hidrologia jarpa

53
ESTUDIO DE HIDROLOGIA E HIDRAULICA 1. GENERALIDADES El estudio hidrológico consiste en apreciaciones sobre el balance hídrico, así como su evaluación de los caudales de ríos y quebrada con fines de construcción de puentes, pontones, alcantarillas de cruce y evacuación de drenaje de las cunetas laterales en los caminos. La precipitación pluvial incide definitivamente en el caudal por lo que los problemas latentes se centran en las inundaciones, desbordes y sus consecuencias en las carreteras y puentes, etc. En toda la obra vial probablemente el Estudio de Drenaje de la carretera, tanto superficial como el subterráneo, constituye uno de los aspectos de vital importancia que se debe desarrollar en un Estudio Definitivo de Ingeniería, puesto que el buen funcionamiento del camino y duración del pavimento esta en función del comportamiento de las obras de drenaje. Este informe tiene como finalidad analizar las variables hidrometeorológicas de las subcuencas de los cursos de agua que cruza la carretera DE ACCESO: PUENTE COLLPA – SAN JUAN DE JARPA - YANACANCHA y diseñar las obras de drenaje requeridas para obtener un buen comportamiento hidráulico y consecuentemente una buena conservación de la carretera. Con la hidrología y la estadística, se analizan los datos de las precipitaciones a partir de los registros meteorológicos de estaciones cercanas a la zona del proyecto, los cuales serán evaluados para determinar la consistencia y confiabilidad de los registros. Con los datos ya confiables se proceden a determinar parámetros importantes tales como la escorrentía, tiempo de concentración e intensidades máximas, parámetros necesarios para generar los caudales máximos

Upload: jose-manuel-tapullima

Post on 13-Dec-2014

174 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Hidrologia Jarpa

ESTUDIO DE HIDROLOGIA E HIDRAULICA

1. GENERALIDADES

El estudio hidrológico consiste en apreciaciones sobre el balance hídrico, así como su evaluación

de los caudales de ríos y quebrada con fines de construcción de puentes, pontones, alcantarillas

de cruce y evacuación de drenaje de las cunetas laterales en los caminos.

La precipitación pluvial incide definitivamente en el caudal por lo que los problemas latentes se

centran en las inundaciones, desbordes y sus consecuencias en las carreteras y puentes, etc.

En toda la obra vial probablemente el Estudio de Drenaje de la carretera, tanto superficial como el

subterráneo, constituye uno de los aspectos de vital importancia que se debe desarrollar en un

Estudio Definitivo de Ingeniería, puesto que el buen funcionamiento del camino y duración del

pavimento esta en función del comportamiento de las obras de drenaje.

Este informe tiene como finalidad analizar las variables hidrometeorológicas de las subcuencas

de los cursos de agua que cruza la carretera DE ACCESO: PUENTE COLLPA – SAN JUAN DE

JARPA - YANACANCHA y diseñar las obras de drenaje requeridas para obtener un buen

comportamiento hidráulico y consecuentemente una buena conservación de la carretera.

Con la hidrología y la estadística, se analizan los datos de las precipitaciones a partir de los

registros meteorológicos de estaciones cercanas a la zona del proyecto, los cuales serán

evaluados para determinar la consistencia y confiabilidad de los registros. Con los datos ya

confiables se proceden a determinar parámetros importantes tales como la escorrentía, tiempo de

concentración e intensidades máximas, parámetros necesarios para generar los caudales

máximos probables que servirán para los diseños de las obras de arte respectivas.

El estudio de los aspectos hidrológicos tiene como propósito, determinar el máximo caudal de

avenida en las quebradas, su tirante y área hidráulica, capacidad de socavación en el lecho y de

erosión en las márgenes; con la finalidad de recomendar los parámetros para definir la longitud

de las estructuras de obra de arte, su altura sobre el lecho y la profundidad de socavación en el

cauce en el caso de proyectarse pilares como estructuras de soporte.

En resumen el objetivo principal es la determinación de los caudales probables de escurrimiento

por efecto de las lluvias para el diseño de las obras de arte.

Las etapas del análisis hidrológico que incluyen este estudio son:

- Recopilación de datos.

- Tratamiento de la información hidrometeorológica

- Generación de caudales.

Page 2: Hidrologia Jarpa

2. UBICACIÓN DEL ESTUDIO

2.1. Ubicación Geográfica

La zona del estudio se encuentra entre las siguientes coordenadas geográficas:

- Distrito de San Juan de Jarpa: 12°07’ 12” latitud Sur y 75°26’09” de longitud Oeste

- Distrito de Yanacancha 9°45´y 10°15´latitud sur y 74°45´y 76°45' longitud oeste

2.2. Ubicación Política

Departamento : Junín

Provincia : Chupaca

Distrito : San Juan de Jarpa y Yanachancha

Sector : Puente Collpa – San Juan de Jarpa - Yanacancha

3. DESCRIPCION DE LOS SECTORES EN ESTUDIO.

El desarrollo de LA CARRETERA DE ACCESO: PUENTE COLLPA – SAN JUAN DE JARPA –

YANACANCHA, provincia de Chupaca, cruza relieves topográficos variados con quebradas y

cursos de agua que interceptan el eje de la carretera. Desde su inicio la carretera se desarrolla

por una topografía den pendiente suave, la vía cruza pocas quebradas bien definidas, de las

cuales las mas importantes son las que se ubican en las progresivas 6+208.00, 10+400.00 y

13+125.00, en el Tramo Puente Colpa - San Juan de Jarpa; 0+118.00, 1+832.00, 9+772.00,

13+640.00 y 14+832.00 en el Tramo San Juan de Jarpa - Yanacancha - donde en la

actualidad se encuentran construidos puentes y pontones, de los cuales requieren ser

reemplazados por encontrar deteriorados en su sus estructuras, además de estructuras rusticas

todos los pontones, debiendo respetarse y mantenerse la sección hidráulica hidráulica, ya que no

presentan deficiencias.

El clima Corresponde al tipo húmedo y frío desde moderado a intenso, con una temperatura

media anual máxima de 11,8 °C y una media anual mínima de 4,5 °C, produciéndose las

temperaturas más bajas en los meses de junio, julio y agosto. Tiene una precipitación media

anual de 807.87 mm.

El recurso hídrico en la zona de estudio, proviene fundamentalmente de las lluvias,

principalmente son de origen convectivo, este régimen climático permite mantener una vegetación

de pastos y pequeñas áreas de bosques de eucalipto y otras especias propias de las zonas

frígidas.

Page 3: Hidrologia Jarpa

Los cursos de agua y/o quebradas son irregulares con caudales pequeños y moderados, que

pertenecen a la sub cuenca del Alto Cuna. La carretera cruza un poco cantidad de pequeñas

quebradas que durante el periodo de invierno conducen caudales moderados con transporte de

poca cantidad de materiales sólidos, de manera que se ha dado dimensiones apropiadas a las

estructuras de cruce o paso para evitar las obstrucciones.

Los regímenes pluviométricos, varían de lluvioso a muy lluvioso con precipitación anual media de

807.87 mm, siendo diciembre el mes más lluvioso y el de junio el de menor precipitación.

4. CONCEPTOS BASICOS EN HIDROLOGIA

Precipitación

La precipitación es toda forma de humedad que originándose en las nubes llega hasta la

superficie terrestre en forma de lluvias, granizadas, nevadas, etc.

Temperatura Atmosférica

La temperatura es una propiedad o variable física que sirve para medir la cantidad de energía

interna del aire, o mide el calor sensible. La temperatura del aire se mide a dos (2) metros de

altura sobre el suelo por acuerdo internacional. Se puede registrar con un termógrafo, o se puede

medir con un termómetro de máxima o mínima, para obtener las temperaturas máximas, que

ocurren hacia el mediodía y las temperaturas mínimas que ocurren antes de que salga el Sol.

Ambos valores al promediarlos, dan la temperatura promedio del día.

Precipitación

Las lluvias como es sabido provienen de diversos tipos de nubes sean nimbostrato, cúmulos y

cúmulo nimbos. Al ser medidos las precipitaciones mediante los pluviómetros y registrados con

los pluviógrafos se puede tener diversas magnitudes como la precipitación acumulada diarias,

mensual y anual, intensidad e intensidad máxima.

Precipitación Máxima diaria.

La estimación de las descargas máximas de los ríos y quebradas que cruzan los proyectos de

estructuras de drenaje, alcantarillas o pontones es necesario emplear un análisis estadístico de

precipitaciones extremas.

5. INFORMACIÓN BÁSICA UTILIZADA PARA LA GENERACION DE CAUDALES

5.1. Información Cartográfica

La información cartográfica se obtuvo de la carta nacional, laminas 25l, 26m y 26n.

Page 4: Hidrologia Jarpa

5.2. Información Hidrometeorológica

La información utilizada en el análisis hidrológico para el presente estudio, ha sido

obtenida de la recopilación de documentos correspondientes al Servicio Nacional de

Meteorología e Hidrología (SENAMHI)

5.3 Red Hidrometeorológica Utilizada

Con la finalidad de determinar las variables hidrológicas se ha recopilado información

existente de precipitación pluvial que permite calcular los parámetros hidráulicos

requeridos para dar las dimensiones de las obras de arte.

