honors ~ dna 1314

163
Molecular Biology Honors Biology Edgar

Upload: michael-edgar

Post on 27-Jan-2015

122 views

Category:

Technology


0 download

DESCRIPTION

 

TRANSCRIPT

Page 1: Honors ~ Dna 1314

Molecular Biology

Honors Biology

Edgar

Page 2: Honors ~ Dna 1314
Page 3: Honors ~ Dna 1314
Page 4: Honors ~ Dna 1314
Page 5: Honors ~ Dna 1314
Page 6: Honors ~ Dna 1314

Hershey and Chase 1952

Page 7: Honors ~ Dna 1314
Page 9: Honors ~ Dna 1314
Page 10: Honors ~ Dna 1314
Page 11: Honors ~ Dna 1314
Page 12: Honors ~ Dna 1314
Page 13: Honors ~ Dna 1314
Page 14: Honors ~ Dna 1314
Page 15: Honors ~ Dna 1314
Page 16: Honors ~ Dna 1314
Page 17: Honors ~ Dna 1314

Agarose

Page 18: Honors ~ Dna 1314

Separation of DNA fragments by Size

Page 19: Honors ~ Dna 1314

Looking at your gels

• What do you notice about the “banding patterns” in each lane in your gels?

• What is different about the “pools” of DNA that you loaded into each well?

Page 20: Honors ~ Dna 1314

2652

2652

Page 21: Honors ~ Dna 1314

Look at you gel again

• Estimate the size of the DNA fragment(s) in the pMAP lane.

• Does the relationship between the distance migrated and DNA fragment size appear to be a linear relationship?

Page 22: Honors ~ Dna 1314
Page 23: Honors ~ Dna 1314

DNA Replication

Page 24: Honors ~ Dna 1314
Page 25: Honors ~ Dna 1314
Page 26: Honors ~ Dna 1314
Page 27: Honors ~ Dna 1314
Page 28: Honors ~ Dna 1314
Page 29: Honors ~ Dna 1314
Page 30: Honors ~ Dna 1314
Page 31: Honors ~ Dna 1314
Page 32: Honors ~ Dna 1314

Fig. 16-UN5

Page 33: Honors ~ Dna 1314

Fig. 16-13

Topoisomerase

Helicase

PrimaseSingle-strand binding proteins

RNA primer

55

5 3

3

3

Page 34: Honors ~ Dna 1314
Page 35: Honors ~ Dna 1314

Fig. 16-16b6

Template strand

5

53

3

RNA primer 3 5

5

3

1

1

3

35

5

Okazaki fragment

12

3

3

5

5

12

3

3

5

5

12

5

5

3

3

Overall direction of replication

Page 36: Honors ~ Dna 1314
Page 37: Honors ~ Dna 1314

Fig. 16-16a

Overview

Origin of replication

Leading strand

Leading strand

Lagging strand

Lagging strand

Overall directions of replication

12

Page 38: Honors ~ Dna 1314

Helicase

Page 39: Honors ~ Dna 1314

Topoisomerase and Helicase

Page 40: Honors ~ Dna 1314
Page 41: Honors ~ Dna 1314
Page 42: Honors ~ Dna 1314
Page 43: Honors ~ Dna 1314
Page 44: Honors ~ Dna 1314

Fig. 20-3-1Restriction site

DNA

Sticky end

Restriction enzymecuts sugar-phosphatebackbones.

53

35

1

Page 45: Honors ~ Dna 1314

Fig. 20-3-2Restriction site

DNA

Sticky end

Restriction enzymecuts sugar-phosphatebackbones.

53

35

1

DNA fragment addedfrom another moleculecut by same enzyme.Base pairing occurs.

2

One possible combination

Page 46: Honors ~ Dna 1314

Fig. 20-3-3Restriction site

DNA

Sticky end

Restriction enzymecuts sugar-phosphatebackbones.

53

35

1

One possible combination

Recombinant DNA molecule

DNA ligaseseals strands.

3

DNA fragment addedfrom another moleculecut by same enzyme.Base pairing occurs.

