gsm, gprs and edge performance: evolution towards … fileevolution towards 3g/umts second edition...

15
Evolution Towards 3G/UMTS Second Edition GSM, GPRS Performance EDGE AND Edited by Timo Halonen Nokia Javier Romero and Juan Melero TarTec

Upload: others

Post on 31-Aug-2019

22 views

Category:

Documents


0 download

TRANSCRIPT

  • Evolution Towards 3G/UMTS

    Second Edition

    GSM, GPRS

    PerformanceEDGEAND

    Edited by

    Timo HalonenNokia

    Javier Romero and Juan MeleroTarTec

    Innodata0470866950.jpg
  • GSM, GPRS

    PerformanceEDGEAND

  • Evolution Towards 3G/UMTS

    Second Edition

    GSM, GPRS

    PerformanceEDGEAND

    Edited by

    Timo HalonenNokia

    Javier Romero and Juan MeleroTarTec

  • Copyright 2003 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,West Sussex PO19 8SQ, England

    Telephone (+44) 1243 779777Email (for orders and customer service enquiries): [email protected] our Home Page on www.wileyeurope.com or www.wiley.com

    All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system ortransmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning orotherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms ofa licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP,UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressedto the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, WestSussex PO19 8SQ, England, or emailed to [email protected], or faxed to (+44) 1243 770620.This publication is designed to provide accurate and authoritative information in regard to the subjectmatter covered. It is sold on the understanding that the Publisher is not engaged in renderingprofessional services. If professional advice or other expert assistance is required, the services of acompetent professional should be sought.

    Other Wiley Editorial Offices

    John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

    Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

    Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

    John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

    John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

    John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

    Wiley also publishes its books in a variety of electronic formats. Some content that appearsin print may not be available in electronic books.

    Library of Congress Cataloging-in-Publication Data

    GSM, GPRS, and edge performance : evolution towards 3G/UMTS / edited by TimoHalonen, Javier Romero, Juan Melero.2nd ed.

    p. cm.Includes bibliographical references and index.ISBN 0-470-86694-21. Global system for mobile communications. I. Halonen, Timo, II. Romero, Javier

    (Romero Garca) III. Melero, Juan.

    TK5103.483.G753 2003621.38456dc22

    2003057593

    British Library Cataloguing in Publication Data

    A catalogue record for this book is available from the British Library

    ISBN 0-470-86694-2

    Typeset in 10/12pt Times by Laserwords Private Limited, Chennai, IndiaPrinted and bound in Great Britain by TJ International, Padstow, CornwallThis book is printed on acid-free paper responsibly manufactured from sustainable forestryin which at least two trees are planted for each one used for paper production.

    http://www.wileyeurope.comhttp://www.wiley.com
  • Contents

    Acknowledgements xvii

    Foreword xix

    Introduction xxv

    Abbreviations xxix

    Part 1 GERAN Evolution 1

    1 GSM/EDGE Standards Evolution (up to Rel4) 3

    Markus Hakaste, Eero Nikula and Shkumbin Hamiti1.1 Standardisation of GSMPhased Approach 4

    1.1.1 GSM/TDMA Convergence through EDGE 51.1.2 GERAN Standardisation in 3GPP 6

    1.2 Circuit-switched Services in GSM 81.2.1 Adaptive Multi-rate Codec (AMR) 91.2.2 High Speech Circuit-switched Data (HSCSD) 11

    1.3 Location Services 131.3.1 LCS Standardisation Process 13

    1.4 General Packet Radio System (GPRS) 141.4.1 Introduction of GPRS (Rel97) 141.4.2 GPRS Network Architecture 151.4.3 GPRS Interfaces and Reference Points 201.4.4 GPRS Protocol Architecture 221.4.5 Mobility Management 251.4.6 PDP Context Functions and Addresses 271.4.7 Security 281.4.8 Location Management 281.4.9 GPRS Radio Interface 28

    1.5 EDGE Rel99 471.5.1 8-PSK Modulation in GSM/EDGE Standard 471.5.2 Enhanced General Packet Radio Service (EGPRS) 491.5.3 Enhanced Circuit-switched Data (ECSD) 51

  • vi Contents

    1.5.4 Class A Dual Transfer Mode (DTM) 531.5.5 EDGE Compact 541.5.6 GPRS and EGPRS Enhancements in Rel4 54

    References 55

    2 Evolution of GERAN Standardisation (Rel5, Rel6 and beyond) 57

    Eero Nikula, Shkumbin Hamiti, Markus Hakaste and Benoist Sebire2.1 GERAN Rel5 Features 58