Se considera la estación San Juan de Jarpa, porque es la que se encuentran en la zona

intermedia del estudio, para efectuar un análisis de la hidrología local.

Cuadro N° 1 datos Técnicos CO – San de Jarpa

ESTACION ALTITUDCOOR. GEOGRAFICAS PRECIPITACION

ANUAL(mm)LATITUD LONGITUD (ºC)

SO-San Juan de Jarpa 3671 12°07’28.32” 75°25’54.54 1040.85

El periodo uniforme de los datos considerado comprende el periodo de 2003 – 2012

6. ESTUDIO DE HIDROLOGIA

6.1. Características Fisiográficas de las Cuencas

Las características principales de una cuenca son: Área topográfica, perímetro, pendiente, a

lo que es necesario asociar las características del cauce principal como son su longitud y su

pendiente.

Page 5: Hidrologia Jarpa

Cuadro N° 2 Características De Las Cuencas De Drenaje - Co San Juan De Jarpa

Primer Tramo Puente Colpa - San Juan De Jarpa

Segundo Tramo San juan De Jarpa Hasta Yanacancha

N° Nombre Ubicación (km) A(km2) L(m) L (km) H(m) S(m/m) Tc Kirpish Tc Temes Bransby Williams Promedio

1 Pontón 6 + 208 1.08 1,327.86 1.33 370.00 0.28 0.13 0.47 0.41 0.44

2 Pontón 10 + 400 1.66 3,552.82 3.55 750.00 0.21 0.32 1.06 1.12 1.09

3 Pontón 13 + 125 0.99 1,437.51 1.44 210.00 0.15 0.18 0.57 0.51 0.54

4 Puente 0 + 118 1.13 900.72 0.90 150.00 0.17 0.12 0.39 0.31 0.35

5 Pontón 1 + 832 1.03 1,141.22 1.14 450.00 0.39 0.10 0.40 0.33 0.36

6 Puente 9 + 772 1.44 1,327.50 1.33 330.00 0.25 0.14 0.48 0.41 0.45

7 Pontón 13 + 640 1.71 3,248.51 3.25 460.00 0.14 0.35 1.06 1.11 1.09

8 Puente 14 + 832 4.52 10,278.71 10.28 370.00 0.04 1.43 3.32 4.18 3.75

Page 6: Hidrologia Jarpa

MEJORAMIENTO Y REHABILITACION DE LA CARRETERA DE ACCESO: PUENTE COLLPA – SAN JUAN DE JARPA - YANACANCHA, PROVINCIA DE CHUPACA REGION - JUNIN”

6.2. Análisis de frecuencia de la Precipitación Máxima en 24 horas

En la teoría estadística e hidrológica, existen muchas distribuciones de frecuencia: entre ellas,

Normal, Log Normal de 2 y 3 parámetros, Gamma de 2 y 3 parámetros, log Gumbel, etc., sin

embargo para propósitos prácticos está probado (sobre la base de muchos estudios

hidrológicos de carreteras), que las distribuciones Pearson Tipo III, Log Pearson Tipo III y

Gumbel, son las que mejor se ajustan a las precipitaciones máximas en 24 horas, para ello se

utilizó el software de cómputo, SMADA Versión 6.3. Los resultados se muestran en los

cuadros del Nº4 al Nº9.

a. Distribución Pearson Tipo III

La función de densidad de probabilidad es la siguiente:

Donde:

parámetros de la función

función Gamma.

Los parámetros se evalúan a partir de los datos de intensidades observadas (en

este caso estimadas a partir de la lluvia máxima en 24 horas), mediante el siguiente sistema de ecuaciones.

Donde:

es la media de los datos

S2= variancia de los datos

γ= coeficiente de sesgo, definido como:

La función de distribución de probabilidad es:

Estudio de Hidrología e Hidráulica Pág. 6 de 43

Page 7: Hidrologia Jarpa

MEJORAMIENTO Y REHABILITACION DE LA CARRETERA DE ACCESO: PUENTE COLLPA – SAN JUAN DE JARPA - YANACANCHA, PROVINCIA DE CHUPACA REGION - JUNIN”

Sustituyendo

, la ecuación anterior se escribe como:

Esta última ecuación es una función de distribución chi cuadrada con 2β1 grados de libertad y

también , es decir:

La función chi cuadrado se encuentra en tablas estadísticas.

b. Distribución Log Pearson Tipo III

Si se toman los logaritmos de la variable aleatoria y suponiendo que estos se comportan

según la distribución Pearson Tipo III, se tiene la función Log Pearson Tipo III. Para la

solución se sigue el mismo procedimiento que la distribución Pearson Tipo III.

c. Distribución Gumbel

Supóngase que se tienen N muestras, cada una de las cuales contiene “n” eventos. Si se

selecciona el máximo “x” de los “n” eventos de cada muestra, es posible demostrar que, a

medida que “n” aumenta, la función de distribución de probabilidad de “x” tiende a:

La función de densidad de probabilidad es:

Donde αy β son los parámetros de la función.

Los parámetros αy β, se estiman para muestras muy grandes, como:

Estudio de Hidrología e Hidráulica Pág. 7 de 43

Page 8: Hidrologia Jarpa

MEJORAMIENTO Y REHABILITACION DE LA CARRETERA DE ACCESO: PUENTE COLLPA – SAN JUAN DE JARPA - YANACANCHA, PROVINCIA DE CHUPACA REGION - JUNIN”

Para muestras relativamente pequeñas, se tiene:

Los valores de μy y σy se encuentran en tablas.

Cuadro N° 3: Precipitación Máxima En 24 Horas (mm)

Estación Co - San Juan De Jarpa

Nº Año P (mm) P may a menor (mm) P memor a mayor (mm)

1 2003 149.00 256.00 100.90

2 2004 156.10 213.80 149.00

3 2005 100.90 197.10 156.10

4 2006 213.80 180.10 163.80

5 2007 197.10 173.40 168.60

6 2008 168.60 168.60 173.40

7 2009 163.80 163.80 180.10

8 2010 173.40 156.10 197.10

9 2011 256.00 149.00 213.80

10 2012 180.10 100.90 256.00

Cuadro N° 4: Prueba de Bondad

Para Determinar Método Más Eficaz

D < d

D (0.05) = 0.40925

Método Valores (d)

Log Person Tipo III 0.12889

Gumbell 0.09171

Person Tipo III 0.08286Entonces: Emplearemos el Método Person Tipo III por tener el valor más bajo

Cuadro N° 5: Periodos de Retorno para una distribución Person Tipo III

Periodo Retorno Person Tipo III

2 174.140

5 209.938

10 229.653

Estudio de Hidrología e Hidráulica Pág. 8 de 43

Page 9: Hidrologia Jarpa

MEJORAMIENTO Y REHABILITACION DE LA CARRETERA DE ACCESO: PUENTE COLLPA – SAN JUAN DE JARPA - YANACANCHA, PROVINCIA DE CHUPACA REGION - JUNIN”

30 255.399

35 258.660

71 272.830

143 285.818

500 307.146Fuente: Resultados obtenidos en base al Software Hydrognomon ver. 4.0

Gráfico de Pearson Tipo III

Estudio de Hidrología e Hidráulica Pág. 9 de 43

Page 10: Hidrologia Jarpa

MEJORAMIENTO Y REHABILITACION DE LA CARRETERA DE ACCESO: PUENTE COLLPA – SAN JUAN DE JARPA - YANACANCHA, PROVINCIA DE CHUPACA REGION - JUNIN”Gráfico de Log Pearson Tipo III

Gráfico de Gumbell

Estudio de Hidrología e Hidráulica Pág. 10 de 43

Weibull LogPearsonIII

3210-1-2-3

Exceedance probability (%) - scale: Normal distribution99

.95%

99.8

%

99.5

%

99%

98%

95%

90%

80%

70%

60%

50%

40%

30%

20%

10%

5% 2% 1% .5%

.2%

.05%

mm

340

320

300

280

260

240

220

200

180

160

140

120

100

80

60

40

20

0

Probability Density Functions (PDF) - Histogram

LogPearsonIII

3603403203002802602402202001801601401201008060

Weibull Gumbel Max

3210-1-2-3

Exceedance probability (%) - scale: Normal distribution

99.9

5%

99.8

%

99.5

%

99%

98%

95%

90%

80%

70%

60%

50%

40%

30%

20%

10%

5% 2% 1% .5%

.2%

.05%

mm

340

320

300

280

260

240

220

200

180

160

140

120

100

80

60

40

20

0

Page 11: Hidrologia Jarpa

MEJORAMIENTO Y REHABILITACION DE LA CARRETERA DE ACCESO: PUENTE COLLPA – SAN JUAN DE JARPA - YANACANCHA, PROVINCIA DE CHUPACA REGION - JUNIN”