2

Page 47: Honors ~ Dna 1314

Fig. 20-9a

Mixture ofDNA mol-ecules ofdifferentsizes

Powersource

Longermolecules

Shortermolecules

Gel

AnodeCathode

TECHNIQUE

1

2

Powersource

– +

+–

Page 48: Honors ~ Dna 1314

Fig. 20-9b

RESULTS

Page 49: Honors ~ Dna 1314
Page 50: Honors ~ Dna 1314

Fig. 20-10

Normalallele

Sickle-cellallele

Largefragment

(b) Electrophoresis of restriction fragments from normal and sickle-cell alleles

201 bp175 bp

376 bp

(a) DdeI restriction sites in normal and sickle-cell alleles of -globin gene

Normal -globin allele

Sickle-cell mutant -globin allele

DdeI

Large fragment

Large fragment

376 bp

201 bp175 bp

DdeIDdeI

DdeI DdeI DdeI DdeI

Page 51: Honors ~ Dna 1314
Page 52: Honors ~ Dna 1314

Transcription and Translation

Page 53: Honors ~ Dna 1314
Page 54: Honors ~ Dna 1314
Page 55: Honors ~ Dna 1314
Page 56: Honors ~ Dna 1314
Page 57: Honors ~ Dna 1314
Page 58: Honors ~ Dna 1314
Page 59: Honors ~ Dna 1314
Page 60: Honors ~ Dna 1314
Page 61: Honors ~ Dna 1314
Page 62: Honors ~ Dna 1314
Page 63: Honors ~ Dna 1314

Beadle and Tatum1941

Page 64: Honors ~ Dna 1314

Development of Model

• One Gene – One Enzyme (Nobel 1958)

• One Gene – One Polypeptide– Non enzyme proteins (keratin, insulin)– Hb – multimeric protein.

• Issues:– Alternate splicing– RNA coding genes.– Non-coding regions

Page 65: Honors ~ Dna 1314
Page 66: Honors ~ Dna 1314
Page 67: Honors ~ Dna 1314
Page 68: Honors ~ Dna 1314
Page 69: Honors ~ Dna 1314
Page 70: Honors ~ Dna 1314
Page 71: Honors ~ Dna 1314
Page 72: Honors ~ Dna 1314
Page 73: Honors ~ Dna 1314
Page 74: Honors ~ Dna 1314
Page 75: Honors ~ Dna 1314
Page 76: Honors ~ Dna 1314
Page 77: Honors ~ Dna 1314

Gene Regulation

Page 78: Honors ~ Dna 1314
Page 79: Honors ~ Dna 1314

Fig. 18-6

DNA

Signal

Gene

NUCLEUS

Chromatin modification

Chromatin

Gene availablefor transcription

Exon

Intron

Tail

RNA

Cap

RNA processing

Primary transcript

mRNA in nucleus

Transport to cytoplasm

mRNA in cytoplasm

Translation

CYTOPLASM

Degradationof mRNA

Protein processing

Polypeptide

Active protein

Cellular function

Transport to cellulardestination

Degradationof protein

Transcription

Page 80: Honors ~ Dna 1314

Gene Regulation Example 1

Activators, Enhancers and Transcription Factors

Page 81: Honors ~ Dna 1314

Fig. 18-8-1

Enhancer(distal control elements)

Proximalcontrol elements

Poly-A signalsequence

Terminationregion

DownstreamPromoter

UpstreamDNA

ExonExon ExonIntron Intron

Page 82: Honors ~ Dna 1314

Fig. 18-8-2

Enhancer(distal control elements)

Proximalcontrol elements

Poly-A signalsequence

Terminationregion

DownstreamPromoter

UpstreamDNA

Exon Exon ExonIntronIntron Cleaved 3 endof primarytranscript

Primary RNAtranscript

Poly-Asignal

Transcription

5

ExonExon ExonIntron Intron

Page 83: Honors ~ Dna 1314

Fig. 18-8-3

Enhancer(distal control elements)

