • 120

  • 121

  • 122

  • 123

  • 124

  • 125interlock

    Elizabeth Wu

    Interlock is a modular unit that takes the traditional box-cut joint for wood-house construction to an extreme. The construction explores how cross-laminated timber can be both a structural and thermal regulator while expressing the funtionality through the facade. The units are compact in floor area and are flexible enough to adapt to various inclines and topographies.

  • 126

  • 127interlock

    WEIGHT................................................3500 KGDIMENSIONS.................................3.0m x 3.0mMATERIALS..................cross-laminated timber

    & polycarbonateOCCUPANCY......................8 people per module

    Specifications

  • 128

    Fig. 4. Concept Diagrams

    alternate stacking of beds to provide personal space

    shared space at ends of beds for storage and food prep

    EXISTING BIVAK PROPOSED BIVAK

    SURFACE AREAEnvelope: 48 m2

    Floor: 16 m2 + 14.4 m2

    Roof: 16 m2

    TOTAL: 94.4 m2

    FLOOR WEIGHT~2000kgSTRUCTURE HEIGHT3.0m

    SURFACE AREAEnvelope: 40.8 m2

    Floor: 7.5 m2 + 14.4 m2

    Roof: 7.5 m2

    TOTAL: 70.2m2

    FLOOR WEIGHT1500kg

    STRUCTURE HEIGHT4.4m

    TIMBER JOINT CONNECTIONS

    minimize footprint of sleeping area

    increase height of sleeping area

  • 129

    max panel width 295.0 cm

    max

    pan

    el h

    eigh

    t16

    50.0

    cm

    A

    B

    C

    D

    E

    F

    G

    R1

    R2

    A

    B

    C

    DE

    FG

    R1R2

    + oor plate

    Fig. 5. Deployment Strategies

    Pre-assembly: minimize material storage space

    Assembly: construct module in [2] parts off-site

    Production: minimize material usage (16.5 m x 2.4 m panels)

    Assembly: 3000kg 3.0m x 3.0 m 2 TRIPS TO INSTALL

  • 130

    206.0 cm

    12 c

    m42

    0.0

    cm10

    cm

    285.0 cm

    206.0 cm 79.0 cm

    116.2 m

    100.

    0 cm

    102.

    0 cm

    52.0

    cm

    285.

    0 cm

    Fig. 3. Plan_Attachment Option 011m1:40

    Section X-X

    5-layer cross laminated timber

    3-layer cross laminated timber

    3-layer polycarbonate glazing

    lateral struts anchored to rock-face

    Plan at +170cm

    Detail Sequence 01

  • 131

    425.0 cm

    444.

    0 cm

    285.0

    cm

    285.0 cm

    Fig. 4. Plan_Attachment Option 021m

    1:40

    Detail Sequence 02

    Section Y-Y

    5-layer cross laminated timber

    3-layer polycarbonate glazing

    Plan at +170cm Plan at +350cm

  • 132

    Fig. 5 Suggested Manudfacturer Details1m1:10

    KLH Cross Laminated Timber Panels

    Roof to Wallangle clips+ screws

    Polycarbonate Panels

    PaneliteClearlite

    double layer

    PaneliteClearlite

    triple layer

    Polygaleextruded triple-cell

    +aluminum

    top and rail

    Interior Wallgrooves and cut-outs for electrical + plumbing

    Wall-Floorangle clips + screws

  • 133

    Fig. 6. Customized Connections1m

    1:10

    DETAIL SEQUENCE 01Outside Corner

    DETAIL SEQUENCE 02Interior Corner

    1. Foundation

    2. Set Panel A

    3. Slide andlock Panel B, provide sealing tape

    4. Panel A

    5. Slide polycarbonate panes

    6. Adjust and seal polycar-bonate frame in place

    7. Align and lock roof panels to wall notches, additional fasteners as required

    1. Slide and align Panels D & E

    2. Snap-fit and lock in place

    3. Bed platforms slide from above

    Panel D

    Panel E

  • 134

    Fig. 7. Section X-X

    206.0 cm

    12 c

    m42

    0.0

    cm10

    cm

    285.0 cm

    206.0 cm 79.0 cm

    116.2 m

    100.

    0 cm

    102.

    0 cm

    52.0

    cm

    285.

    0 cm

    1m1:40

  • 135

    Fig. 8. Section Y-Y

    425.0 cm

    444.

