herc seminar 25.10.2007, mari vanhatalo in collaboration with samu mäntyniemi

Download HERC Seminar 25.10.2007,  Mari Vanhatalo  In collaboration with Samu Mäntyniemi

Post on 21-Jan-2016

20 views

Category:

Documents

0 download

Embed Size (px)

DESCRIPTION

HERC Seminar 25.10.2007, Mari Vanhatalo In collaboration with Samu Mäntyniemi Department of Biological and Environmental Sciences University of Helsinki mari.vanhatalo@helsinki.fi Fisheries Environmental and management group http://www.helsinki.fi/science/fem/. - PowerPoint PPT Presentation

TRANSCRIPT

  • Multidisciplinary evaluation of an environmentally driven health risk: the case study of herring and dioxin(EVAHER)

    HERC Seminar 25.10.2007, Mari Vanhatalo In collaboration with Samu Mntyniemi

    Department of Biological and Environmental SciencesUniversity of Helsinkimari.vanhatalo@helsinki.fiFisheries Environmental and management grouphttp://www.helsinki.fi/science/fem/

  • 25102007*ContentBackground Objectives and aims of the study Key personnel and participating institutes Methods Progress of the study and current resultsPublication planResults Relevance of the study in environmental research and solving environmental problems

  • BackgroundDioxins bioaccumulate in humans and wildlife due to their lipophilic properties are supertoxinsare merely environmental toxins ( .. a little amount as by-product of industry)For humans a major source of dioxin is food specifically through the consumption of fish, meat, and milk productsHerring is the most important species of the commercial fishery of Finland and the key species in the marine ecosystem of the northern Baltic Sea

  • ..Dioxin may cause disturbances in humans Trade-off between cost and benefits of eating fishSeveral causal dependencies behind the dioxin problem are highly uncertain

  • 25102007*.. diluted by growth but persists at noticeably elevated levels even to adulthood ..

    M.Vanhatalo

  • 25102007*Objectives and aims of the EVAHER study1) to evaluate the uncertainty related to threshold values of dioxin 2) to develop risk analysis models to assess current risks caused by herring consumption3) to evaluate the relative impacts of alternative ways to manage the health risk caused by herring consumption 4) to educate one scientist to Bayesian analysis and to the modeling of links between ecosystem health and human health.

  • Personnel and institutes

    Sakari Kuikka, coordinator (Professor, Fisheries Science, UHel)Mari Vanhatalo, PhD student (Aquatic Science, UHel) Samu Mntyniemi, PhD (biometry, Uhel)Other researchers : Mr. Anssi Ahvonen, LicPhil, Mr. Jukka Pnni, MSc and Mr. Pekka Vuorinen, PhD (Finnish Game and Fisheries Research Institute), Mr. Timo Assmuth, PhD and Mr. Heikki Peltonen PhD (Finnish Environmental Institute) Mr Jouni Tuomisto. PhD, Docent (National Public Health Institute, Kuopio).

  • Methods

    Bayesian approachEnables researcher to quantitatively integrate interpretation of data with expert knowledge learning processBayesian probability is a formalism of knowledge that allows us to reason under conditions of uncertainty Knowledge is combined and updated by using the rules of probability calculus

  • 25102007*Why Bayesian approach: The importance of assessing the uncertainty

  • Influence diagram/mind map/probability model

  • Publication plan

    The first analysis has been published (Spring 2007) in AmbioHuman Dietary Intake of Organochlorines from Baltic Herring: Implications of Individual Fish Variability and Fisheries Management. Ambio, Vol.36, No. 2/3Next tasks:Would a maximum size for herring in the human diet decrease the health risks ? Paper 3) Variability of herring consumption among consumers (and variability of exposure from other sources?)

  • 25102007*Would a maximum size for herring in the human diet decrease the health risks? & Human Dietary Intake of Organochlorines from Baltic Herring: Implications of Individual Fish Variability and Fisheries Management. Recommendation (Finnish Food Safety Agency): > 17cm , 1-2 times per month

    Consumers cannot choose size-selectively herring individuals nowadays, because a major part of herring is consumed in forms that obscure the original size.

    What would be the risk from intake of smaller herring, length 17cm (0-30g)?

  • EU SCF limit for all foodstuff of WHOtotal-TEq 840 pg wk-1 and limit of WHOtotal-TEq originating from herring is 275 pg WHOtotal-TEq wk-1

    Results from first analysis (Kiljunen et al. 2007) show that regulating the fishing is a far less effective way to decrease the risk than regulating the consumption of herring

    Individual variability in dioxin content of herring

  • 25102007*Materials, data90 herring individuals were collected from the Bothnian Sea, northern Baltic, in June 2002. (Parmanne et al.)Human herring consumption frequencies were obtained from the survey of the Finnish National Health Institute, (J.Tuomisto et al) consumption classes 1,,5Classes are: 1, 2, 4, 8 or 20 times herring per monthThe relative frequencies of age groups in catch in 2002 were calculated from herring population estimates provided by the Finnish Game and Fisheries Research Institute. (Jukka Pnni)

  • 25102007* Relative probability distribution of whole market herring WHO_total_TEq consentrations (pg g-1) estimated for present day (status quo 2002) and future fishing scenarios. Kiljunen et al. 2007, Ambio