CUADRO N° 6: PRECIPITACION MAXIMA EN 24 HORAS (mm)ESTACION CO - SAN JUAN DE JARPADistribution Analysis: Pearson Type III

First Moment (mean) = 175.880Second Moment = 1.696e03Skew = 1.827e-01

Point Weibull Actual Predicted StandardNumber Probability Value Value Deviation

1 0.0909 100.90 123.86 14.60282 0.1818 149.00 138.3024 13.29313 0.2727 156.10 149.2463 13.38674 0.3636 163.80 158.8924 13.72865 0.4545 168.60 168.0846 14.09526 0.5455 173.40 177.3549 14.47277 0.6364 180.10 187.2408 14.95258 0.7273 197.10 198.448 15.77479 0.8182 213.80 212.3376 17.5685

10 0.9091 256.00 232.9157 22.4913

Predictions

Estudio de Hidrología e Hidráulica Pág. 11 de 43

Probability Density Functions (PDF) - Histogram

Gumbel Max

380360340320300280260240220200180160140120100806040200-20-40

Page 12: Hidrologia Jarpa

MEJORAMIENTO Y REHABILITACION DE LA CARRETERA DE ACCESO: PUENTE COLLPA – SAN JUAN DE JARPA - YANACANCHA, PROVINCIA DE CHUPACA REGION - JUNIN”

Exceedence Return Calculated StandardProbability Period Value Deviation

0.998 500 318.3177 69.68830.993 143 293.2509 52.22350.986 71 278.445 43.14560.971 35 261.9022 34.25670.967 30 258.8363 32.7696

0.9 10 230.2599 21.68980.8 5 209.2285 17.07230.5 2 172.6785 14.2793

Fuente: Resultados obtenidos en base al Software SMADA ver. 6.3

CUADRO N°7: PRECIPITACION MAXIMA EN 24 HORAS (mm)ESTACION CONCHUCOS

Distribution Analysis: Gumbel Extremal Type IFirst Moment (mean) = 175.880Second Moment = 1.696e03Skew = 1.827e-01

Point Weibull Actual Predicted StandardNumber Probability Value Value Deviation

1 0.0909 100.9 113.3203 16.35192 0.1818 149 128.902 13.03213 0.2727 156.1 141.3064 11.26474 0.3636 163.8 152.7368 10.70365 0.4545 168.6 164.1184 11.3256 0.5455 173.4 176.1287 13.06897 0.6364 180.1 189.531 15.88488 0.7273 197.1 205.5236 19.91549 0.8182 213.8 226.6149 25.790310 0.9091 256 260.6181 35.8521

Estudio de Hidrología e Hidráulica Pág. 12 de 43

Actual Data

Distribution

Pearson Type III

Weibull Probability

Value

0

50

100

150

200

250

300

0.0 0.2 0.4 0.6 0.8 1.0

Page 13: Hidrologia Jarpa

MEJORAMIENTO Y REHABILITACION DE LA CARRETERA DE ACCESO: PUENTE COLLPA – SAN JUAN DE JARPA - YANACANCHA, PROVINCIA DE CHUPACA REGION - JUNIN”

PredictionsExceedence Return Calculated StandardProbability Period Value Deviation

0.998 500 437.0443 90.64230.993 143 379.7143 72.67130.986 71 347.8967 62.73690.971 35 314.2887 52.29640.967 30 308.2937 50.4422

0.9 10 256.0395 34.4730.8 5 221.767 24.40380.5 2 170.0025 12.062

Fuente: Resultados obtenidos en base al Software SMADA ver. 6.3

Estudio de Hidrología e Hidráulica Pág. 13 de 43

Actual Data

Distribution

Gumbel Extremal Type I

Weibull Probability

Value

0

50

100

150

200

250

300

0.0 0.2 0.4 0.6 0.8 1.0

Page 14: Hidrologia Jarpa

MEJORAMIENTO Y REHABILITACION DE LA CARRETERA DE ACCESO: PUENTE COLLPA – SAN JUAN DE JARPA - YANACANCHA, PROVINCIA DE CHUPACA REGION - JUNIN”

Estudio de Hidrología e Hidráulica Pág. 14 de 43

1 100.90 47.8010 95.6020 124.3076 0.9725 0.0275 0.0909 0.06352 149.00 57.0084 114.0168 124.3076 0.7288 0.2712 0.1818 0.08943 156.10 58.3675 116.7350 124.3076 0.6657 0.3343 0.2727 0.06164 163.80 59.8414 119.6829 124.3076 0.5929 0.4071 0.3636 0.04355 168.60 60.7603 121.5205 124.3076 0.5462 0.4538 0.4545 0.00086 173.40 61.6791 123.3582 124.3076 0.4994 0.5006 0.5455 0.04487 180.10 62.9616 125.9232 124.3076 0.4349 0.5651 0.6364 0.07138 197.10 66.2158 132.4315 124.3076 0.2858 0.7142 0.7273 0.01309 213.80 69.4125 138.8250 124.3076 0.1715 0.8285 0.8182 0.0103

10 256.00 77.4905 154.9810 124.3076 0.0311 0.9689 0.9091 0.0598Suma 1758.8 D= 0.0894Media 175.9

Des.Eest(S) 41.19 d crítico = 0.409sesgo(γ) 0.2537 n= 10

β1=(2/γ)2 62.1538 α= 0.05

α1=S/√β1 5.2241

δ1=X-α1β1 -148.8157

Fuente: UNALM

χ2 Fx Fo Abs(Fo-Fx)

CUADRO N° 8: PRUEBA DE KOLMOGOROV-SMIRNOVDistribución Pearson Tipo 3.- Precipitación Máxima en 24 horas

Estación Co - San Juan De Jarpa

N X Y=(x-δ1)/α1 2Y 2β1

3

XX i

3

XX i

1 100.90 4.6141 2.1311 4.2621 16.7318 0.9984 0.0016 0.0909 0.08932 149.00 5.0039 6.7198 13.4396 16.7318 0.6404 0.3596 0.1818 0.17783 156.10 5.0505 7.2678 14.5356 16.7318 0.5589 0.4411 0.2727 0.16844 163.80 5.0986 7.8346 15.6692 16.7318 0.4763 0.5237 0.3636 0.16015 168.60 5.1275 8.1746 16.3492 16.7318 0.4289 0.5711 0.4545 0.11666 173.40 5.1556 8.5050 17.0101 16.7318 0.3849 0.6151 0.5455 0.06967 180.10 5.1935 8.9513 17.9026 16.7318 0.3296 0.6704 0.6364 0.03408 197.10 5.2837 10.0131 20.0262 16.7318 0.2190 0.7810 0.7273 0.05379 213.80 5.3650 10.9705 21.9410 16.7318 0.1451 0.8549 0.8182 0.036710 256.00 5.5452 13.0910 26.1819 16.7318 0.0515 0.9485 0.9091 0.0394

Suma 1758.8 D= 0.17780Media 175.9 5.14Des.Eest(S)41.18535 0.2457 d crítico = 0.409sesgo(γ) 0.253686 -0.6915 n= 10

β1=(2/γ)2 62.1538 8.3659 α= 0.05

α1=S/√β1 5.224069 0.0850

δ1=X-α1β1 -148.816 4.4331

Fuente: UNALM

Fx Fo Abs(Fo-Fx)

CUADRO 9: PRUEBA DE KOLMOGOROV-SMIRNOVDistribución Log Pearson Tipo 3.- Precipitación Máxima en 24 horas

Estación Co - San Juan De Jarpa

N X LnX Y=(x-δ1)/α1 2Y 2β1 χ23

XX i

N X Fx Fo Abs(Fo-Fx)1 100.90 0.0159 0.0909 0.07502 149.00 0.3047 0.1818 0.12283 156.10 0.3722 0.2727 0.09944 163.80 0.4452 0.3636 0.08155 168.60 0.4894 0.4545 0.03496 173.40 0.5322 0.5455 0.01337 180.10 0.5886 0.6364 0.04788 197.10 0.7111 0.7273 0.01619 213.80 0.8018 0.8182 0.0164

10 256.00 0.9288 0.9091 0.0197Suma 1758.8 D= 0.1228Media 175.9Desvest 41.19 d crítico = 0.409uy 0.52522 n= 10σy 1.06938 α= 0.05Alfa 0.025965059Beta 155.6520469exp(1) 2.718281828Fuente: UNALM

CUADRO 10: PRUEBA DE KOLMOGOROV-SMIRNOVDistribución Gumbel.- Precipitación Máxima en 24 horas

Estación Co - San Juan De Jarpa

Page 15: Hidrologia Jarpa

MEJORAMIENTO Y REHABILITACION DE LA CARRETERA DE ACCESO: PUENTE COLLPA – SAN JUAN DE JARPA - YANACANCHA, PROVINCIA DE CHUPACA REGION - JUNIN”- Corrección por intervalo fijo de observación.