    2.1.1 Iu Interface for GERAN and the New Functional Split 592.1.2 Header Adaptation of the IP Data Streams 612.1.3 Speech Capacity and Quality Enhancements 612.1.4 Location Service Enhancements for Gb and Iu Interfaces 622.1.5 Inter-BSC and BSC/RNC NACC (Network-assisted Cell Change) 632.1.6 High Multi-slot Classes for Type 1 Mobiles 64

    2.2 GERAN Architecture 642.2.1 General 642.2.2 Architecture and Interfaces 652.2.3 Radio Access Network Interfaces 69

    2.3 GERAN Rel6 Features 812.3.1 Flexible Layer One 822.3.2 Single Antenna Interference Cancellation (SAIC) 862.3.3 Multimedia Broadcast Multicast Service (MBMS) in GERAN 872.3.4 Enhancement of Streaming QoS Class Services in GERAN A/Gb

    Mode 88References 88

    3 GERAN QoS Evolution Towards UMTS 91

    Erkka Ala-Tauriala, Renaud Cuny, Gerardo Gomez and Hector Montes3.1 Mobile Network as a Data Transport Media for IP-based Services 923.2 Example of IP-based Applications Using Mobile Network as Data Bearer 95

    3.2.1 WAP Browsing 963.2.2 Multimedia Messaging Service (MMS) 963.2.3 Audio/Video Streaming 963.2.4 IMS Services 98

    3.3 End-to-end QoS in the 3GPP QoS Architecture 993.4 PDP-context QoS Parameter Negotiation 101

    3.4.1 QoS Authorisation for IMS and Non-IMS Services with PDF 1053.5 Negotiated PDP-context QoS Enforcement in GERAN (and UTRAN) 106

    3.5.1 Control Plane QoS Mechanisms 1073.5.2 User Plane QoS Mechanisms 112

    3.6 End-to-end QoS Management 1153.6.1 Example of Service Activation Procedure 116

    References 117

  • Contents vii

    4 Mobile Station Location 119

    Mikko Weckstrom, Maurizio Spirito and Ville Ruutu4.1 Applications 1204.2 Location Architectures 1214.3 Location Methods 123

    4.3.1 Basic Service Level 1234.3.2 Enhanced Service Level 1264.3.3 Extended Service Level 131

    4.4 LCS Performance 1334.4.1 Basic Service Level Performance 1334.4.2 Enhanced Service Level Performance 137

    References 139

    Part 2 GSM, GPRS and EDGE Performance 141

    5 Basics of GSM Radio Communication and Spectral Efficiency 143

    Juan Melero, Jeroen Wigard, Timo Halonen and Javier Romero5.1 GSM Radio System Description 143

    5.1.1 Basic Channel Structure 1445.1.2 Transmitting and Receiving Chain 1465.1.3 Propagation Effects 1495.1.4 Basic TCH Link Performance with Frequency

    Hopping 1515.1.5 Discontinuous Transmission (DTX) 1555.1.6 Power Control 158

    5.2 Cellular Network Key Performance Indicators (KPIs) 1595.2.1 Speech KPIs 1595.2.2 Data KPIs 167

    5.3 Spectral Efficiency 1735.3.1 Effective Reuse 1745.3.2 Fractional Load 1755.3.3 Frequency Allocation Reuse 1755.3.4 Frequency Load 1765.3.5 Effective Frequency Load 1765.3.6 EFL for Mixed Voice and Data Services 178

    5.4 EFL Trial Methodology 1785.4.1 Network Performance Characterisation 1785.4.2 Trial Area Definition 1795.4.3 Methodology Validation 181

    5.5 Baseline Network Performance 182References 184

  • viii Contents

    6 GSM/AMR and SAIC Voice Performance 187

    Juan Melero, Ruben Cruz, Timo Halonen, Jari Hulkkonen, Jeroen Wigard,Angel-Luis Rivada, Martti Moisio, Tommy Bysted, Mark Austin, Laurie Bigler,Ayman Mostafa Rich Kobylinski and Benoist Sebire6.1 Basic GSM Performance 187

    6.1.1 Frequency Hopping 1886.1.2 Power Control 1936.1.3 Discontinuous Transmission 194

    6.2 Reuse Partitioning 1966.2.1 Basic Operation 1976.2.2 Reuse Partitioning and Frequency Hopping 198

    6.3 Trunking Gain Functionality 2006.3.1 Directed Retry (DR) 2006.3.2 Traffic Reason Handover (TRHO) 200

    6.4 Performance of GSM HR Speech Channels 2016.5 Adaptive Multi-rate (AMR) 203

    6.5.1 Introduction 2036.5.2 GSM AMR Link Level Performance 2046.5.3 GSM AMR System Level Performance 207

    6.6 Source Adaptation 2166.6.1 Introduction 2166.6.2 System Level Performance 217

    6.7 Rel5 EDGE AMR Enhancements 2196.7.1 Introduction 2196.7.2 EDGE NB-AMR Performance 2196.7.3 EPC Network Performance 2226.7.4 EDGE Wideband AMR Codecs 222

