hetero reactions

42
Chemical Reaction Engineering Heterogeneous reactions Jayant M. Modak Department of Chemical Engineering Indian Institute of Science, Bangalore

Upload: abhishek-anand

Post on 10-Oct-2014

120 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Hetero Reactions

Chemical Reaction Engineering Heterogeneous reactions

Jayant M. Modak Department of Chemical Engineering Indian Institute of Science, Bangalore

Page 2: Hetero Reactions

Topic 6: Heterogeneous reactions

Ø Gas-solid catalytic reactions Ø Gas-solid noncatalytic reactions Ø Gas-liquid reactions

Page 3: Hetero Reactions

Heterogeneous catalysis

Page 4: Hetero Reactions

Heterogeneous catalysis

Page 5: Hetero Reactions

Concentration and temperature profiles

position

concentration

cAi

cAb

position

temperature

Ti

Tb

Page 6: Hetero Reactions

External transport

Page 7: Hetero Reactions

Bulk/Molecular diffusion

Binary ( )( )12

1/ 23 3/ 2

1 5 21 212 2

1 12 1 1 1 2

1 11.86 10: 10 ; :10

T

T M MD gases liquids cm s

P

N D C y y N N

σ

− −× +

⎡ ⎤= ⎣ ⎦Ω

= − ∇ + +

Multi-component

1

1

1

1

Nk

k jNk j jk j

j jm T j j k jm Nk

j k jk

Ny yD N

N D C y y N Dy N N

=

=

⎛ ⎞−⎜ ⎟⎜ ⎟⎝ ⎠= − ∇ + =

∑∑

Page 8: Hetero Reactions

Characterization of catalyst pellet

///

( )

g

g

p

p

S surfacearea gmcatalystV void volume gmcatalyst

gmcatalyst pellet volumevoid fraction

f r dr void volumedistribution

ρε

Page 9: Hetero Reactions

Transport in pore

Bulk Knudson Viscous

( ) 0

1 2

1 1

2 83

Nj j

j k j j kk j jk Kj Kj

Kjj

N y PBp y N y N PRT D D D RT

RTD rM

µ

π

⎛ ⎞− ∇ = − + + ∇⎜ ⎟⎝ ⎠

⎛ ⎞= ⎜ ⎟⎜ ⎟⎝ ⎠

Page 10: Hetero Reactions

Transport in pellet

Flow

jj ej

ej jm

dCN D

dz

D Dετ

= −

=Flow

jj jm

dCN D

dz= −

Page 11: Hetero Reactions

Reaction and diffusion A→B

bulk phase

cAb

L

catalyst Diffusion

Reaction

z+dz z

dz

A

z

0Adcdz

=

A g A gt dt t

AeA

z dz

AeA

z

Accumulation C A dz C A dz

dCIn D A dtdzdCOut D A dtdz

Generated r Adz dt

+

+

( ) Ap A eA

CC D rt z zε∂ ∂ ∂⎛ ⎞= −⎜ ⎟∂ ∂ ∂⎝ ⎠

Page 12: Hetero Reactions

Concentration profiles

Page 13: Hetero Reactions

Effectiveness factor

Page 14: Hetero Reactions

Effect of geometry

Page 15: Hetero Reactions

Nonlinear kinetics

Page 16: Hetero Reactions

Falsification of the kinetics

Page 17: Hetero Reactions

Falsification of the kinetics

Page 18: Hetero Reactions

Multiple reactions

Page 19: Hetero Reactions

Nonisothermal pellet

Page 20: Hetero Reactions

Nonisothermal pellet

0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

rate

concentration

β= -0.6

0.0 0.2 0.4 0.6 0.8 1.0020406080100120140

rate

concentration

β= 0.6

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

rate

concentration

β=0

0.0 0.2 0.4 0.6 0.8 1.00.00.51.01.52.02.53.03.54.0

rate

concentration

β=0.2

Page 21: Hetero Reactions

External and internal energy transfer limitations

Page 22: Hetero Reactions

Multiple steady states and hystersis

1.0 1.2 1.4 1.6

0

50

100

150

200

250

300

G(T

* )/(T

* -1)

Temperature

β= 0.6

Page 23: Hetero Reactions

Gas-solid noncatalytic reactions

Page 24: Hetero Reactions

Gas-solid noncatalytic reactions

Page 25: Hetero Reactions

Gas-solid noncatalytic reactions

Page 26: Hetero Reactions

Shrinking particle model

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 Diffusion Control Stokes regime Turbulent regimeReaction Control

Rad

ius

Time

Page 27: Hetero Reactions

Shrinking unreacted core model

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 Diffusion Control Gas film AshReaction Control

Rad

ius

Time

Page 28: Hetero Reactions

Burning of coke from alumina-silica catalyst

Page 29: Hetero Reactions

Burning of coke from alumina-silica catalyst

Page 30: Hetero Reactions

Burning of coke

( ) ( ) ( )2 2 1

3 3

1 1 1 1

1 3 1 2 1 1 13 6

s s s

b g b e b

R R Rt X X X XC k C D kCρ ρ ρ⎡ ⎤ ⎡ ⎤= + − − + − + − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Page 31: Hetero Reactions

Time required for burning of coke

Page 32: Hetero Reactions

Gas-solid reaction: General Model – f = 1

Page 33: Hetero Reactions

Gas-solid reaction: General Model – f = 70

Page 34: Hetero Reactions

Gas-liquid reactions

Ø  gas purification processes q  CO2 removal from synthesis gas by aqueous

solution of hot potassium carbonate, ethanolamines

q  Removal of H2S by ethanolamines or sodium hydroxide

Ø  production processes q  Air oxidation of aldehydes to acids q  Oxidation of cyclohexane to adipic acid q  chlorination of benzene q  Nitric acid, sulphuric acid

Page 35: Hetero Reactions

Examples

Page 36: Hetero Reactions

Two-film model

Gas Liquid

Boundarylayers

Pha

se

inte

rface

Bulk phase

Bulk phase

A

CAb

pAb CAi

pAi

• masstransfer localised in surfacefilms

• CAi&pAi at equilibrium

• continuity of interfacial flux

•  no reaction const. slope

L G

Page 37: Hetero Reactions

Slow reaction

Gas

Boundarylayers

Pha

se

inte

rface

Bulk phase

Bulk phase

A pAb

CAi

G

L

CAb

CBb

Page 38: Hetero Reactions

Moderate reaction

Gas Liquid

A

CA0

pA0

CA*

pA*

CB0

A(g) + B(aq) C(aq) L

Page 39: Hetero Reactions

Fast reaction

Gas Liquid

A

CA0=0

pA0

CA*

pA*

CB0

A(g) + B(aq) C(aq)

L

Page 40: Hetero Reactions

Fast reaction

Page 41: Hetero Reactions

Very Fast reaction

Gas Liquid

A pA0

CA*

pA*

CB0

A(g) + B(aq) C(aq)

Rea

ctio

n fr

ont

L

R

Page 42: Hetero Reactions

Instantaneous reaction

Gas Liquid

A pA0

CA*

pA*

CB0

A(g) + B(aq) C(aq)

Reaction front = Phase interface

L

G