L.L. Weiss en base a un estudio de miles de estaciones-año de datos de lluvia encontró que

los resultados de un análisis probabilístico llevado a cabo con lluvias máximas anuales

tomadas en un único y fijo intervalo de observación, para cualquier duración comprendida

entre 1 y 24 horas, al ser incrementadas en un 13% conducían a magnitudes más

aproximadas a las obtenidas en el análisis basado en lluvias verdaderas.

De acuerdo a lo anterior, el valor de las lluvias máximas es multiplicado por 1.13 para

ajustarlo por intervalo fijo y único de observación. Este análisis se muestra en el Cuadro Nº.11

b. Intensidades de lluvia

Las estaciones de lluvia ubicadas en la zona, no cuentan con registros pluviográficos que

permitan obtener las intensidades máximas. Para poder estimarlas se recurrió al principio

conceptual, referente a que los valores extremos de lluvias de alta intensidad y corta duración

aparecen, en el mayor de los casos, marginalmente dependientes de la localización

geográfica, con base en el hecho de que estos eventos de lluvia están asociados con celdas

atmosféricas las cuales tienen propiedades físicas similares en la mayor parte del mundo.

Existen varios modelos para estimar la intensidad a partir de la precipitación máxima en 24

horas. Uno de ellos es el modelo de Frederich Bell que permite calcular la lluvia máxima en

función del período de retorno, la duración de la tormenta en minutos y la precipitación

máxima de una hora de duración y periodo de retorno de 10 años. La expresión es la

siguiente:

Donde:

t = duración en minutos

Estudio de Hidrología e Hidráulica Pág. 15 de 43

Periodo de P max. Sin corrección Factor P max. Con correcciónRetorno Corpa - Jalca - Yanacancha (n) Corpa - Jalca - Yanacancha

500 318.32 1.13 359.70143 293.25 1.13 331.3771 278.45 1.13 314.6435 261.90 1.13 295.9530 258.84 1.13 292.4910 230.26 1.13 260.195 209.23 1.13 236.432 172.68 1.13 195.13

CUADRO 11: PRECPITACIÓN MAXIMA CORREGIDA

Page 16: Hidrologia Jarpa

MEJORAMIENTO Y REHABILITACION DE LA CARRETERA DE ACCESO: PUENTE COLLPA – SAN JUAN DE JARPA - YANACANCHA, PROVINCIA DE CHUPACA REGION - JUNIN”T = periodo de retorno en años

=precipitación caída en t minutos con periodo de retorno de T años

=precipitación caída en 60 minutos con periodo de retorno de 10 años

El valor de , puede ser calculado a partir del modelo de Yance Tueros, que estima la intensidad máxima horaria a partir de la precipitación máxima en 24 horas.

I= intensidad máxima en mm/h

a, b= parámetros del modelo; 0.4602, 0.876, respectivamente.

P24= precipitación máxima en 24 horas

Las curvas de intensidad-duración-frecuencia, se han calculado indirectamente, mediante la siguiente relación:

Donde:

I = Intensidad máxima (mm/min)

K, m, n = factores característicos de la zona de estudio

T = período de retorno en años

t = duración de la precipitación equivalente al tiempo de concentración (min)

Si se toman los logaritmos de la ecuación anterior se obtiene:

Log (I) = Log (K) + m Log (T) -n Log (t)

O bien: Y = a0 + a1 X1 + a2 X2

Donde:

Y = Log (I), a0 = Log K

X1 = Log (T) a1 = m

X2 = Log (t) a2 = -n

Los factores de K, m, n, se obtienen a partir de las intensidades máximas calculadas anteriormente, mediante regresión múltiple.

Para la estación Cajabamba, se tiene la siguiente ecuación IDF.

Estudio de Hidrología e Hidráulica Pág. 16 de 43

Page 17: Hidrologia Jarpa

MEJORAMIENTO Y REHABILITACION DE LA CARRETERA DE ACCESO: PUENTE COLLPA – SAN JUAN DE JARPA - YANACANCHA, PROVINCIA DE CHUPACA REGION - JUNIN”

Para la estación Huamachuco, se tiene la siguiente ecuación IDF.

Cuadro 13: Lluvias máximas (mm).- Estación Co - San Juan De Jarpa - HuancayoT P.Max Duración en minutos

años 24 horas 5 10 15 20 30 60500 359.70 404.6 302.8 246.8 211.2 167.5 110.0143 331.37 346.3 259.2 211.3 180.8 143.4 94.171 314.64 313.7 234.8 191.4 163.8 129.9 85.335 295.95 280.8 210.2 171.3 146.6 116.3 76.330 292.49 273.6 204.8 166.9 142.8 113.3 74.4

Estudio de Hidrología e Hidráulica Pág. 17 de 43

T P.Maxaños 24 horas 5 10 15 20 30 60500 359.70 33.7 50.5 61.7 70.4 83.8 110.0143 331.37 28.9 43.2 52.8 60.3 71.7 94.171 314.64 26.1 39.1 47.8 54.6 64.9 85.335 295.95 23.4 35.0 42.8 48.9 58.1 76.330 292.49 22.8 34.1 41.7 47.6 56.6 74.410 260.19 18.5 27.8 33.9 38.7 46.1 60.15 236.43 15.9 23.7 29.0 33.1 39.4 51.72 195.13 12.3 18.4 22.5 25.7 30.5 40.1

Fuente: Elaboración del autor aplicando el Modelo de Bell

Cuadro 12: Lluvias máximas (mm).- Estación Co - San Juan De Jarpa - HuancayoDuración en minutos

T P.Maxaños 24 horas 5 10 15 20 30 60500 359.70 404.6 302.8 246.8 211.2 167.5 110.0143 331.37 346.3 259.2 211.3 180.8 143.4 94.171 314.64 313.7 234.8 191.4 163.8 129.9 85.335 295.95 280.8 210.2 171.3 146.6 116.3 76.330 292.49 273.6 204.8 166.9 142.8 113.3 74.410 260.19 222.5 166.5 135.7 116.1 92.1 60.15 236.43 190.2 142.4 116.0 99.3 78.7 51.72 195.13 147.6 110.4 90.0 77.0 61.1 40.1

Duración en minutosCuadro 12: Lluvias máximas (mm).- Estación Co - San Juan De Jarpa - Huancayo

Page 18: Hidrologia Jarpa

MEJORAMIENTO Y REHABILITACION DE LA CARRETERA DE ACCESO: PUENTE COLLPA – SAN JUAN DE JARPA - YANACANCHA, PROVINCIA DE CHUPACA REGION - JUNIN”

10 260.19 222.5 166.5 135.7 116.1 92.1 60.15 236.43 190.2 142.4 116.0 99.3 78.7 51.72 195.13 147.6 110.4 90.0 77.0 61.1 40.1

Cuadro 15: Intensidades máximas.- Estación Conchucos (mm/h)I= K T m

tn

K= 347.84m= 0.181n= 0.527

Duración (t) Período de Retorno (T) en años(minutos) 10 50 100

5 225.80 302.04 342.3510 156.70 209.60 237.5820 108.74 145.46 164.8730 87.82 117.47 133.1540 75.47 100.94 114.4250 67.09 89.74 101.7260 60.94 81.52 92.4070 56.19 75.16 85.1980 52.37 70.05 79.4090 49.22 65.84 74.62100 46.56 62.28 70.59110 44.28 59.23 67.13120 42.29 56.57 64.12

Estudio de Hidrología e Hidráulica Pág. 18 de 43

347.84 Log K= 2.5414 K= 347.840.9935333 m= 0.1810.9871084 n= 0.527

48 I= K T0.181

47 Donde: t.0.527

I= mm/h0.0264452 T= años0.9865354 t= minutosError estándar de coef.

Cuadro Nº14: Resultado del Análisis de Regresión:ConstanteErr. estándar de est.YR cuadrada

Núm. de observaciones

Grado de libertad

Coeficiente(s) X

Page 19: Hidrologia Jarpa

MEJORAMIENTO Y REHABILITACION DE LA CARRETERA DE ACCESO: PUENTE COLLPA – SAN JUAN DE JARPA - YANACANCHA, PROVINCIA DE CHUPACA REGION - JUNIN”

Estudio de Hidrología e Hidráulica Pág. 19 de 43

Page 20: Hidrologia Jarpa

MEJORAMIENTO Y REHABILITACION DE LA CARRETERA DE ACCESO: PUENTE COLLPA – SAN JUAN DE JARPA - YANACANCHA, PROVINCIA DE CHUPACA REGION - JUNIN”

6.3. Periodo de Retorno

Se define como el periodo de retorno T, como el intervalo promedio de tiempo en años,

dentro del cual un evento de magnitud “x” puede ser igualado o excedido, es decir que

ocurre en promedio una vez |cada cierto periodo de años. A continuación se muestra una

tabla de valores de “T”, para diferentes tipos de estructuras (Hidrología Feb-2002: Máximo

Villón Bejar)

Tabla: Periodo de retorno de diseño recomendado para estructuras menores

Tipo de estructura T(años)

Puente sobre carretera importante 50 a 100

Puente s/ carretera menos importante o alcantarillas s/ carretera importante 25

Alcantarillas sobre camino secundario 5 a 10

Drenaje lateral de los pavimentos, donde se puede tolerar encharcamiento con lluvia de corta duración

1 a 2

Drenaje de aeropuertos 5

Drenaje urbano 2 a 10

Drenaje agrícola 5 a 10

Muros de encauzamiento (obra de defensa ribereña) 2 a 50

Para el presente estudio elegimos el valor de T = 100 años para puentes y pontones y un

6.4. Tiempo de Concentración (Tc)

El tiempo de concentración es un parámetro que nos servirá para calcular los caudales

máximos y está definido como el tiempo que requiere una partícula o gota de agua para

llegar del punto más alejado al punto de interés, es decir cuando el periodo de tiempo de

precipitación sea igual al tiempo de concentración ya que en ese momento todos los puntos

de la cuenca estarán contribuyendo al caudal en forma simultánea.