    6.8 Single Antenna Interference Cancellation (SAIC) 2246.8.1 SAIC Techniques Overview 2246.8.2 SAIC Link Performance and Conditioning Factors 2256.8.3 SAIC Network Performance 227

    6.9 Flexible Layer One 2296.9.1 FLO for Circuit-switched Voice 2296.9.2 FLO for VoIP 230

    References 232

    7 GPRS and EGPRS Performance 235

    Javier Romero, Julia Martinez, Sami Nikkarinen and Martti Moisio7.1 (E)GPRS Link Performance 236

    7.1.1 Introduction 2367.1.2 (E)GPRS Peak Throughputs 2377.1.3 RF Impairments 2377.1.4 Interference-limited Performance 238

    7.2 (E)GPRS Radio Resource Management 2457.2.1 Polling and Acknowledgement Strategy 245

  • Contents ix

    7.2.2 Link Adaptation Algorithms for (E)GPRS 2477.2.3 (E)GPRS Channel Allocation 2527.2.4 (E)GPRS Scheduler 2547.2.5 GPRS and EGPRS Multiplexing 2557.2.6 Power Control 256

    7.3 GPRS System Capacity 2587.3.1 Introduction 2587.3.2 Modeling Issues and Performance Measures 2587.3.3 GPRS Performance in a Separate Non-hopping Band 2617.3.4 GPRS Performance in a Separate Band with RF Hopping 2687.3.5 GPRS Spectrum Efficiency with QoS Criterion 2697.3.6 Reuse Partitioning Principle to Increase Spectral Efficiency

    and QoS Provisioning 2727.4 EGPRS System Capacity 272

    7.4.1 Introduction 2727.4.2 Modeling Issues and Performance Measures 2727.4.3 EGPRS Performance with Link Adaptation in a Separate

    Non-hopping Band 2727.4.4 EGPRS Performance in a Separate Band with RF Hopping 2767.4.5 Spectrum Efficiency with QoS Criterion 2787.4.6 Throughput Distribution Analysis 2817.4.7 Effect of Traffic Burstiness 2817.4.8 (E)GPRS Deployment 2847.4.9 Gradual EDGE Introduction 285

    7.5 Mixed Voice and Data Traffic Capacity 2877.5.1 Best-effort Data Traffic 2887.5.2 Relative Priorities 2897.5.3 Guaranteed Data Traffic 2897.5.4 Erlang Translation Factors 289

    7.6 (E)GPRS Performance Estimation Based on Real Network Measurements 2927.7 Application Performance Over (E)GPRS 2957.8 (E)GPRS Performance Measurements 297

    7.8.1 TSL Capacity Measurements 2977.8.2 EGPRS Performance Measurements 302

    References 305

    8 Packet Data Services and End-user Performance 307

    Gerardo Gomez, Rafael Sanchez, Renaud Cuny, Pekka Kuure and Tapio Paavonen8.1 Characterization of End-user Performance 307

    8.1.1 Data Link Effects 3088.1.2 Upper Layer Effects 3098.1.3 Performance Characterization Example. HTTP Performance

    in GPRS 3198.2 Packet Data Services 319

    8.2.1 Web Browsing 320

  • x Contents

    8.2.2 WAP Browsing 3228.2.3 Multimedia Messaging Service 3238.2.4 Streaming 3258.2.5 Gaming 3278.2.6 Push to Talk over Cellular (PoC) 327

    8.3 End-user Performance Analysis 3338.3.1 Web Browsing Performance 3348.3.2 WAP Browsing Performance 3368.3.3 Multimedia Messaging Service Performance 3388.3.4 Streaming Performance 3398.3.5 On-line Gaming Performance 3418.3.6 Push to Talk over Cellular Performance 342

    8.4 Methods to Optimize End-user Performance 342References 348

    9 Dynamic Frequency and Channel Allocation 351

    Matti Salmenkaita9.1 Air Interface Synchronisation 352

    9.1.1 GSM Synchronisation Basics 3529.1.2 Implementation of Synchronisation 3529.1.3 TDMA Frame Number Considerations 3539.1.4 Synchronisation Accuracy 353

    9.2 DFCA Concept 3589.2.1 CIR Estimation 3589.2.2 Combination with Frequency Hopping 3599.2.3 Radio Channel Selection 3599.2.4 Information Exchange 3619.2.5 DFCA Frequency Hopping Modes 362