  • 25102007*Results

    WHO-TEQtotal intake in decade in four main herring consumptions classes

    ii) status quoii) status quoIi) status quoi) small herring

    Chart4

    0.52135721110.52135721110.3920832590.521357211100000

    00000

    00000

    00000

    00000

    00000

    0.00000002080000

    0.00047892310000

    0.07835578320000

    0.52135721110000

    0.35930212550000

    0.03951728120000

    0.0009810270.0000000056000

    0.00000760410.0000029001000

    0.00000002410.000286454000

    00.0073647042000

    00.0625549382000

    00.2103690572000

    00.3223457579000

    00.2519187183000

    00.1102473087000

    00.0292369101000

    00.00502593000

    00.0005933478000

    00.00005055430.000000002600

    00.00000324420.000000085300

    00.00000016270.00000171500

    00.00000000660.000022224700

    00.00000000020.000193756400

    000.001179855100

    000.005186912600

    000.016950963500

    000.042263853300

    000.082281694900

    000.127707854200

    000.160997850300

    000.167656230300

    000.146427647500

    000.108746780400

    000.069540157400

    000.038728205200

    000.018980216700

    000.00826372400

    000.003224180500

    000.00113627800

    000.000364368100

    000.000107028300

    000.00002897610.00000000020.0000000002

    000.00000727170.00000000150.0000000015

    000.00000170050.00000000950.0000000095

    000.00000037230.00000005220.0000000522

    000.00000007670.00000025130.0000002513

    000.00000001490.00000107490.0000010749

    000.00000000280.0000041060.000004106

    000.00000000050.00001408960.0000140896

    000.00000000010.0000436670.000043667

    0000.00012285140.0001228514

    0000.00031523580.0003152358

    0000.00074105650.0007410565

    0000.00160266450.0016026645

    0000.00320122830.0032012283

    0000.0059276270.005927627

    0000.010210570.01021057

    0000.01641544220.0164154422

    0000.02470797450.0247079745

    0000.03492026590.0349202659

    0000.04647058180.0464705818

    0000.05838190930.0583819093

    0000.06941557470.0694155747

    0000.07829538450.0782953845

    0000.08396245620.0839624562

    0000.08578735970.0857873597

    0000.08368036240.0836803624

    0000.07807555640.0780755564

    0000.06980492840.0698049284

    0000.05990818610.0599081861

    0000.04943433610.0494343361

    0000.03928194090.0392819409

    0000.03010412220.0301041222

    0000.02228150940.0222815094

    0000.01594913360.0159491336

    0000.01105515180.0110551518

    0000.0074295630.007429563

    0000.00484668180.0048466818

    0000.00307253920.0030725392

    0000.00189491390.0018949139

    0000.00113806680.0011380668

    0000.0006662850.000666285

    0000.00038060610.0003806061

    0000.00021232790.0002123279

    0000.00011577890.0001157789

    0000.00006175940.0000617594

    0000.00003225320.0000322532

    0000.00001650330.0000165033

    0000.00000827970.0000082797

    0000.00000407570.0000040757

    0000.00000196990.0000019699

    0000.00000093540.0000009354

    0000.00000043670.0000004367

    0000.00000020050.0000002005

    0000.00000009060.0000000906

    275

    840

    C1

    C2

    C3

    C4

    C5

    pohja

    MeanSdMcerror2.50%50%97.50%

    Min0DFrom WinBUGS10.087.0420.032482.3428.25728.655000

    Max60000Fitted10.087.0422.39982362718.25728.4096082017

    median8.2570.60.0000160010.000016001Ratio111.024689849310.9916093613

    sd7.0421.20.00110931250.0010933116

    mean10.081.80.00784264430.0067333318

    M2.11106132542.40.02500681370.0171641693

    S0.63045346230.05414727560.029140462

    3.60.09396710020.0398198246

    4.20.14181346760.0478463674

    P(D>275)0.00000001344.80.19478287310.0529694055

    P(D>840)05.40.25028841490.0555055417

    P(D>8pg)0.520000179160.3062655480.0559771332

    2.50%2.39982362716.60.3611874410.0549218929

    97.50%28.40960820177.20.4139979320.052810491

    7.80.46401959270.0500216607

    8.40.51086383750.0468442449

    90.55435366250.0434898249

    9.60.59446159610.0401079337

    10.20.63126192850.0368003323

    10.80.6648950090.0336330805

    11.40.69554119070.0306461817

    120.72340221680.02786102612750.0559771332

    12.60.74868821490.02528599818400.0559771332

    13.20.77160884150.02292062668

    13.80.79236745280.0207586113

    14.40.81115745180.018789999

    150.828160180.0170027282

    15.60.84354388690.0153837069

    16.20.85746343780.0139195508

    16.80.87006051380.012597076

    17.40.8814641290.0114036152

    180.89179133880.0103272098

    18.60.90114805240.0093567136

    19.20.90962988980.0084818374

    19.80.91732304130.0076931516

    20.40.92430510450.0069820631

    210.93064587990.0063407754

    21.60.93640811780.005762238

    22.20.94164821010.0