Los factores que determinan el tiempo de concentración son la pendiente del terreno,

características del suelo, la vegetación, el estado de saturación del suelo y las características

de las precipitaciones máximas.

Estudio de Hidrología e Hidráulica Pág. 20 de 43

Page 21: Hidrologia Jarpa

MEJORAMIENTO Y REHABILITACION DE LA CARRETERA DE ACCESO: PUENTE COLLPA – SAN JUAN DE JARPA - YANACANCHA, PROVINCIA DE CHUPACA REGION - JUNIN”Existen varias fórmulas para calcular este parámetro, en el presente estudio se ha empleado

el promedio de dos fórmulas ampliamente utilizadas: Temes y Bransby Williams.

Fórmula de Temes:

Donde:

Tc = Tiempo de concentración en horas.

L = Longitud del curso principal en kilómetros.

S = Pendiente a lo largo del cauce en m/m.

Fórmula de Bransby Williams.

Donde:

Tc = Tiempo de concentración en horas.

L = Longitud del curso principal en kilómetros.

A = Area de cuenca en Km2.

S = Pendiente a lo largo del cauce en m/m.

6.5. Tiempo de Concentración (Tc)

El tiempo de concentración es un parámetro que nos servirá para calcular los caudales

máximos y está definido como el tiempo que requiere una partícula o gota de agua para

llegar del punto más alejado al punto de interés, es decir cuando el periodo de tiempo de

precipitación sea igual al tiempo de concentración ya que en ese momento todos los puntos

de la cuenca estarán contribuyendo al caudal en forma simultánea.

6.6. Intensidades de Precipitación

El parámetro fundamental para la obtención de los caudales de diseño es la intensidad de la

precipitación, la cual varía de un punto a otro según las condiciones geográficas y

meteorológicas de la zona y varía en cada punto según la duración de la precipitación.

Se considera definida la intensidad de lluvia en un punto cuando se conozcan para cada

periodo de recurrencia la variación de la intensidad en función al tiempo de duración de la

precipitación.

La intensidad es el volumen de agua precipitada en un periodo dado. Su cálculo parte de las

lecturas de los pluviogramas para de inmediato graficar el histograma que determina dicha

intensidad.

La intensidad es definida, como la cantidad de agua caída por unidad de tiempo, de acuerdo

a esto se tiene:

Estudio de Hidrología e Hidráulica Pág. 21 de 43

Page 22: Hidrologia Jarpa

MEJORAMIENTO Y REHABILITACION DE LA CARRETERA DE ACCESO: PUENTE COLLPA – SAN JUAN DE JARPA - YANACANCHA, PROVINCIA DE CHUPACA REGION - JUNIN”

Donde:

I : Intensidad en mm/h

P : Precipitación en altura de agua en mm

t : Tiempo en horas

La intensidad de la precipitación varía en cada instante durante el curso de una misma

tormenta, de acuerdo a las características de esta. Es absolutamente indispensable cuando

se hace el análisis de tormentas, determinar estas variaciones porque de ellas dependen

muchas de las condiciones; que hay que fijar para las obras de ingeniería hidráulica, para las

que se hacen principalmente en esta clase de estudios. Para el presente estudio se han

utilizado los datos de intensidad de la estación de San Juan de Jarpa. En los cálculos se ha

utilizado el método de Log Pearson Tipo III. Ver los cálculos en la parte de anexos.

Para resolver racionalmente los problemas de drenaje es necesario determinar las intensidades

máximas de lluvias en un intervalo de tiempo t igual al tiempo de concentración (Tc) de la

cuenca, con una frecuencia determinada para un periodo de retorno de 100 años.

Calculo de la Precipitación Máxima

Debido a que no se cuenta con datos de intensidades de precipitación para la estación de

proyecto se optó por calcular las intensidades de precipitación máximas de diseño para

diferentes tiempos de duración y periodos de retorno ajustando a un modelo probabilístico las

intensidades de precipitación máximas.

6.7. Escorrentía

La escorrentía superficial generada por la precipitación causa problemas a la vía cuando

existen laderas que drenan sobre la carretera. La cuantificación de esta escorrentía nos

permite dimensionar adecuadamente las estructuras de drenaje de la vía. En suma se

trata de reducir al máximo la cantidad de agua que llega a las diferentes partes del

pavimento y en segundo lugar dar salida expedita al agua cuyo acceso al camino sea

inevitable.

Las formas cómo llega el agua al camino son:

a) Por precipitación pluvial directa.

b) Por inundación producida por las corrientes de los ríos y arroyos.

c) Por infiltración a través del sub - suelo.

Coeficiente de Escurrimiento (Ce)

Estudio de Hidrología e Hidráulica Pág. 22 de 43

Page 23: Hidrologia Jarpa

MEJORAMIENTO Y REHABILITACION DE LA CARRETERA DE ACCESO: PUENTE COLLPA – SAN JUAN DE JARPA - YANACANCHA, PROVINCIA DE CHUPACA REGION - JUNIN”

Se puede definir el Coeficiente de Escorrentía como un factor que afecta a la lluvia total y

que determina el volumen de agua que corre por la superficie del terreno como resultado

de la precipitación, este coeficiente depende de las características del terreno como: tipo

de vegetación, longitud de recorrido, inclinación del terreno, intensidad de la

precipitación, rugosidad de las laderas, permeabilidad del suelo etc. Para el cálculo de

este coeficiente se usó la siguiente tabla.

CondiciónK1=40 K1=30 K1=20 K1=10

Muy accidentado pendiente superior al 30%

Accidentado pendiente entre 10% y 30%

Ondulado pendiente entre 5% y 10%

Llano pendiente inferior al 5%

K2=20 K2=15 K2=10 K2=5

Muy impermeable Roca sana

Bastante impermeable Arcilla

Permeable Muy permeable

K3=20 K3=15 K3=10 K3=5

Sin vegetaciónPoca menos del 10% de la superficie

Bastante hasta el 50% de la superficie

Mucha hasta el 90% de la superficie

K4=20 K4=15 K4=10 K4=5

Ninguna Poca Bastante MuchaFuente: Manual para el diseño de caminos no pavimentados de bajo volumen de tránsito, MTC.

ValoresValores para la determinación del Coeficiente de Escorrentía

1. Relieve del terreno

2. Permeabilidad del suelo

3. Vegetación

4. Capacidad de retención

K=K1+K2+K3+K4 C100 0.8075 0.6550 0.5030 0.3525 0.20

Fuente: Manual para el diseño de caminos no pavimentados de bajo volumen de tránsito, MTC.

Coeficiente de Escorrentía

La zona de estudio presenta características homogéneas, es por eso que se toma un

solo coeficiente de escorrentía siendo este el valor de 0.60

6.8. Caudales Máximos

El Manual de Hidrología, Hidráulica y Drenaje de Carreteras recomienda utilizar como

valores máximos de riesgo admisible los siguientes valores para diferentes vidas útiles.

Estudio de Hidrología e Hidráulica Pág. 23 de 43

Page 24: Hidrologia Jarpa

MEJORAMIENTO Y REHABILITACION DE LA CARRETERA DE ACCESO: PUENTE COLLPA – SAN JUAN DE JARPA - YANACANCHA, PROVINCIA DE CHUPACA REGION - JUNIN”

De acuerdo a la tabla anterior, para cumplir con los riesgos de falla y via útil propuestos se obtienen los siguientes valores de periodos de retorno:

Tipo de ObraRiesgo(%)

Vida Util(años)

Tiempo de retorno(años)

Puentes y pontones 0.25 40 140Alcantarilla de paso, badén 0.30 25 71Alcantarilla de alivio 0.35 15 35Cuneta 0.40 15 30Defensa ribereña 0.25 40 140Subdrenes 0.25 15 53

FORMULA RACIONAL.

Este método permite conocer caudales máximos de escorrentía usando intensidades

máximas de precipitaciones; básicamente se formula que el caudal máximo es directamente

proporcional a la intensidad máxima de la lluvia para un periodo de duración igual al tiempo

de concentración y al área de la cuenca.

La expresión que se utiliza es:

360

** AICQ

Donde:

Q = Caudal máximo de escorrentía en m3/seg.