    9.3 Application of DFCA for Circuit-switched (CS) Services 3639.3.1 Multitude of CS Services 3639.3.2 The DFCA Way 364

    9.4 DFCA Simulations with CS Services 3649.4.1 Performance in Ideal Network Layout 3649.4.2 Performance in Typical Network Layout 3719.4.3 Summary of the Simulation Results 375

    9.5 DFCA for Packet-switched (PS) Services 3759.6 Simulations of DFCA in Mixed CS and PS Services

    Environment 3779.7 Summary 378References 379

    10 Narrowband Deployment 381

    Angel-Luis Rivada, Timo Halonen, Jari Hulkkonen and Juan Melero10.1 What is a Narrowband Network? 381

    10.1.1 Frequency Spectrum Re-farming. Technology Migration 382

  • Contents xi

    10.1.2 Narrow Licensed Frequency Spectrum 38210.1.3 Microcell Deployment 383

    10.2 Performance of Narrowband Networks 38410.3 Allocation of BCCH and Hopping Bands 385

    10.3.1 BCCH Reuse for Narrowband Scenarios 38510.3.2 Narrowband BCCH and Hopping Deployment Strategies 38610.3.3 Need of Guardband 387

    10.4 BCCH Underlay 38910.4.1 Description of BCCH Underlay Concept 39010.4.2 BCCH Underlay Simulation and Trial Results 390

    10.5 Transmit Diversity Gains 39410.6 Common BCCH 39610.7 Other Strategies to Tighten BCCH Reuse 396References 396

    11 Link Performance Enhancements 397

    Riku Pirhonen, Matti Salmenkaita, Timo Kahkonen and Mikko Saily11.1 Basics of Radio Link Performance 397

    11.1.1 Minimum Performance Requirements 39811.1.2 Radio Link Power Budget 400

    11.2 Overview of Radio Link Enhancements 40311.2.1 Uplink Diversity Reception 40311.2.2 Uplink Interference Rejection 40411.2.3 Mast Head Amplifier 40511.2.4 Downlink Transmit Diversity 40611.2.5 Macrodiversity 410

    11.3 Coverage Improvements 41311.3.1 Coverage Efficiency 41311.3.2 Field Measurements 413

    11.4 Capacity Improvements 41611.4.1 Uplink Diversity Reception 41611.4.2 Downlink Transmit Diversity 41711.4.3 Macrodiversity 420

    References 423

    12 Control Channels Performance and Dimensioning 425

    Timo Kahkonen and Jorge Navarro12.1 Introduction to Control Channels 425

    12.1.1 Physical and Logical Channels 42512.1.2 Control Channel Configurations 42612.1.3 Usage of Control Channels 42812.1.4 Channel Coding and Interleaving 430

    12.2 Physical Layer Reliability 43112.2.1 Simulation Model 43112.2.2 Comparison of Channels 432

  • xii Contents

    12.3 Signalling Reliability and Delays 43412.3.1 Probabilistic Models 43512.3.2 SCH Information Broadcast 43612.3.3 System Information Broadcast 43712.3.4 RR Connection Establishment 43712.3.5 L2 Link Establishment 43912.3.6 L2 Link Failure 44012.3.7 Call Establishment and Location Update 44012.3.8 Handover and Channel Transfer 44112.3.9 Measurements and Power Control 44212.3.10 Radio Link Failure 44412.3.11 Conclusions 444

    12.4 Control Channels versus AMR TCH 44512.4.1 Physical Layer Comparison 44512.4.2 System Level Comparison 44612.4.3 Conclusions 449

    12.5 Signalling Capacity 45012.5.1 Signalling Capacity Criterion 45012.5.2 Signalling Capacity for GSM Voice 45012.5.3 Signalling Capacity for (E)GPRS 45812.5.4 (E)GPRS Traffic Assumptions 45812.5.5 Conclusions 465

    References 465

    13 Automation and Optimisation 467

    Volker Wille, Sagar Patel, Raquel Barco, Antti Kuurne, Salvador Pedraza, MatiasToril and Martti Partanen13.1 Introduction to Radio Network Optimisation 467

    13.1.1 Operational Efficiency 46813.1.2 Characteristics of Automation 46913.1.3 Areas of Automation 470

    13.2 Mobile Measurement-based Frequency Planning 47213.2.1 Outline of the Problem 47213.2.2 Traditional Frequency Planning 47413.2.3 The New Frequency Planning Concept 47713.2.4 Signal-level Reporting in GERAN 47813.2.5 Review of Interference Matrix Types 48213.2.6 MMFP Trial Results 483