Proximalcontrol elements

Poly-A signalsequence

Terminationregion

DownstreamPromoter

UpstreamDNA

ExonExon ExonIntron Intron

Exon Exon ExonIntronIntron Cleaved 3 endof primarytranscript

Primary RNAtranscript

Poly-Asignal

Transcription

5

RNA processing

Intron RNA

Coding segment

mRNA

5 Cap 5 UTRStart

codonStop

codon 3 UTR Poly-Atail

3

Page 84: Honors ~ Dna 1314

Fig. 18-9-1

Enhancer TATAbox

PromoterActivators

DNAGene

Distal controlelement

Page 85: Honors ~ Dna 1314

Fig. 18-9-2

Enhancer TATAbox

PromoterActivators

DNAGene

Distal controlelement

Group ofmediator proteins

DNA-bendingprotein

Generaltranscriptionfactors

Page 86: Honors ~ Dna 1314

Fig. 18-9-3

Enhancer TATAbox

PromoterActivators

DNAGene

Distal controlelement

Group ofmediator proteins

DNA-bendingprotein

Generaltranscriptionfactors

RNApolymerase II

RNApolymerase II

Transcriptioninitiation complex RNA synthesis

Page 87: Honors ~ Dna 1314

Fig. 18-10

Controlelements

Enhancer

Availableactivators

Albumin gene

(b) Lens cell

Crystallin geneexpressed

Availableactivators

LENS CELLNUCLEUS

LIVER CELLNUCLEUS

Crystallin gene

Promoter

(a) Liver cell

Crystallin genenot expressed

Albumin geneexpressed

Albumin genenot expressed

Page 88: Honors ~ Dna 1314

Gene Regulation Example 2

The Operon

Page 89: Honors ~ Dna 1314

Fig. 18-2

Regulationof geneexpression

trpE gene

trpD gene

trpC gene

trpB gene

trpA gene

(b) Regulation of enzyme production

(a) Regulation of enzyme activity

Enzyme 1

Enzyme 2

Enzyme 3

Tryptophan

Precursor

Feedbackinhibition

Page 90: Honors ~ Dna 1314

Fig. 18-3a

Polypeptide subunits that make upenzymes for tryptophan synthesis

(a) Tryptophan absent, repressor inactive, operon on

DNA

mRNA 5

Protein Inactiverepressor

RNApolymerase

Regulatorygene

Promoter Promoter

trp operon

Genes of operon

OperatorStop codonStart codon

mRNA

trpA

5

3

trpR trpE trpD trpC trpB

ABCDE

Page 91: Honors ~ Dna 1314

Fig. 18-3b-1

(b) Tryptophan present, repressor active, operon off

Tryptophan(corepressor)

No RNA made

Activerepressor

mRNA

Protein

DNA

Page 92: Honors ~ Dna 1314

Fig. 18-3b-2

(b) Tryptophan present, repressor active, operon off

Tryptophan(corepressor)

No RNA made

Activerepressor

mRNA

Protein

DNA

Page 93: Honors ~ Dna 1314

Fig. 18-4a

(a) Lactose absent, repressor active, operon off

DNA

ProteinActiverepressor

RNApolymerase

Regulatorygene

Promoter

Operator

mRNA5

3

NoRNAmade

lacI lacZ

Page 94: Honors ~ Dna 1314

Fig. 18-4b

(b) Lactose present, repressor inactive, operon on

mRNA

Protein

DNA

mRNA 5

Inactiverepressor

Allolactose(inducer)

5

3RNApolymerase

Permease Transacetylase

lac operon

-Galactosidase

lacYlacZ lacAlacI

Page 95: Honors ~ Dna 1314

Fig. 18-5

(b) Lactose present, glucose present (cAMP level low): little lac mRNA synthesized

cAMP

DNA

Inactive lacrepressor

Allolactose

InactiveCAP

lacI

CAP-binding site

Promoter

ActiveCAP

Operator

lacZ

RNApolymerasebinds andtranscribes

Inactive lacrepressor

lacZ

OperatorPromoter

DNA

CAP-binding site

lacI

RNApolymerase lesslikely to bind

InactiveCAP

(a) Lactose present, glucose scarce (cAMP level high): abundant lac mRNA synthesized