C = Coeficiente de escorrentía en función al suelo.

Estudio de Hidrología e Hidráulica Pág. 24 de 43

Page 25: Hidrologia Jarpa

MEJORAMIENTO Y REHABILITACION DE LA CARRETERA DE ACCESO: PUENTE COLLPA – SAN JUAN DE JARPA - YANACANCHA, PROVINCIA DE CHUPACA REGION - JUNIN”

I =Intensidad de la lluvia en mm/h, durante el tiempo de concentración.

A = Área de la cuenca en Ha.

Estudio de Hidrología e Hidráulica Pág. 25 de 43

Page 26: Hidrologia Jarpa

MEJORAMIENTO Y REHABILITACION DE LA CARRETERA DE ACCESO: PUENTE COLLPA – SAN JUAN DE JARPA - YANACANCHA, PROVINCIA DE CHUPACA REGION - JUNIN”

Estudio de Hidrología e Hidráulica Pág. 26 de 43

K= 347.84 Puente 140 añosm= 0.181 Ponton 140 añosn= 0.527 Alcantarillas 35 añosT= 20 Cunetas 30 años

(km2) (m.) L (m.) (m/m) horas minutos

1 Ponton 6 + 208 Ponton 1.077 370 1,328 3.700 0.44 26.65 150.61 27.0312 Ponton 10 + 400 Ponton 1.664 750 3,553 7.500 1.09 65.34 93.88 26.0323 Ponton 13 + 125 Ponton 0.994 210 1,438 2.100 0.54 32.51 135.63 22.4804 Puente 0 + 118 Puente 1.131 150 901 1.500 0.35 20.98 170.85 32.2035 Ponton 1 + 832 Ponton 1.031 450 1,141 4.500 0.36 21.88 167.11 28.7136 Puente 9 + 772 Puente 1.437 330 1,328 3.300 0.45 26.89 149.90 35.8957 Ponton 13 + 640 Ponton 1.713 460 3,249 4.600 1.09 65.16 94.02 26.8498 Puente 14 + 832 Puente 4.519 370 10,279 3.700 3.75 224.90 48.94 36.8569 AMC - 1 4 + 557 AMC - 1 0.152 390 1,877 3.900 0.70 42.22 91.99 2.333

10 AMC - 2 4 + 469 AMC - 2 0.142 280 1,652 2.800 0.66 39.38 95.42 2.25411 AMC - 3 10 + 148 AMC - 3 0.194 730 3,652 7.300 1.27 76.04 67.46 2.178

Cuadro Nº16:Caudales máximos Método Racional

AreaA

Desnivel H

Longitud del cauce

L(m)

PendienteSNº

Intensidadmm/hora

Caudal Máximo

(m3/s)Nombre

Tiempo de Concentración

TcKm.Estructura

Proyectada6.3

CIAQ

77.00195.0 KTc

H

LK

3

6.3

CIAQ

n

m

t

KTI

Page 27: Hidrologia Jarpa

MEJORAMIENTO Y REHABILITACION DE LA CARRETERA DE ACCESO: PUENTE COLLPA – SAN JUAN DE JARPA - YANACANCHA, PROVINCIA DE CHUPACA REGION - JUNIN”

Cuadro Nº17: Caudales Máximos Método del Hidrograma Triangular

Nombre Km.EstructuraProyectada

Número Lluvia efectiva, Pe, mm Caudal Máximo (m3/s)de curva

50 años 100 años 500 años 50 años 100 años 500 añosN

                     1 Ponton 6 + 208 Ponton 70 22.1 25.1 31.7 10.2 11.5 14.62 Ponton 10 + 400 Ponton 71 23.4 26.5 33.2 6.8 7.7 9.63 Ponton 13 + 125 Ponton 72 24.8 27.9 34.9 8.4 9.5 11.94 Puente 0 + 118 Puente 73 26.1 29.4 36.5 16.2 18.2 22.65 Ponton 1 + 832 Ponton 74 27.6 30.9 38.2 14.6 16.4 20.36 Puente 9 + 772 Puente 75 29.0 32.4 40.0 17.7 19.8 24.47 Ponton 13 + 640 Ponton 76 30.5 34.0 41.7 9.2 10.2 12.58 Puente 14 + 832 Puente 77 32.1 35.7 43.5 7.4 8.2 10.09 AMC - 1 4 + 557 AMC - 1 78 33.7 37.4 45.4 1.3 1.5 1.810 AMC - 2 4 + 469 AMC - 2 79 35.3 39.1 47.3 1.4 1.6 1.911 AMC - 3 10 + 148 AMC - 3 80 37.0 40.9 49.2 1.1 1.2 1.5

Estudio de Hidrología e Hidráulica Pág. 27 de 43

Area Tiempo de Tiempo de Tiempo Tiempo Caudal Número

concentración retraso pico base Unitario qp de curva

1 Ponton 6 + 208 Ponton 1.08 0.44 0.27 0.49 1.31 0.46 70 22.1 25.1 31.7 10.2 11.5 14.62 Ponton 10 + 400 Ponton 1.66 1.09 0.65 1.20 3.20 0.29 71 23.4 26.5 33.2 6.8 7.7 9.63 Ponton 13 + 125 Ponton 0.99 0.54 0.33 0.60 1.60 0.34 72 24.8 27.9 34.9 8.4 9.5 11.94 Puente 0 + 118 Puente 1.13 0.35 0.21 0.38 1.01 0.62 73 26.1 29.4 36.5 16.2 18.2 22.65 Ponton 1 + 832 Ponton 1.03 0.36 0.22 0.40 1.07 0.53 74 27.6 30.9 38.2 14.6 16.4 20.36 Puente 9 + 772 Puente 1.44 0.45 0.27 0.49 1.31 0.61 75 29.0 32.4 40.0 17.7 19.8 24.47 Ponton 13 + 640 Ponton 1.71 1.09 0.65 1.19 3.18 0.30 76 30.5 34.0 41.7 9.2 10.2 12.58 Puente 14 + 832 Puente 4.52 3.75 2.25 4.12 11.00 0.23 77 32.1 35.7 43.5 7.4 8.2 10.09 AMC - 1 4 + 557 AMC - 1 0.15 0.70 0.42 0.77 2.06 0.04 78 33.7 37.4 45.4 1.3 1.5 1.8

10 AMC - 2 4 + 469 AMC - 2 0.14 0.66 0.39 0.72 1.92 0.04 79 35.3 39.1 47.3 1.4 1.6 1.911 AMC - 3 10 + 148 AMC - 3 0.19 1.27 0.76 1.39 3.71 0.03 80 37.0 40.9 49.2 1.1 1.2 1.5

Cálculo de la lluvia efectiva Pe.Método de los Números de Escurrimiento.US.Soil Conservation ServiceSuelos textura tipo B

Altura de lluvia

P50= 83.1 mmP100= 88.0 mmP500= 98.4 mm

Para cuencas grandes:

Para cuencas pequeñas:

hp

1

q

t

qp

Syntetic Unit Hidrographby Mockus, VictorUS. SCS.

de

de/2

tb

tp

6.3CIA

Q

77.00195.0 KTc

32.202032

08.5508

2

NP

NP

Pe

rcp ttt

rc

p tt

t 2

Page 28: Hidrologia Jarpa

MEJORAMIENTO Y REHABILITACION DE LA CARRETERA DE ACCESO: PUENTE COLLPA – SAN JUAN DE JARPA - YANACANCHA, PROVINCIA DE CHUPACA REGION - JUNIN”

7. DIMENSIONAMIENTO DE ESTRUCTURAS DE DRENAJE

7.1. Dimensionamiento de Estructuras en las Quebradas con cauce definido.

Para el dimensionamiento de los puentes y pontones a reemplazar se tendrán en cuenta las mimas secciones geométricas, ya que en la actualidad dichas estructuras vienes funcionando hidráulicamente sin problemas de rebalse de las aguas.

Para alcantarillas tipo marco se tendrán en cuenta el siguiente diseño geométrico teniendo en cuenta los caudales obtenidos en el cuadro N° 17

Estudio de Hidrología e Hidráulica Pág. 28 de 43

Page 29: Hidrologia Jarpa

MEJORAMIENTO Y REHABILITACION DE LA CARRETERA DE ACCESO: PUENTE COLLPA – SAN JUAN DE JARPA - YANACANCHA, PROVINCIA DE CHUPACA REGION - JUNIN”

7.2. Dimensionamiento de estructuras para drenaje longitudinal y transversal (pluvial).

7.2.1. Cunetas.

Las cunetas son canales longitudinales que van al costado de la vía, y sirven para

recoger y eliminar el agua que cae sobre la superficie de la calzada hacia las

alcantarillas. Se les da formas muy diversas y dimensiones variables, dependiendo

de la naturaleza de la superficie de rodadura, y sobre todo de los datos

pluviométricos que se tengan de la zona.

Las cunetas deben tener desagües en puntos adecuados del trazado,

dependiendo de la ubicación de éstos y de la capacidad de conducción del caudal

de las cunetas, mientras más caudal conduzca la cuneta mayor será la distancia

entre puntos de desagüe.