    13.3 Automated Measurement-based Adjacency Planning 48413.3.1 Maintaining Adjacencies 48513.3.2 Solution Description 48613.3.3 A Description of the Adjacency Management Process 48613.3.4 Network Test Results 488

    13.4 Automated Parameter Optimisation 49113.4.1 Outline of Problem 491

  • Contents xiii

    13.4.2 Control Engineering for Automatic Parameter Optimisation inMobile Networks 492

    13.4.3 Applications of Radio Network Parameter Optimisation 49513.5 Automated Troubleshooting of Cellular Network Based on Bayesian

    Networks 50113.5.1 Introduction 50113.5.2 Troubleshooting Process 50213.5.3 Decision Support Systems 50313.5.4 Bayesian Network Models 50513.5.5 Knowledge Acquisition 50713.5.6 Troubleshooting Sequence 50813.5.7 Advanced Features 50913.5.8 Interaction with the Network Management System 509

    References 510

    Part 3 3G Evolution Paths 513

    14 IMT-2000 3G Radio Access Technologies 515

    Juan Melero, Antti Toskala, Petteri Hakalin and Antti Tolli14.1 IMT-2000 3G Technologies and Evolution Paths 51514.2 3G Technology Support of Licensed Frequency Bands 51714.3 3G Radio Access TechnologiesIntroduction 518

    14.3.1 WCDMA Basics 51814.3.2 Multi-carrier CDMA (cdma2000) Fundamentals 525

    14.4 3G Radio Access Technology (RAT) Performance Benchmark 52814.4.1 Voice Performance 52814.4.2 Data Performance 53114.4.3 Conclusions 535

    14.5 UMTS Multi-radio Integration 53614.5.1 Introduction 53614.5.2 UMTS Multi-radio Evolution 53614.5.3 Mechanisms for UMTS Multi-radio Integration 53814.5.4 Trunking Efficiency Benefits from Multi-radio Integration 53814.5.5 QoS-based Multi-radio Integration 53914.5.6 Architecture Integration 541

