generalized bargmann-michel-telegdi equation @ osaka u. nov. 23 2013

36
Takeshi Fukuyama Osaka U. RCNP with Alexander Silenko (Belarus) Generalized Bargmann-Michel-Telegdi Equat ion @ Osaka U. Nov. 23 20 13

Upload: meli

Post on 12-Jan-2016

30 views

Category:

Documents


3 download

DESCRIPTION

Generalized Bargmann-Michel-Telegdi Equation @ Osaka U. Nov. 23 2013. Takeshi Fukuyama Osaka U. RCNP with Alexander Silenko (Belarus). Our target is to measure both aMDM and EDM of charged particle (especially ) in storage ring. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Generalized Bargmann-Michel-Telegdi Equation                     @ Osaka U. Nov. 23 2013

Takeshi Fukuyama

Osaka U. RCNP

with Alexander Silenko (Belarus)

Generalized Bargmann-Michel-Telegdi Equation @ Osaka U. Nov. 23 2013

Page 2: Generalized Bargmann-Michel-Telegdi Equation                     @ Osaka U. Nov. 23 2013

The aim of this talk is to write down equation for the classical spin vector in a rotating rest frame in which tha particle’s velocity is instaneously at rest.

Our target is to measure both aMDM and EDM of charged particle (especially ) in storage ring.

Page 3: Generalized Bargmann-Michel-Telegdi Equation                     @ Osaka U. Nov. 23 2013

Contents of my talk

1. Introduction

What is the implication of electric dipole moment (EDM) in BSM physics ?

2. EDMs of charged particles in storage

ring.

3. The derivation of generalized Thomas-Bargmann-Michael-Telegdi Eq.

4. Pitch corrections if we have time.

Page 4: Generalized Bargmann-Michel-Telegdi Equation                     @ Osaka U. Nov. 23 2013

Methodological uniqueness in general EDM searches.

Fundamental physics parameters (EDMs of elementary particles) are determined from atom and molecule spectroscopies with huge enhancement.

Therfore the collaboration over the wide range of particle physics, atomic and molecular physics is indispensable.

Experimental side

Fundamental breakthrough is possible by desktop experiments.

Theoretical side

Fukuyama review (2012)

Page 5: Generalized Bargmann-Michel-Telegdi Equation                     @ Osaka U. Nov. 23 2013

Searches for BSM physics (with muon).

Anomalous MDM/EDME821(BNL)

from YbF (Hinds et al. 2011)

(four loop)

Page 6: Generalized Bargmann-Michel-Telegdi Equation                     @ Osaka U. Nov. 23 2013

Probe laser

Photoelastic Modulator(PEM) Pumping laser

HeaterMagnetic shieldSolenoid coil

Page 7: Generalized Bargmann-Michel-Telegdi Equation                     @ Osaka U. Nov. 23 2013

7

Resonant Laser Ionization of Muonium (~106 +/s)

Graphite target (20 mm)

3 GeV proton beam ( 333 uA)

Surface muon beam (28 MeV/c, 1-2x108/s)

Muonium Production (300 K ~ 25 meV⇒2.3 keV/c)

Silicon Tracker

66 cm diameter

Super Precision Magnetic Field(3T, ~1ppm local precision)

Page 8: Generalized Bargmann-Michel-Telegdi Equation                     @ Osaka U. Nov. 23 2013

Expected time spectrum of e+ decay

8

Muon spin precesses with time. number of high energy e+ changes with time by the frequency :

BBa

m

e 2

e+ decay time (sec)

p>200 MeV/c

0.1ppm statistical uncertainty

Saito-Mibe  ( J-PARC )

Page 9: Generalized Bargmann-Michel-Telegdi Equation                     @ Osaka U. Nov. 23 2013

Generic new-physics dipole momentIf one assumes that both non-SM MDM (a

NP) and EDM (dµ)

are manifestations of the same new-physics object:

and

with D a general dipole operator (W. Marciano),

then the Brookhaven measurement can be interpreted as

i.e. either dµ is of order 10–22 e cm,

or the CP phase is strongly suppressed!J.L. Feng, K.T. Matchev, Y. ShadmiTheoretical Expectations for the Muon's Electric Dipole Moment,Nucl. Phys. B 613 (2001) 366

3.029.7 x

9Klaus Kirch (Nufact08)

Page 10: Generalized Bargmann-Michel-Telegdi Equation                     @ Osaka U. Nov. 23 2013

EDMs cover over huge range of physics and chemistry.