Page 96: Honors ~ Dna 1314

Gene Regulation Example 3

Epigenetics

Page 97: Honors ~ Dna 1314

Epigenetics

Page 98: Honors ~ Dna 1314

Epigenetics Introhttp://learn.genetics.utah.edu/content/epigenetics/intro/

Page 99: Honors ~ Dna 1314
Page 100: Honors ~ Dna 1314
Page 101: Honors ~ Dna 1314

Utah Epigenetics

http://learn.genetics.utah.edu/content/epigenetics/intro/movies/epigenome.mp4

Page 102: Honors ~ Dna 1314

Gene Regulation Example 4

RNAi

Page 103: Honors ~ Dna 1314

RNAi

Page 104: Honors ~ Dna 1314
Page 105: Honors ~ Dna 1314

RNA Induced Silencing Complex

Page 106: Honors ~ Dna 1314
Page 107: Honors ~ Dna 1314
Page 108: Honors ~ Dna 1314

Vascular Endothelial Growth Factor

Page 109: Honors ~ Dna 1314
Page 110: Honors ~ Dna 1314

Human Genome

Page 111: Honors ~ Dna 1314
Page 112: Honors ~ Dna 1314

EncodeThe Encyclopedia of DNA Elements

http://www.youtube.com/watch?v=TwXXgEz9o4w&feature=player_detailpage

http://www.youtube.com/watch?v=Y3V2thsJ1Wc&feature=player_detailpage

Page 113: Honors ~ Dna 1314

Transformation – Recombinant Organisms

Page 114: Honors ~ Dna 1314

Cloning Technologies

Page 115: Honors ~ Dna 1314

Fig. 20-4-1

Bacterial cell

Bacterial plasmid

lacZ gene

Hummingbird cell

Gene of interest

Hummingbird DNA fragments

Restrictionsite

Stickyends

ampR gene

TECHNIQUE

Page 116: Honors ~ Dna 1314

Fig. 20-4-2

Bacterial cell

Bacterial plasmid

lacZ gene

Hummingbird cell

Gene of interest

Hummingbird DNA fragments

Restrictionsite

Stickyends

ampR gene

TECHNIQUE

Recombinant plasmids

Nonrecombinant plasmid

Page 117: Honors ~ Dna 1314

Fig. 20-4-3

Bacterial cell

Bacterial plasmid

lacZ gene

Hummingbird cell

Gene of interest

Hummingbird DNA fragments

Restrictionsite

Stickyends

ampR gene

TECHNIQUE

Recombinant plasmids

Nonrecombinant plasmid

Bacteria carryingplasmids

Page 118: Honors ~ Dna 1314

Fig. 20-4-4

Bacterial cell

Bacterial plasmid

lacZ gene

Hummingbird cell

Gene of interest

Hummingbird DNA fragments

Restrictionsite

Stickyends

ampR gene

TECHNIQUE

Recombinant plasmids

Nonrecombinant plasmid

Bacteria carryingplasmids

RESULTS

Colony carrying non-recombinant plasmidwith intact lacZ gene

One of manybacterialclones

Colony carrying recombinant plasmid with disrupted lacZ gene

Page 119: Honors ~ Dna 1314
Page 120: Honors ~ Dna 1314

DNA Laboratory at Milton Academy

• Isolate DNA from cheek cells.

• Polymerase Chair Reaction

• Electrophoresis

• Sequence DNA

Page 121: Honors ~ Dna 1314

mtDNA Control Region

Page 122: Honors ~ Dna 1314
Page 123: Honors ~ Dna 1314

Polymerase Chain Reaction

Page 124: Honors ~ Dna 1314

PCR

http://www.dnalc.org/resources/spotlight/index.html

Page 125: Honors ~ Dna 1314
Page 126: Honors ~ Dna 1314

Taq DNA Polymerase

Page 127: Honors ~ Dna 1314

Fig. 20-8a

5

Genomic DNA

TECHNIQUETargetsequence

3

3 5

Page 128: Honors ~ Dna 1314

Fig. 20-8b

Cycle 1yields

2molecules

Denaturation

Annealing

Extension

Primers

Newnucleo-tides

3 5

3

2

5 31

Page 129: Honors ~ Dna 1314

Fig. 20-8c

Cycle 2yields

4molecules

Page 130: Honors ~ Dna 1314

Fig. 20-8d

Cycle 3yields 8

molecules;2 molecules

(in whiteboxes)