    References 541

    15 3G Technology Strategy and Evolution Paths 543

    Juan Melero15.1 3G Multimedia Services 543

    15.1.1 Operators Business Impact 54315.1.2 3G TechnologiesRequirements 545

    15.2 Globalisation 54615.2.1 Technology Globalisation 54615.2.2 Economies of Scale 547

    GSM, GPRS AND EDGE PerformanceContentsAcknowledgementsForewordIntroductionAbbreviationsPart 1 GERAN Evolution1 GSM/EDGE Standards Evolution (up to Rel4)1.1 Standardisation of GSMPhased Approach1.1.1 GSM/TDMA Convergence through EDGE1.1.2 GERAN Standardisation in 3GPP1.2 Circuit-switched Services in GSM1.2.1 Adaptive Multi-rate Codec (AMR)1.2.2 High Speech Circuit-switched Data (HSCSD)1.3 Location Services1.3.1 LCS Standardisation Process1.4 General Packet Radio System (GPRS)1.4.1 Introduction of GPRS (Rel97)1.4.2 GPRS Network Architecture1.4.3 GPRS Interfaces and Reference Points1.4.4 GPRS Protocol Architecture1.4.5 Mobility Management1.4.6 PDP Context Functions and Addresses1.4.7 Security1.4.8 Location Management1.4.9 GPRS Radio Interface1.5 EDGE Rel991.5.1 8-PSK Modulation in GSM/EDGE Standard1.5.2 Enhanced General Packet Radio Service (EGPRS)1.5.3 Enhanced Circuit-switched Data (ECSD)1.5.4 Class A Dual Transfer Mode (DTM)1.5.5 EDGE Compact1.5.6 GPRS and EGPRS Enhancements in Rel4References2 Evolution of GERAN Standardisation (Rel5, Rel6 and beyond)2.1 GERAN Rel5 Features2.1.1 Iu Interface for GERAN and the New Functional Split2.1.2 Header Adaptation of the IP Data Streams2.1.3 Speech Capacity and Quality Enhancements2.1.4 Location Service Enhancements for Gb and Iu Interfaces2.1.5 Inter-BSC and BSC/RNC NACC (Network-assisted Cell Change)2.1.6 High Multi-slot Classes for Type 1 Mobiles2.2 GERAN Architecture2.2.1 General2.2.2 Architecture and Interfaces2.2.3 Radio Access Network Interfaces2.3 GERAN Rel6 Features2.3.1 Flexible Layer One2.3.2 Single Antenna Interference Cancellation (SAIC)2.3.3 Multimedia Broadcast Multicast Service (MBMS) in GERAN2.3.4 Enhancement of Streaming QoS Class Services in GERAN A/Gb ModeReferences3 GERAN QoS Evolution Towards UMTS3.1 Mobile Network as a Data Transport Media for IP-based Services3.2 Example of IP-based Applications Using Mobile Network as Data Bearer3.2.1 WAP Browsing3.2.2 Multimedia Messaging Service (MMS)3.2.3 Audio/Video Streaming3.2.4 IMS Services3.3 End-to-end QoS in the 3GPP QoS Architecture3.4 PDP-context QoS Parameter Negotiation3.4.1 QoS Authorisation for IMS and Non-IMS Services with PDF3.5 Negotiated PDP-context QoS Enforcement in GERAN (and UTRAN)3.5.1 Control Plane QoS Mechanisms3.5.2 User Plane QoS Mechanisms3.6 End-to-end QoS Management3.6.1 Example of Service Activation ProcedureReferences4 Mobile Station Location4.1 Applications4.2 Location Architectures4.3 Location Methods4.3.1 Basic Service Level4.3.2 Enhanced Service Level4.3.3 Extended Service Level4.4 LCS Performance4.4.1 Basic Service Level Performance4.4.2 Enhanced Service Level PerformanceReferencesPart 2 GSM, GPRS and EDGE Performance5 Basics of GSM Radio Communication and Spectral Efficiency5.1 GSM Radio System Description5.1.1 Basic Channel Structure5.1.2 Transmitting and Receiving Chain5.1.3 Propagation Effects5.1.4 Basic TCH Link Performance with Frequency Hopping5.1.5 Discontinuous Transmission (DTX)5.1.6 Power Control5.2 Cellular Network Key Performance Indicators (KPIs)5.2.1 Speech KPIs5.2.2 Data KPIs5.3 Spectral Efficiency5.3.1 Effective Reuse5.3.2 Fractional Load5.3.3 Frequency Allocation Reuse5.3.4 Frequency Load5.3.5 Effective Frequency Load5.3.6 EFL for Mixed Voice and Data Services5.4 EFL Trial Methodology5.4.1 Network Performance Characterisation5.4.2 Trial Area Definition5.4.3 Methodology Validation5.5 Baseline Network PerformanceReferences6 GSM/AMR and SAIC Voice Performance6.1 Basic GSM Performance6.1.1 Frequency Hopping6.1.2 Power Control6.1.3 Discontinuous Transmission6.2 Reuse Partitioning6.2.1 Basic Operation6.2.2 Reuse Partitioning and Frequency Hopping6.3 Trunking Gain Functionality6.3.1 Directed Retry (DR)6.3.2 Traffic Reason Handover (TRHO)6.4 Performance of GSM HR Speech Channels6.5 Adaptive Multi-rate (AMR)6.5.1 Introduction6.5.2 GSM AMR Link Level Performance6.5.3 GSM AMR System Level Performance6.6 Source Adaptation6.6.1 Introduction6.6.2 System Level Performance6.7 Rel5 EDGE AMR Enhancements6.7.1 Introduction6.7.2 EDGE NB-AMR Performance6.7.3 EPC Network Performance6.7.4 EDGE Wideband AMR Codecs6.8 Single