The targets are particles (quarks, leptons, neutron, protons), atoms (paramagnetic and diamagnetic atoms), molecules, ions, solid states etc.

1. Introduction

EDM is P-odd and T-odd, and, therefore CP-odd.

Page 11: Generalized Bargmann-Michel-Telegdi Equation                     @ Osaka U. Nov. 23 2013
Page 12: Generalized Bargmann-Michel-Telegdi Equation                     @ Osaka U. Nov. 23 2013

Let us start with non-relativistic case for MDM only

Page 13: Generalized Bargmann-Michel-Telegdi Equation                     @ Osaka U. Nov. 23 2013

On the other hand, the euation of motion of particles is

Page 14: Generalized Bargmann-Michel-Telegdi Equation                     @ Osaka U. Nov. 23 2013

Now let us consider the relativistic case.

Page 15: Generalized Bargmann-Michel-Telegdi Equation                     @ Osaka U. Nov. 23 2013

The relativistic equation of spin motion in electromagnetic field using this 4-pseudovector is given by

Page 16: Generalized Bargmann-Michel-Telegdi Equation                     @ Osaka U. Nov. 23 2013

In this frame, the equation of spin motion is

Comparing this equation with the previous Eq., we obtain

The value of results from the equation of motion

Page 17: Generalized Bargmann-Michel-Telegdi Equation                     @ Osaka U. Nov. 23 2013

Then

Thus we obtain

This is the Thomas-Bargmann-Michel-Telegdi (T-BMT) equation added by the EDM terms.

Page 18: Generalized Bargmann-Michel-Telegdi Equation                     @ Osaka U. Nov. 23 2013

The spatial part of this equation is presented by

with        .

Page 19: Generalized Bargmann-Michel-Telegdi Equation                     @ Osaka U. Nov. 23 2013

Tedious but simple calculations result in

Page 20: Generalized Bargmann-Michel-Telegdi Equation                     @ Osaka U. Nov. 23 2013
Page 21: Generalized Bargmann-Michel-Telegdi Equation                     @ Osaka U. Nov. 23 2013

One usually considers the spin motion relative to the beam direction. Let us introduce

Magic number was adopted at BNL

Measured oscilation is

Page 22: Generalized Bargmann-Michel-Telegdi Equation                     @ Osaka U. Nov. 23 2013

4. Pitch correction

The muon momentum is not exactly orthogonal to the external magnetic field , inducing coherent betatron oscillation.   (parallel: pitch correction, perpendicular: yaw correction)

Page 23: Generalized Bargmann-Michel-Telegdi Equation                     @ Osaka U. Nov. 23 2013

The orbit is stabilized in the z directin by

Page 24: Generalized Bargmann-Michel-Telegdi Equation                     @ Osaka U. Nov. 23 2013
Page 25: Generalized Bargmann-Michel-Telegdi Equation                     @ Osaka U. Nov. 23 2013

where

Page 26: Generalized Bargmann-Michel-Telegdi Equation                     @ Osaka U. Nov. 23 2013
Page 27: Generalized Bargmann-Michel-Telegdi Equation                     @ Osaka U. Nov. 23 2013

So

Page 28: Generalized Bargmann-Michel-Telegdi Equation                     @ Osaka U. Nov. 23 2013
Page 29: Generalized Bargmann-Michel-Telegdi Equation                     @ Osaka U. Nov. 23 2013

where

Page 30: Generalized Bargmann-Michel-Telegdi Equation                     @ Osaka U. Nov. 23 2013

where

Page 31: Generalized Bargmann-Michel-Telegdi Equation                     @ Osaka U. Nov. 23 2013

5. Summary

Page 32: Generalized Bargmann-Michel-Telegdi Equation                     @ Osaka U. Nov. 23 2013

Back Up

Page 33: Generalized Bargmann-Michel-Telegdi Equation                     @ Osaka U. Nov. 23 2013
Page 34: Generalized Bargmann-Michel-Telegdi Equation                     @ Osaka U. Nov. 23 2013

Muon storage magnet and detector

34

Cryogenics

e+ trackingdetector

29

00 m

m

Muon storage orbit

Iron yoke

Super co

nductin

g co

ils

666 mm

343434

μ decayvertex

Radial tracking vanes (Silicon strip)

Positron

trac

kp(e+) > 200 MeV/c

Page 35: Generalized Bargmann-Michel-Telegdi Equation                     @ Osaka U. Nov. 23 2013
Page 36: Generalized Bargmann-Michel-Telegdi Equation                     @ Osaka U. Nov. 23 2013

where