    0 cm

    285.0

    cm

    285.0 cm

    1m1:40

  • 136

    Fig. 1. Rendering

    8% SLOPE 120% SLOPE2% SLOPE

    SOLAR (23O)

    WIND

    SNOW

    CLUSTER

    LINEAR MIRROR

    LINEAR

    SPIRAL

  • 137

  • 138

  • 139rOtate

    Myrna Ayoub

    The main goal of this project was to create a multi-functional and easily changeable space for all mountaineers seeking shelter. The concept of the prototype is inspired by the farmers plow and its rotational mechanism. The interior space is organized through a module that rotates to become a seat, bed, storage and counter space. The skin is fabricated from a series of ribs that mold to the rotation modules in cross section and is covered in transluscent fiberglass textile coated in teflon. The facade and modules are held by the vierendeeel truss structure which allows the prototype to cantaliever from the mountain.

    Fig. #1. Day Perspective

  • 140

  • 141rotate

    WEIGHT................................................2000 KGDIMENSIONS......................5.5m x 3.2m x 3.5mMATERIALS..............aluminum, textile & woodOCCUPANCY........................................8 people

    Specifications

  • 142

    2000 KG - 5.5m x 3.2m - 1 TRIP TO SITE

    2000 KG - 5.5m x 3.2m - 1TRIP TO SITE

    2000 KG - 5.5m x 3.2m - 1 TRIP TO SITE

    Fig. #1. Deployment Strategies

    2000 KG - 5.5m x 3.2m - 1 TRIP TO SITE

    2000 KG - 5.5m x 3.2m - 1TRIP TO SITE

    2000 KG - 5.5m x 3.2m - 1 TRIP TO SITE

    Fig. #3. Deployment Strategies

  • 143

    Wooden filler ribs protect against lateral wind loads and vertical loads on the feet. While giving the interior space a warmer feeling.

    Aluminum ribbed facade shapes around the rotating furniture modules in cross section creating porousness throughout the shelter. The soft curves of the form adapt to the mountain topography.

    A vierendeel cantaliever structure carries the ribbed facade and furniture elements of the shelter. These pipes are piled into the mountain. The cantaliever allows for snow build up in extreme weather conditions while keeping the entrance and view open for the mountaineers.

    Transclucent fiberglass textile coated in teflon covers the ribbed facade, shielding the shelter from rain and snow while allowing sunlight to enter the shelter.

    Fig. #4. Exploded Axonometric

  • 144

    Fig. #5. Module Diagrams

    100

    50

    100

    58

    100

    50

    100

    50

    SIT

    SLEEP

    STORE USE

  • 145

    Fig. #6. Module Diagrams

  • 146

    Fig. #7. Interior Perspectives

  • 147

    Fig. #8. Interior Perspectives

  • 148

    Fig. #9. Planometric views1m1:40

    555

    325

    325

    100

    100

    100

    204 64 204 9 6410

  • 149

    Fig. #10. Sectional views1m

    1:40

    100

    280

    80

    300

    360

    555

    267

  • 150

    Fig. #11. Facade Ribs Diagram

    71

    1

    2 3

    4

    5

    11 12

    7

    8 9

    10

    13

    14

    16

    17 18

    19

    20 21

    22

    23 24

    25

    26 27

    28

    29 30

    31

    32

    33

    34

    35 36

    37

    38 39

    40

    41 42

    43

    44 45

    46

    47 48

    49

    5051

    52

    53 54

    55

    56 57

    58

    59 60

    61

    62 63

    64

    65

    66

    67

    68 69

    70

    72

    7374 75

    76

    77 78

    79

    80 81

    8283

    84

    0

    57

    89

    11 1214

    15

    15 17 18 20 21

    23 24 26 27 29 30 32

    33 35 36 38 39 41 42

    44 45 47 48 50 51 53 54

    56 5960 62 63 65

    66 68 69 71 72 74 75

    77 78 80 81 83 84

    5

    6

    62 3

    -10 -9 -8 -7 -6 -4 -3 -2 -1-5

    85

    9192

    93

    94 9596

    97

    8687

    8889 90

    0

    -1-6 -4-9-10 -7 -3

    89 90 96959392

    86 87

  • 151

    Fig. #12. Ribs Construction Diagram

  • 152

  • 153

  • 154

    Fig. 1. Rendering

  • 155ark | revisited

    Nadia Perlepe

    ALPINE SHELTER or NOAHS ARK This shelter is a solid, compact structure with the ability to sustain life in the most extreme of environments, not unlike an ark. This ark provides a safe haven during night or extreme environmental conditions. INTERIORThis shelter is conceived as a lifeboat, anchored on a mountain. Its amphitheatric interior has a dual function. First, it is a social space, where hikers sleep, store their belongings, eat and socialise. Second, it is a window- a viewing point, and observation deck, that opens up to nature and offers views both towards the mountain and towards the sky.