Antenna Interference Cancellation (SAIC)6.8.1 SAIC Techniques Overview6.8.2 SAIC Link Performance and Conditioning Factors6.8.3 SAIC Network Performance6.9 Flexible Layer One6.9.1 FLO for Circuit-switched Voice6.9.2 FLO for VoIPReferences7 GPRS and EGPRS Performance7.1 (E)GPRS Link Performance7.1.1 Introduction7.1.2 (E)GPRS Peak Throughputs7.1.3 RF Impairments7.1.4 Interference-limited Performance7.2 (E)GPRS Radio Resource Management7.2.1 Polling and Acknowledgement Strategy7.2.2 Link Adaptation Algorithms for (E)GPRS7.2.3 (E)GPRS Channel Allocation7.2.4 (E)GPRS Scheduler7.2.5 GPRS and EGPRS Multiplexing7.2.6 Power Control7.3 GPRS System Capacity7.3.1 Introduction7.3.2 Modeling Issues and Performance Measures7.3.3 GPRS Performance in a Separate Non-hopping Band7.3.4 GPRS Performance in a Separate Band with RF Hopping7.3.5 GPRS Spectrum Efficiency with QoS Criterion7.3.6 Reuse Partitioning Principle to Increase Spectral Efficiency and QoS Provisioning7.4 EGPRS System Capacity7.4.1 Introduction7.4.2 Modeling Issues and Performance Measures7.4.3 EGPRS Performance with Link Adaptation in a Separate Non-hopping Band7.4.4 EGPRS Performance in a Separate Band with RF Hopping7.4.5 Spectrum Efficiency with QoS Criterion7.4.6 Throughput Distribution Analysis7.4.7 Effect of Traffic Burstiness7.4.8 (E)GPRS Deployment7.4.9 Gradual EDGE Introduction7.5 Mixed Voice and Data Traffic Capacity7.5.1 Best-effort Data Traffic7.5.2 Relative Priorities7.5.3 Guaranteed Data Traffic7.5.4 Erlang Translation Factors7.6 (E)GPRS Performance Estimation Based on Real Network Measurements7.7 Application Performance Over (E)GPRS7.8 (E)GPRS Performance Measurements7.8.1 TSL Capacity Measurements7.8.2 EGPRS Performance MeasurementsReferences8 Packet Data Services and End-user Performance8.1 Characterization of End-user Performance8.1.1 Data Link Effects8.1.2 Upper Layer Effects8.1.3 Performance Characterization Example. HTTP Performance in GPRS8.2 Packet Data Services8.2.1 Web Browsing8.2.2 WAP Browsing8.2.3 Multimedia Messaging Service8.2.4 Streaming8.2.5 Gaming8.2.6 Push to Talk over Cellular (PoC)8.3 End-user Performance Analysis8.3.1 Web Browsing Performance8.3.2 WAP Browsing Performance8.3.3 Multimedia Messaging Service Performance8.3.4 Streaming Performance8.3.5 On-line Gaming Performance8.3.6 Push to Talk over Cellular Performance8.4 Methods to Optimize End-user PerformanceReferences9 Dynamic Frequency and Channel Allocation9.1 Air Interface Synchronisation9.1.1 GSM Synchronisation Basics9.1.2 Implementation of Synchronisation9.1.3 TDMA Frame Number Considerations9.1.4 Synchronisation Accuracy9.2 DFCA Concept9.2.1 CIR Estimation9.2.2 Combination with Frequency Hopping9.2.3 Radio Channel Selection9.2.4 Information Exchange9.2.5 DFCA Frequency Hopping Modes9.3 Application of DFCA for Circuit-switched (CS) Services9.3.1 Multitude of CS Services9.3.2 The DFCA Way9.4 DFCA Simulations with CS Services9.4.1 Performance in Ideal Network Layout9.4.2 Performance in Typical Network Layout9.4.3 Summary of the Simulation Results9.5 DFCA for Packet-switched (PS) Services9.6 Simulations of DFCA in Mixed CS and PS Services Environment9.7 SummaryReferences10 Narrowband Deployment10.1 What is a Narrowband Network?10.1.1 Frequency Spectrum Re-farming. Technology Migration10.1.2 Narrow Licensed Frequency Spectrum10.1.3 Microcell Deployment10.2 Performance of Narrowband Networks10.3 Allocation of BCCH and Hopping Bands10.3.1 BCCH Reuse for Narrowband Scenarios10.3.2 Narrowband BCCH and Hopping Deployment Strategies10.3.3 Need of Guardband10.4 BCCH Underlay10.4.1 Description of BCCH Underlay Concept10.4.2 BCCH Underlay Simulation and Trial Results10.5 Transmit Diversity Gains10.6 Common BCCH10.7 Other Strategies to Tighten BCCH ReuseReferences11 Link Performance Enhancements11.1 Basics of Radio Link Performance11.1.1 Minimum Performance Requirements11.1.2 Radio Link Power Budget11.2 Overview of Radio Link Enhancements11.2.1 Uplink Diversity Reception11.2.2 Uplink Interference Rejection11.2.3 Mast Head Amplifier11.2.4 Downlink Transmit Diversity11.2.5 Macrodiversity11.3 Coverage Improvements11.3.1 Coverage Efficiency11.3.2 Field Measurements11.4 Capacity Improvements11.4.1 Uplink Diversity Reception11.4.2 Downlink Transmit Diversity11.4.3 MacrodiversityReferences12 Control Channels Performance and Dimensioning12.1 Introduction to Control Channels12.1.1 Physical and Logical Channels12.1.2 Control Channel