match targetsequence

Page 131: Honors ~ Dna 1314

http://www.youtube.com/watch?v=CQEaX3MiDow

http://www.youtube.com/watch?v=x5yPkxCLads&feature=related

Page 132: Honors ~ Dna 1314

Gel Electrophoresis

Page 133: Honors ~ Dna 1314
Page 134: Honors ~ Dna 1314
Page 135: Honors ~ Dna 1314

DNA Sequencing

Page 136: Honors ~ Dna 1314

Fredrick Sanger

Page 137: Honors ~ Dna 1314

Chain Termination MethodsSanger Methods

Page 138: Honors ~ Dna 1314

Dye-terminator sequencing

Page 139: Honors ~ Dna 1314

Fig. 20-12

DNA(template strand)

TECHNIQUE

RESULTS

DNA (template strand)

DNA polymerase

Primer Deoxyribonucleotides

Shortest

Dideoxyribonucleotides(fluorescently tagged)

Labeled strands

Longest

Shortest labeled strand

Longest labeled strand

Laser

Directionof movementof strands

Detector

Last baseof longest

labeledstrand

Last baseof shortest

labeledstrand

dATP

dCTP

dTTP

dGTP

ddATP

ddCTP

ddTTP

ddGTP

Page 140: Honors ~ Dna 1314

Fig. 20-12a

DNA(template strand)

TECHNIQUE

DNA polymerase

Primer Deoxyribonucleotides Dideoxyribonucleotides(fluorescently tagged)

dATP

dCTP

dTTP

dGTP

ddATP

ddCTP

ddTTP

ddGTP

Page 141: Honors ~ Dna 1314

Fig. 20-12bTECHNIQUE

RESULTS

DNA (template strand)

Shortest

Labeled strands

Longest

Shortest labeled strand

Longest labeled strand

Laser

Directionof movementof strands

Detector

Last baseof longest

labeledstrand

Last baseof shortest

labeledstrand

Page 142: Honors ~ Dna 1314

Trace File

Page 143: Honors ~ Dna 1314

Amplification and clonal selection

Page 144: Honors ~ Dna 1314

Kate Bator

Connor Johnson

Page 145: Honors ~ Dna 1314

High-throughput sequencingNext-Gen Sequencing

Page 146: Honors ~ Dna 1314

mtDNA Sequence

http://www.dnalc.org/view/15979-A-mitochondrial-DNA-sequence.html

Page 147: Honors ~ Dna 1314
Page 148: Honors ~ Dna 1314
Page 149: Honors ~ Dna 1314

“The Other Genome”mtDNA

Page 150: Honors ~ Dna 1314

Endosymbiotic Theory

Page 151: Honors ~ Dna 1314
Page 152: Honors ~ Dna 1314

Mitochondrial Eve

Page 153: Honors ~ Dna 1314
Page 154: Honors ~ Dna 1314
Page 155: Honors ~ Dna 1314
Page 156: Honors ~ Dna 1314

100 Years1 bp/sec

17 Minutes

Page 157: Honors ~ Dna 1314

Human mtDNA Haplotypes

Page 158: Honors ~ Dna 1314

mtDNA – Genographic Project

Video

Page 159: Honors ~ Dna 1314

Two Opposing Theories

• Multiregional Theory– Parallel evolution

• Displacement Theory– Out of Africa theory

http://news.bbc.co.uk/

Page 160: Honors ~ Dna 1314
Page 161: Honors ~ Dna 1314

Neandertal Genome Study Reveals That We Have a Little Caveman in

Us

Svante Paabo

Europeans and Asians share 1% to 4% of their nuclear DNA with Neandertals. But Africans do not

Page 162: Honors ~ Dna 1314
Page 163: Honors ~ Dna 1314