  • 156

    THE ARK

    ARK ANCHORED ARK | REVISITED

    ALPINE SHELTER ARK | revisited

    +

    CONCEPT TO ARCHITECTURE

    AMPHITHEATER AS VARIATIONS ON A PLAN

    AMPHITHEATER

    OBSERVATION DECK SOCIAL SPACE

    CONCEPT

    concept diagrams

  • 157ark | revisited

    Specifications

    WEIGHT........................................................>3000 KGDIMENSIONS...............................................6m x 2.5mMATERIALS........steel frame, charred wood, plywoodOCCUPANCY....................................................8 adults

  • 158

    1m1:40 Transportation Diagram

  • 159

    1m1:40

    VARIATIONS on a PLANaxonometric

    Plan Variations

  • 160

    Material Variations

    charred wood

    plywood panels

    grey cement wood boards

    black stained timber finish

    CHARRED WOOD

    CHARRED WOOD CHARRED WOOD

    BLACK STAINED TIMBER FINISH

    GREY CEMENTWOOD BOARD

    GREY CEMENTWOOD BOARD

    FRIBRE C

    FIBRE C PLYWOOD

    MATERIALS | EXTERIOR

    MATERIALS | AXONOMETRICS

    MATERIALS | FACADE VARIATIONS

    MATERIALS | INTERIOR

    CHARRED WOOD

    CHARRED WOOD CHARRED WOOD

    BLACK STAINED TIMBER FINISH

    GREY CEMENTWOOD BOARD

    GREY CEMENTWOOD BOARD

    FRIBRE C

    FIBRE C PLYWOOD

    MATERIALS | EXTERIOR

    MATERIALS | AXONOMETRICS

    MATERIALS | FACADE VARIATIONS

    MATERIALS | INTERIOR

    CHARRED WOOD

    CHARRED WOOD CHARRED WOOD

    BLACK STAINED TIMBER FINISH

    GREY CEMENTWOOD BOARD

    GREY CEMENTWOOD BOARD

    FRIBRE C

    FIBRE C PLYWOOD

    MATERIALS | EXTERIOR

    MATERIALS | AXONOMETRICS

    MATERIALS | FACADE VARIATIONS

    MATERIALS | INTERIOR

    CHARRED WOOD

    CHARRED WOOD CHARRED WOOD

    BLACK STAINED TIMBER FINISH

    GREY CEMENTWOOD BOARD

    GREY CEMENTWOOD BOARD

    FRIBRE C

    FIBRE C PLYWOOD

    MATERIALS | EXTERIOR

    MATERIALS | AXONOMETRICS

    MATERIALS | FACADE VARIATIONS

    MATERIALS | INTERIOR

  • 161

    Exterior Cladding Variations2m

    1:40

    CHARRED WOOD

    CHARRED WOOD CHARRED WOOD

    BLACK STAINED TIMBER FINISH

    GREY CEMENTWOOD BOARD

    GREY CEMENTWOOD BOARD

    FRIBRE C

    FIBRE C PLYWOOD

    MATERIALS | EXTERIOR

    MATERIALS | AXONOMETRICS

    MATERIALS | FACADE VARIATIONS

    MATERIALS | INTERIOR

    CHARRED WOOD

    CHARRED WOOD CHARRED WOOD

    BLACK STAINED TIMBER FINISH

    GREY CEMENTWOOD BOARD

    GREY CEMENTWOOD BOARD

    FRIBRE C

    FIBRE C PLYWOOD

    MATERIALS | EXTERIOR

    MATERIALS | AXONOMETRICS

    MATERIALS | FACADE VARIATIONS

    MATERIALS | INTERIOR

  • 162

    Plans & Sections

    1.9

    2.8

    1.9

    6.6

    2.4

    0.5

    0.24

    0 1 2

    1m1:40

  • 163

    Elevations & Sections

    1.9

    2.4

    0 1 2

    1m1:40

  • 164

    EXPLODED PERSPECTIVEstructure

    Exploded Perspective | Structure

  • 165

    Interior Views

  • 166

  • 167Extreme AdaptabilityOliver Bucklin

    Through folding, this shelter transforms from a compact, stackable, easy to ship package to a fully inhabitable shelter in miinutes. The built in legs adapt to almost any slope, and the volume of the shleter almost triples in deplyment.