Las cunetas son imprescindibles en todas las secciones en corte. En la Normas

Peruanas se especifica que las cunetas serán de sección triangular, fijándose sus

dimensiones de acuerdo con las condiciones climáticas.

Longitudinalmente, las cunetas no sobrepasarán las gradientes que provoquen la

erosión por la acción de las aguas superficiales

Para el tramo en estudio se ha proyectado dos (02) tipos de cunetas:

Cunetas de sección triangular, para la zona no urbana.

Cunetas de sección rectangular, para la zona urbana.

El caudal de diseño para las cunetas fue definido anteriormente por el Método Racional, cuyo resultado fue 0.154 m3/s, de acuerdo al tramo. .

a. Cunetas de Sección Triangular (Zona No Urbana).

El cálculo hidráulico de la cuneta triangular se muestra en el Cuadro Nº34. Para las

cunetas de sección triangular se recomienda una pendiente mínima de 0.5%, con las

siguientes dimensiones:

Altura: 0.30 m.

Talud interior: 1.0 V: 0.5 H

Talud exterior. 1.0 V: 3.0 H.

No se ha considerado borde libre por que el Qc es mucho mayor al Qh.

La pendiente de la cuneta no siempre es igual a la pendiente de la rasante. En los

casos en que la pendiente de la rasante sea menor a 0.5%, en obra, la pendiente de

la cuneta puede ser mayor para que llegue a los puntos de entrega. Hay que tomar en

cuenta que el Qh ha sido calculado para una longitud máxima de 250 m., y en

Estudio de Hidrología e Hidráulica Pág. 29 de 43

Page 30: Hidrologia Jarpa

MEJORAMIENTO Y REHABILITACION DE LA CARRETERA DE ACCESO: PUENTE COLLPA – SAN JUAN DE JARPA - YANACANCHA, PROVINCIA DE CHUPACA REGION - JUNIN”

muchos tramos la cuneta tiene una longitud mucho menor, para los cuales Qh es

también mucho menor.

Para adoptar los valores de “n” Coeficiente de rugosidad, se tomará de acuerdo a la tabla siguiente:

Coeficiente De Rugosidad

Los valores obtenidos para la velocidad deberán estar entre los parámetros límites mostrados

en la siguiente tabla

VELOCIDADES LIMITES (en tierra)

Velocidad de erosión

Velocidad de sedimentación

1.60 m/s

0.60 m/s

Cálculo de la Longitud Máxima

Esta longitud es la máxima en el cual el agua que escurre del talud y de la superficie de la vía

no r ebasa la cuneta.

L máx. = A / b

Donde:

Lmax = Longitud máxima de la cuneta (m)

A = Área tributaria (m2)

b = Ancho de influencia (mínimo 50 m)

Estudio de Hidrología e Hidráulica Pág. 30 de 43

Page 31: Hidrologia Jarpa

MEJORAMIENTO Y REHABILITACION DE LA CARRETERA DE ACCESO: PUENTE COLLPA – SAN JUAN DE JARPA - YANACANCHA, PROVINCIA DE CHUPACA REGION - JUNIN”

Zi= 0.5 Zd= 3 n= 0.014H bl y A P R S V Qc Qh

(m) (m) (m) (m2) (m) (m) (m/s) (l/s) l/s0.30 0.00 0.30 0.158 1.284 0.123 0.5% 1.249 197 0.1540.30 0.00 0.30 0.158 1.284 0.123 0.6% 1.368 216 0.1540.30 0.00 0.30 0.158 1.284 0.123 0.7% 1.478 233 0.1540.30 0.00 0.30 0.158 1.284 0.123 1.0% 1.767 278 0.1540.30 0.00 0.30 0.158 1.284 0.123 2.0% 2.498 393 0.1540.30 0.00 0.30 0.158 1.284 0.123 3.0% 3.060 482 0.1540.30 0.00 0.30 0.158 1.284 0.123 4.0% 3.533 556 0.1540.30 0.00 0.30 0.158 1.284 0.123 5.0% 3.950 622 0.1540.30 0.00 0.30 0.158 1.284 0.123 6.0% 4.327 682 0.1540.30 0.00 0.30 0.158 1.284 0.123 7.0% 4.674 736 0.1540.30 0.00 0.30 0.158 1.284 0.123 8.0% 4.997 787 0.154

Cuadro N°34: Cálculo de la capacidad de cuneta Tipo I

100

120

140

160

180

200

220

240

0.040 0.050 0.060 0.070 0.080 0.090 0.100 0.110 0.120

Cau

dal

(l/s

)

Pendiente

Caudal vs. Pendiente

H=0.30

ZdZi

11

TI=1/Zi TD=1/Zd

b. Cuneta de Sección Rectangular (Zona Urbana).

Para las zonas urbanas se ha proyectado la cuneta de sección rectangular - Tipo II, cuyas dimensiones son:

Talud verticalAltura 0.40 m.Ancho 0.40 m.

Las cunetas de sección rectangular serán tapadas con una losa de concreto armado, con aberturas verticales de 0,20 m. por donde discurrirá el agua de lluvias, estas aberturas tendrán rejillas metálicas; además se está considerando ubicar tapas de inspección distanciadas cada 10,00 m. Véase los planos de detalles. El cálculo hidráulico de la cuneta rectangular se muestra en el Cuadro Nº 35. Para las cunetas de sección rectangular se recomienda una pendiente mínima de 0,5%.

Estudio de Hidrología e Hidráulica Pág. 31 de 43

Cuadro N° 18

Page 32: Hidrologia Jarpa

MEJORAMIENTO Y REHABILITACION DE LA CARRETERA DE ACCESO: PUENTE COLLPA – SAN JUAN DE JARPA - YANACANCHA, PROVINCIA DE CHUPACA REGION - JUNIN”

b= 0.40 Zd= 0 n= 0.014H bl y A P R S V Qc Qh(m) (m) (m) (m) (m) (m) (m/s) (lt/s) (lt/s)0.40 0.00 0.40 0.160 1.200 0.133 0.5% 1.32 210.6 0.1540.40 0.00 0.40 0.160 1.200 0.133 1.0% 1.86 297.8 0.1540.40 0.00 0.40 0.160 1.200 0.133 1.5% 2.28 364.7 0.1540.40 0.00 0.40 0.160 1.200 0.133 2.0% 2.63 421.1 0.1540.40 0.00 0.40 0.160 1.200 0.133 2.5% 2.94 470.8 0.1540.40 0.00 0.40 0.160 1.200 0.133 3.0% 3.22 515.8 0.1540.40 0.00 0.40 0.160 1.200 0.133 3.5% 3.48 557.1 0.1540.40 0.00 0.40 0.160 1.200 0.133 4.0% 3.72 595.6 0.1540.40 0.00 0.40 0.160 1.200 0.133 4.5% 3.95 631.7 0.1540.40 0.00 0.40 0.160 1.200 0.133 5.0% 4.16 665.9 0.1540.40 0.00 0.40 0.160 1.200 0.133 5.5% 4.36 698.4 0.154

Cuadro N°35: Cálculo de la capacidad de la Cuneta Tipo II

0

100

200

300

400

500

600

700

800

0.0% 1.0% 2.0% 3.0% 4.0% 5.0% 6.0%

Cau

dal l

/s)

Pendiente

Caudal vs. Pendiente

H=0.40

b

4.4.2.2 Alcantarillas para drenaje pluvial

El dimensionamiento de la alcantarilla de evacuación se calculó considerando que una

alcantarilla debe evacuar como máximo un caudal de 0.212 m3/s.

El diámetro de la alcantarilla se calculó de acuerdo al método propuesto por la Dirección de

Vialidad de California:

Para sección circular:

Donde:

Qd= Caudal de diseño en m3/s

d = diámetro de la alcantarilla en m.

Para el caudal de 0.212 m3/s, se obtiene un diámetro de 0,41m. Una alcantarilla de 24” seria el

mínimo para evacuar este caudal, sin embargo, por razones de seguridad, mantenimiento y

tomando en cuenta las características lluviosas de la zona, transporte de sedimentos y

crecimiento abundante de la vegetación, se ha adoptado alcantarilla 48”, que nos da un diámetro

Estudio de Hidrología e Hidráulica Pág. 32 de 43

Cuadro N° 19

Page 33: Hidrologia Jarpa

MEJORAMIENTO Y REHABILITACION DE LA CARRETERA DE ACCESO: PUENTE COLLPA – SAN JUAN DE JARPA - YANACANCHA, PROVINCIA DE CHUPACA REGION - JUNIN”

de y 1,20 m., suficiente para evacuar las aguas de la cuneta y para el mantenimiento de la

alcantarilla.

Teniendo en consideración las condiciones topográficas y demanda de transito de vehículos

durante el proceso de construcción de la carretera, se ha tomado como opción mas

apropiada, Las tuberías de polietileno de alta densidad de doble pared N-12 de Advanced

Drainage Systems, Inc. (ADS), tienen las siguientes ventajas:

- Resistencia Estructural: Gracias a su pared exterior corrugada y a su gran flexibilidad,

soporta las cargas verticales transfiriéndola mayor parte de la carga al suelo circundante.