Configurations12.1.3 Usage of Control Channels12.1.4 Channel Coding and Interleaving12.2 Physical Layer Reliability12.2.1 Simulation Model12.2.2 Comparison of Channels12.3 Signalling Reliability and Delays12.3.1 Probabilistic Models12.3.2 SCH Information Broadcast12.3.3 System Information Broadcast12.3.4 RR Connection Establishment12.3.5 L2 Link Establishment12.3.6 L2 Link Failure12.3.7 Call Establishment and Location Update12.3.8 Handover and Channel Transfer12.3.9 Measurements and Power Control12.3.10 Radio Link Failure12.3.11 Conclusions12.4 Control Channels versus AMR TCH12.4.1 Physical Layer Comparison12.4.2 System Level Comparison12.4.3 Conclusions12.5 Signalling Capacity12.5.1 Signalling Capacity Criterion12.5.2 Signalling Capacity for GSM Voice12.5.3 Signalling Capacity for (E)GPRS12.5.4 (E)GPRS Traffic Assumptions12.5.5 ConclusionsReferences13 Automation and Optimisation13.1 Introduction to Radio Network Optimisation13.1.1 Operational Efficiency13.1.2 Characteristics of Automation13.1.3 Areas of Automation13.2 Mobile Measurement-based Frequency Planning13.2.1 Outline of the Problem13.2.2 Traditional Frequency Planning13.2.3 The New Frequency Planning Concept13.2.4 Signal-level Reporting in GERAN13.2.5 Review of Interference Matrix Types13.2.6 MMFP Trial Results13.3 Automated Measurement-based Adjacency Planning13.3.1 Maintaining Adjacencies13.3.2 Solution Description13.3.3 A Description of the Adjacency Management Process13.3.4 Network Test Results13.4 Automated Parameter Optimisation13.4.1 Outline of Problem13.4.2 Control Engineering for Automatic Parameter Optimisation in Mobile Networks13.4.3 Applications of Radio Network Parameter Optimisation13.5 Automated Troubleshooting of Cellular Network Based on Bayesian Networks13.5.1 Introduction13.5.2 Troubleshooting Process13.5.3 Decision Support Systems13.5.4 Bayesian Network Models13.5.5 Knowledge Acquisition13.5.6 Troubleshooting Sequence13.5.7 Advanced Features13.5.8 Interaction with the Network Management SystemReferencesPart 3 3G Evolution Paths14 IMT-2000 3G Radio Access Technologies14.1 IMT-2000 3G Technologies and Evolution Paths14.2 3G Technology Support of Licensed Frequency Bands14.3 3G Radio Access TechnologiesIntroduction14.3.1 WCDMA Basics14.3.2 Multi-carrier CDMA (cdma2000) Fundamentals14.4 3G Radio Access Technology (RAT) Performance Benchmark14.4.1 Voice Performance14.4.2 Data Performance14.4.3 Conclusions14.5 UMTS Multi-radio Integration14.5.1 Introduction14.5.2 UMTS Multi-radio Evolution14.5.3 Mechanisms for UMTS Multi-radio Integration14.5.4 Trunking Efficiency Benefits from Multi-radio Integration14.5.5 QoS-based Multi-radio Integration14.5.6 Architecture IntegrationReferences15 3G Technology Strategy and Evolution Paths15.1 3G Multimedia Services15.1.1 Operators Business Impact15.1.2 3G TechnologiesRequirements15.2 Globalisation15.2.1 Technology Globalisation15.2.2 Economies of Scale15.3 3G Technology Evolution Paths. UMTS Multi-radio and cdma200015.3.1 From 2G to 3GReferencesAppendixesAppendix A MAIO Management LimitationsA.1 MAIO Management Limitations and PlanningA.2 MAIO Management Limitations for Different Effective Reuses and Antenna BeamwidthAppendix B Hardware Dimensioning StudiesB.1 Blocking Probability for Half- and Full-rate Speech ModesB.1.1 The Erlang-B FormulaB.1.2 Blocking Probability for HR/FR ScenarioB.1.3 Effective FactorB.2 (E)GPRS HW Dimensioning AnalysisB.2.1 Dedicated PS ResourcesB.2.2 Shared PS and CS ResourcesReferencesAppendix C Mapping Link Gain to Network Capacity GainC.1 IntroductionC.2 Theoretical AnalysisC.3 SimulationsC.3.1 BCCH Layer PerformanceC.3.2 Hopping LayerC.3.3 Effect of Power ControlC.4 Final Results and ConclusionsReferencesAppendix D Interference between GSM/EDGE and Other Cellular Radio TechnologiesD.1 IntroductionD.2 Interference MechanismsD.2.1 Adjacent Channel PowerD.2.2 Intermodulation Distortion (IMD)D.3 Coverage EffectsD.3.1 DownlinkD.3.2 UplinkD.4 The Interference from WCDMA to GSMD.5 Monte-Carlo Simulation Study (GSM/EDGE and IS-95)D.6 SummaryReferencesAppendix E Simulation ToolsE.1 IntroductionE.2 Static SimulationsE.3 Basic Principles of Dynamic SimulationE.4 Description of the Simulator and Basic Simulation Models Used in this BookE.4.1 Software and Programming IssuesE.4.2 Basic Functionality of the SimulatorE.4.3 Link-Level InterfaceE.5 Description of the Basic Cellular ModelsReferencesAppendix F Trial PartnersIndex