  • 168

  • 169

    Specifications

    Extreme Adaptability

    WEIGHT..................................................................................2000 KGDIMENSIONS(folded)...............................4m(l) x 2.4m(w) x 1.25m(h)DIMENSIONS(deployed).........................5.8m(l) x 2.4m(w) x 2.5m(h)MATERIALS.............................................plastic, foam, aluminumOCCUPANCY.........................................................................8 people

  • 170

    2000 KG - 2.5m x 1.5m x 2.4m

    2000 KG - 2.5m x 1.5m x 2.4m

    4 units /standard shipping container

    PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCTPR

    OD

    UC

    ED B

    Y A

    N A

    UTO

    DES

    K E

    DU

    CA

    TIO

    NA

    L PR

    OD

    UC

    TPRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

    PRO

    DU

    CED

    BY A

    N A

    UTO

    DESK

    EDU

    CA

    TION

    AL PR

    OD

    UC

    T

  • 171

    Deployment of Legs Deployment of Shelter

  • 172

    Transverse Section of Folded Module

    Transverse Section of Deployed Module

    Scale 1:40

  • 173

    Longitudinal Section of Folded Module

    Longitudinal Section of Deployed Module

    Plan of Deployed Module

  • 174

    Main frame that holds leg mechanism Primary rack slides to adjust longitudinal elevation change

  • 175

    Secondary rack slides to adjust to transverse eleva-tion change

    Primary and secondary racks slide in conjunction to adjust to diagonal elevation change

  • 176

  • 177

    Zheng Cui

    TWIN HOUSE

    TWIN HOUSE is a shelter comprised by two module units. Each module works by itself with the minimum space and fold-able furniture for a group of 4 people standing, sitting, eating, socializing and sleeping. Each module unit can be placed as 3 different positions, creating 9 configurations in total for the module assembly which allows the shelter to adapt to various alpine locations. In the booklet, 5 configurations have been tested. Each configuration has a unique indoor and outdoor space character, different mountaineer groups could choose different configurations for their use. Two-module system also makes a single module easier for vehicle and helicopter to carry to the designated location.

  • 178

  • 179TWIN HOUSE

    Zheng Cui

    WEIGHT......................................... 1000 KG per moduleDIMENSIONS.........L2.0m x W2.0mx H3.0m per moduleMATERIALS......................................alucobond & woodOCCUPANCY.................................. 4 person per module

  • 180

    Fig. 32.Transportation

  • 181

    a 1mX1m wood/alucobond panel will be cut into 2 or 4 triangle pieces, these pieces can be either facade material attached to the triangle structure elements and being assembled in the factory or the facade material is infilled into the triangle structure element as one piece, and these pieces can be carried by the helicopter/truck to the site and being assembled on site

    imber Structrure System-Cage

    Fig. 31.Structure System and Facade

    structure with attached facade panels

    Module A Elevation Module B Elevation

    1 2

    3 4

    5 6 7

    98

    15

    1617 18

    19

    20 21 22 23

    24 25

    1011 12

    13 14

    1 2

    3 4

    6 7

    9

    8

    18 19 20

    21 22 2423

    25

    11 12 13 14

    5

    10

    15 16

    17

    each traigle panel contains sturcture and fa-cade elements,no extra structure and facade materials are needed after the assembly