- Durabilidad: El Polietileno de alta densidad es un material extremadamente resistente a

los impactos, ataques químicos (no es afectado por suelos o efluentes con rangos de pH

entre 1 y14), y a los efectos nocivos de la abrasión.

- Eficiencia Hidráulica: El interior liso de las tuberías le proporcionan características de flujo

superiores, con un coeficiente de “n” de Manning que varía desde 0.010 hasta 0.013.

- Instalación rápida: La tubería de polietileno es hasta 30 veces más liviana que la tubería

de concreto, haciendo más fácil el transporte, manipuleo e instalación

Actualmente en la carretera existen alcantarillas de TMC de 24” que se encuentra colapsadas ya

sea estructuralmente por la corrosión de las hojas que la conforman y por taponamiento de todo

el cuerpo de la alcantarilla que son casi imposible de realizar la limpieza de las mismas por el

mismo echo del diámetro de 24”.

Estudio de Hidrología e Hidráulica Pág. 33 de 43

Y240º

RD

Page 34: Hidrologia Jarpa

MEJORAMIENTO Y REHABILITACION DE LA CARRETERA DE ACCESO: PUENTE COLLPA – SAN JUAN DE JARPA - YANACANCHA, PROVINCIA DE CHUPACA REGION - JUNIN”

Cuadro N° 20. Alcantarillas de Paso y Alivio

Inventario de Estructuras de Alcantarillas de AlivioDiametro

Sentido

CabezalesObservación

N° km Qd Qm Qd>Qm Material Ent Sal

1 0+663 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

2 1+650 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

3 1+771 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

4 1+827 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

5 2+515 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

6 2+670 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

7 2+770 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

8 3+045 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

9 3+655 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

10 3+780 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

11 3+980 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

12 4+087 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

13 4+385 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

14 4+481 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

15 5+453 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

16 5+988 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

17 7+185 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

18 7+314 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

19 7+570 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

20 8+305 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

21 8+460 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

22 8+806 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

23 8+980 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

24 9+555 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

25 9+850 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

26 10+195 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

27 10+440 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

28 10+755 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

29 10+846 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

30 10+948 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

31 11+230 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

32 10+440 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

33 11+640 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

34 11+985 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

35 12+075 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

36 12+210 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

37 12+353 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

38 12+433 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

Estudio de Hidrología e Hidráulica Pág. 34 de 43

Page 35: Hidrologia Jarpa

MEJORAMIENTO Y REHABILITACION DE LA CARRETERA DE ACCESO: PUENTE COLLPA – SAN JUAN DE JARPA - YANACANCHA, PROVINCIA DE CHUPACA REGION - JUNIN”

39 12+555 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

40 12+660 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

41 12+865 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

42 12+968 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

43 0+462 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

44 1+085 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

45 1+714 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

46 2+064 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

47 2+790 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

48 2+920 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

49 4+040 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

50 4+590 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

51 5+394 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

52 5+483 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

53 5+765 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

54 7+058 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

55 4+182 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

56 9+686 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

57 9+825 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

58 9+922 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

59 10+252 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

60 10+445 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

61 11+055 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

62 11+502 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

63 11+613 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

64 12+817 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

65 13+775 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

66 14+209 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

67 14+589 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

68 14+789 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

69 14+961 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

70 15+107 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

71 15+174 1.09 0.154 Si Tub. Pol.A.D 36" D-I C A Cambiar x 48"

Tub.Pol.A.D = Tuberia de Polietileno de Alta Densidad

7.3 BADENES

Debido a que los suelos y taludes de las quebradas presentan inestabilidad, probablemente por

consecuencia de la deforestación, durante el periodo de lluvia las quebradas descargan las aguas con

transporte de sólidos de variado tamaño generando deslaves y huaycos. Con la finalidad de facilitar el

paso de los huaycos y facilitar los trabajos de mantenimiento de limpieza se ha considerado el

reemplazo del único badén existen en todo el tramo en estudio. A continuación se muestra la sección

de los badenes propuestos.

Estudio de Hidrología e Hidráulica Pág. 35 de 43

Page 36: Hidrologia Jarpa

MEJORAMIENTO Y REHABILITACION DE LA CARRETERA DE ACCESO: PUENTE COLLPA – SAN JUAN DE JARPA - YANACANCHA, PROVINCIA DE CHUPACA REGION - JUNIN”

SOLUCIONES ADOPTADAS.

En las quebradas grandes se ha proyectado la construcción de alcantarillas tipo marco con

dimensiones tales que permite el paso de avenidas, Se ha preferido la construcción de

tuberías de polietileno de alta densidad de doble pared N-12 de Advanced Drainage Systems,

Inc. (ADS)alcantarillas de metal corrugado por la facilidad y rapidez de montaje para

reposición de transito vehicular.

En las zonas de huaycos y deslaves se ha diseñado una obra de baden de concreto

reforzado, para facilitar el paso de los huaycos y las labores de limpieza y rehabilitación.

La construcción de las alcantarillas mayores y puentes debe realizarse en periodo de estiaje,

meses de mayo a octubre.

Estudio de Hidrología e Hidráulica Pág. 36 de 43

90 -

γ

RR

R

R

L

γ

h

Page 37: Hidrologia Jarpa

MEJORAMIENTO Y REHABILITACION DE LA CARRETERA DE ACCESO: PUENTE COLLPA – SAN JUAN DE JARPA - YANACANCHA, PROVINCIA DE CHUPACA REGION - JUNIN”

CONCLUSIONES.

Las estructuras de drenaje son necesarias, las condiciones topográficas e hidrológicas de la

zona de proyecto condicionan la preservación de la vía haciendo necesaria la ubicación de

estas obras de arte.

Existe fuerte erosión en los taludes inferiores fundamentalmente en las entregas de las

alcantarillas, erosión que se ha tomar en cuenta para el diseño de estas obras de arte.

Los frecuentes eventos de deslaves y huaycos, en zonas particulares, exigen la construcción

de estructuras de fácil limpieza y mantenimiento para reposición del tránsito de vehículos.

ANEXO

Estudio de Hidrología e Hidráulica Pág. 37 de 43

Page 38: Hidrologia Jarpa

MEJORAMIENTO Y REHABILITACION DE LA CARRETERA DE ACCESO: PUENTE COLLPA – SAN JUAN DE JARPA - YANACANCHA, PROVINCIA DE CHUPACA REGION - JUNIN”

PANEL FOTOGRAFICO

Badén existente en la zona de estudio

Estudio de Hidrología e Hidráulica Pág. 38 de 43

Page 39: Hidrologia Jarpa

MEJORAMIENTO Y REHABILITACION DE LA CARRETERA DE ACCESO: PUENTE COLLPA – SAN JUAN DE JARPA - YANACANCHA, PROVINCIA DE CHUPACA REGION - JUNIN”

Alcantarilla de 24” colmatada

Alcantarilla tipo marco colmata, no se puede realizar la limpieza del mismo por falta de espacio

Estudio de Hidrología e Hidráulica Pág. 39 de 43

Page 40: Hidrologia Jarpa

MEJORAMIENTO Y REHABILITACION DE LA CARRETERA DE ACCESO: PUENTE COLLPA – SAN JUAN DE JARPA - YANACANCHA, PROVINCIA DE CHUPACA REGION - JUNIN”

Alcantarilla de 24” colapsada por colmatación y deterioro de las laminas

Pontón a reemplazar por las mismas dimensiones presente fallas en su estructura;

hidráulicamente funcional,

Estudio de Hidrología e Hidráulica Pág. 40 de 43

Page 41: Hidrologia Jarpa

MEJORAMIENTO Y REHABILITACION DE LA CARRETERA DE ACCESO: PUENTE COLLPA – SAN JUAN DE JARPA - YANACANCHA, PROVINCIA DE CHUPACA REGION - JUNIN”

Puente sobre el Rio Cunas, reemplazar por falla en su estructura

Alcantarilla tipo marco colmatada

Estudio de Hidrología e Hidráulica Pág. 41 de 43

Page 42: Hidrologia Jarpa

MEJORAMIENTO Y REHABILITACION DE LA CARRETERA DE ACCESO: PUENTE COLLPA – SAN JUAN DE JARPA - YANACANCHA, PROVINCIA DE CHUPACA REGION - JUNIN”

Segundo puente sobre el rio Cunas, Tramo San Juan de Jarpa - Yanacancha

Estudio de Hidrología e Hidráulica Pág. 42 de 43

Page 43: Hidrologia Jarpa

MEJORAMIENTO Y REHABILITACION DE LA CARRETERA DE ACCESO: PUENTE COLLPA – SAN JUAN DE JARPA - YANACANCHA, PROVINCIA DE CHUPACA REGION - JUNIN”

Estudio de Hidrología e Hidráulica Pág. 43 de 43