  • 182

    A0

    TWIN HOUSE A0B0

    A0 A0

    A0

    A0

    B0

    B90B90

    B180B180

    MODULE ASSEMBLY OPTION 1

    TWIN HOUSE A0B0

    A0

    B0

    MODULE ASSEMBLY OPTION 1

    Fig. 5. Module Assembly Options

    MODULE ASSEMBLY OPTION 2

    TWIN HOUSE A90B0

  • 183

    MODULE ASSEMBLY OPTION 3

    TWIN HOUSE A90B90

    B0B0

    B90B90

    B180B180

    A90A90

    A90A90

    A90

    A90

    TWIN HOUSE A90B0

    TWIN HOUSE A90B90

    MODULE ASSEMBLY OPTION 2

    MODULE ASSEMBLY OPTION 3

    MODULE ASSEMBLY OPTION 4 MODULE ASSEMBLY OPTION 5

    TWIN HOUSE A180B0 TWIN HOUSE A180B90

    B0B0

    B90B90

    B180B180

    A180

    A180

    A180

    A180

    A180A180

    MODULE ASSEMBLY OPTION 4

    MODULE ASSEMBLY OPTION 5

    TWIN HOUSE A180B0

    TWIN HOUSE A180B90

  • 184

    Fig. 1. Module and Module Assembly Concept

    MODULE CONCEPT 2 Dimension : L2m,W2m,H3m

    Minimum Space of 4 people standing,sitting and sleeping, with storage space

    1000

    1000

    500

    3000

    2000

    5005002000

    1000 500

    1000

    2000

    1000

    Ladder

    1000

    1000

    500

    3000

    2000

    5005002000

    1000 500

    1000

    2000

    1000

    Ladder

    2.0m

    3.0m

    2.0

    1.0

    1.0

    1.0 0.50.5

    2.0m

    1.0 0.50.5

    2.0m

  • 185

    1m1:60

    B0 B90 B180

    Vertical 0o Horizontal 90o Vertical 180o

    A90 A180

    Horizontal 90o Vertical 180o

    A0o A90o A180o

    STORAGE

    STORAGE

    STORAGE

    STORAGE

    STORAGE

    STORAGE

    3000

    1000

    500

    500

    1000

    3000

    500 5001000

    2000

    2000

    1000

    500

    500

    1000500 5001000

    B0o B90o B180o

    STORAGE STORAGE

    STORAGE

    Section 1-1 Section 2-2

    STORAGE

    STORAGE

    500

    3000

    500

    1000

    500

    1000

    1400 1800

    2000

    1000 500500

    1000

    500

    500

    1000

    3000

    2000

    500 1000

    STORAGE

    STORAGE

    STORAGE

    STORAGE

    STORAGE

    STORAGE

    2000

    500

    1000

    500

    3000

    1000 500 1000 500

    2000

    5001000500

    3000

    1000

    500

    1000

    500

    STORAGE

    STORAGE

    STORAGE

    STORAGE

    STORAGE

    STORAGE

    2000

    500

    1000

    500

    3000

    1000 500 1000 500

    2000

    5001000500

    3000

    1000

    500

    1000

    500

    STORAGE STORAGE

    STORAGE

    Section 1-1 Section 2-2

    STORAGE

    STORAGE

    500

    3000

    500

    1000

    500

    1000

    1400 1800

    2000

    1000 500500

    1000

    500

    500

    1000

    3000

    2000

    500 1000

    STORAGE

    STORAGE

    STORAGE

    STORAGE

    STORAGE

    STORAGE

    3000

    1000

    500

    500

    1000

    3000

    500 5001000

    2000

    2000

    1000

    500

    500

    1000500 5001000

    Position 10o

    Position 10o

    Position 2Rotating 90o

    Position 2Rotating 90o

    Position 3Rotating 180o

    Position 3Rotating 180o

    Module A Rotation Possibilities

    Module B Rotation Possibilities

    Fig. 2. Module A&B Rotation Possibilities

    A0

    Vertical 0o

  • 186

    Daytime Relaxing Eating/Meeting

    Going up through ladder Sleeping

    Fig. 3. Module A Interior Activity Scenarios

  • 187

    Daytime Relaxing Group Meeting

    Eating Sleeping

    Fig. 4. Module B Interior Activity Scenarios

  • 188

    Daytime Relaxing

    Dining

    Meeitng/Entertaining

    Sleeping

    Fig. 9. Interior Activity Scenarios of Option 1

  • 189

    Section 3-3

    Floor Plan

    1m1:40Fig. 8. Assembly Option 1 Floor Plan & Section

    2

    1

    2

    Plan

    3 3

    1

    Ladder

    +2,00 +0.500.00

    +1.70 +1.20 +1.70

    1.0

    2.0

    1.00.5 0.5

    1.52.0

    1.00.5

    3.0

    STORAGE

    STORAGE

    Section 3-3

    LADDER

    STORAGE

    STORAGESTORAGE

    +0.50

    +2,00

    +1.70

    +1.20

    +4.20

    1800

    0.00

    1.2

    0.5

    1400

    1.0

    3.0

    0.5

    0.5

    0.50.5 1.0

    1.0

    2.0

    1.0

    1.5

    4.2

    1.0

    0.5

    0.5

    1.0

  • 190

    Daytime Relaxing

    Dining

    Meeitng/Entertaining

    Fig. 14. Interior Activity Scenarios of Option 2

  • 191

    Section 2-2

    STORAGE

    STORAGE

    STORAGE

    Section 1-1

    STORAGE

    STORAGE

    0.5

    2.0

    1.0

    3.0

    0.5

    2.0

    1.0 1.0

    0.5

    0.5

    0.5

    1.0

    0.5

    1800

    0.5 1.0

    3.0

    1.0

    0.5

    Section 1-1 Section 2-2

    1m1:40Fig. 13. Assembly Option 2 Floor Plan & Sections

    Plan

    2

    3

    1

    3

    2

    1

    1.0

    0.5

    2.0

    2.0

    0.00

    2000

    2.0

    500

    1.5

    1500

    +0.50

    +0.50+0.50

    +0.50

    0.00

    Floor Plan

  • 192

    Daytime Relaxing

    Dining

    Fig. 19. Interior Activity Scenarios of Option 3

  • 193

    2

    3

    2

    1

    Plan

    3

    1

    +0.50

    +0.50

    0.00 0.00

    +0.50

    +0.50

    2.0

    2.0

    1.0

    0.5

    3.0

    1.5

    0.5

    1.0

    3.0

    1.5

    Section 2-2

    STORAGE

    Section 1-1

    STORAGE

    STORAGE

    STORAGE

    STORAGE

    STORAGE

    1.00.5

    0.5

    1.0

    1.0 0.5 1.0

    2.0

    0.5

    4.0

    1.0

    1.0

    4.0

    0.5 1.0 0.5 1.0

    0.5

    0.5

    2.0

    Section 2-2

    STORAGE

    Section 1-1

    STORAGE

    STORAGE

    STORAGE

    STORAGE

    STORAGE

    1.00.5

    0.5

    1.0

    1.0 0.5 1.0

    2.0

    0.5

    4.0

    1.0

    1.0

    4.0

    0.5 1.0 0.5 1.0

    0.5

    0.5

    2.0

    Section 1-1

    Floor Plan

    Section 2-21m

    1:40Fig. 18. Assembly Option 3 Floor Plan & Sections

  • 194

    Daytime Relaxing

    Dining

    Meeitng/Entertaining

    Sleeping

    Fig. 24. Interior Activity Scenarios of Option 4

  • 195

    2

    Plan

    1

    1

    3

    2

    3

    -1.00

    -0.50

    0.00

    +0.50

    2.0

    +0.50

    2.0 2.0

    1.5

    0.5

    Fig. 23.Assembly Option 4 loor Plan & Sections 1m

    1:40

    Section 1-1 Section 2-2

    Floor Plan

    STORAGE

    STORAGE

    STORAGE STORAGE

    Section 1-1

    STORAGE

    Section 2-2

    1800

    1.00.5

    0.5

    0.5

    3.0

    1.0

    2.0

    1.00.5 0.5

    1.0

    0.5

    0.5

    1.0

    3.0

    1.0

    2.0

    0.5

  • 196

    Daytime Relaxing

    Dining

    Meeitng/Entertaining

    Sleeping

    Fig. 28. Interior Activity Scenarios of Option 5

  • 197

    Section 2-2

    STORAGE

    Section 1-1

    STORAGE

    STORAGE

    2.0

    3.0

    3.0

    0.5

    0.5

    2.0

    1.0 0.5

    1.0

    0.5

    1.0

    0.51.0 1.0 0.5

    0.5

    1.0

    0.5

    Fig. 27. Assembly Option 5 Floor Plan & Sections

    1m1:40

    Section 1-1 Section 2-2

    Floor Plan1

    3

    1

    2

    1

    3

    Plan

    2

    +0.50

    0.00

    +0.50

    3.0

    -0.50

    -1.00

    2.0

    1.5

    0.5

    2.0

    2.0

    1.0

    1.5

    0.5