gaussian markov random fields · likelihood approximation various statistical or numerical...

37
Spatial GMRF Q Model INLA Extensions References Gaussian Markov Random Fields Johan Lindstr ¨ om 1 1 Centre for Mathematical Sciences Lund University Pan-American Advanced Study Institute uzios June 18, 2014 Johan Lindstr¨ om - [email protected] Gaussian Markov Random Fields 1/33

Upload: others

Post on 03-Feb-2020

17 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Gaussian Markov Random Fields · Likelihood approximation Various statistical or numerical approximation methods ... Gaussian Markov random fields (Rue and Held, 2005) Let the neighbours

Spatial GMRF Q Model INLA Extensions References

Gaussian Markov Random Fields

Johan Lindstrom1

1Centre for Mathematical SciencesLund University

Pan-American Advanced Study InstituteBuzios

June 18, 2014

Johan Lindstrom - [email protected] Gaussian Markov Random Fields 1/33

Page 2: Gaussian Markov Random Fields · Likelihood approximation Various statistical or numerical approximation methods ... Gaussian Markov random fields (Rue and Held, 2005) Let the neighbours

Spatial GMRF Q Model INLA Extensions References Interpolation Big N Alternatives

Spatial interpolation — Kriging

Given observations at some locations, Y(si), i = 1 . . .nwe want to make statements about the value at unobservedlocation(s), X(s).

In the simplest case we assume a Gaussian model for the data

[YX

]∼ N

([μy

μx

],

[Σyy Σyx

Σ⊤yx Σxx

]),

with some parametric form for the covariance matrix and mean

Y ∼ N (μ(θ),Σ(θ)) .

Johan Lindstrom - [email protected] Gaussian Markov Random Fields 2/33

Page 3: Gaussian Markov Random Fields · Likelihood approximation Various statistical or numerical approximation methods ... Gaussian Markov random fields (Rue and Held, 2005) Let the neighbours

Spatial GMRF Q Model INLA Extensions References Interpolation Big N Alternatives

The “Big N” problem

The log-likelihood becomes

l (θ|Y) = −1

2log |Σ(θ)| −

1

2

(Y − μ(θ)

)⊤

Σ(θ)−1(

Y − μ(θ)).

Given (estimated) parameters, predictions at the unobservedlocations are given by

E(

X∣∣∣Y, θ

)= μx +ΣxyΣ

−1yy (Y − μy).

The “Big N” problem

Given N observations:

◮ The covariance matrix has O(N2

)unique elements.

◮ Computations scale as O(N3

)(due to |Σ| and Σ−1).

Johan Lindstrom - [email protected] Gaussian Markov Random Fields 3/33

Page 4: Gaussian Markov Random Fields · Likelihood approximation Various statistical or numerical approximation methods ... Gaussian Markov random fields (Rue and Held, 2005) Let the neighbours

Spatial GMRF Q Model INLA Extensions References Interpolation Big N Alternatives

Getting around “Big N”

Spectral representation (Whittle, 1954; Fuentes, 2007)Uses discrete Fourier transforms; limited to regular lattices.

Covariance tapering (Furrer et al., 2006; Kaufman et al., 2008)Set small values in the covariance matrix to zeros.

Likelihood approximationVarious statistical or numerical approximation methods

◮ By sequential matrix approx. (Stein et al., 2004)

◮ Block composite likelihoods (Eidsvik et al., 2014)

◮ Krylov based numerical approx. (Stein et al., 2013; Auneet al., 2014)

Low rank approximationsExact computations on a simplified model of reduced rank/size

◮ Predictive processes (Banerjee et al., 2008; Eidsvik et al., 2012)

◮ Fixed rank kriging (Cressie and Johannesson, 2008)

◮ Process convolution or kernel methods (Higdon, 2001)

Johan Lindstrom - [email protected] Gaussian Markov Random Fields 4/33

Page 5: Gaussian Markov Random Fields · Likelihood approximation Various statistical or numerical approximation methods ... Gaussian Markov random fields (Rue and Held, 2005) Let the neighbours

Spatial GMRF Q Model INLA Extensions References Markov Precision Computations

Gaussian Markov random fields (Rue and Held, 2005)

Let the neighbours Ni to a point si be the points {sj, j ∈ Ni} thatare “close” to si.

Gaussian Markov random field (GMRF)

A Gaussian random field x ∼ N (μ,Σ) that satisfies

p(xi

∣∣{xj : j 6= i})= p

(xi

∣∣{xj : j ∈ Ni})

is a Gaussian Markov random field.

The simplest example of a GMRF is the AR(1)-process

xt = axt−1 + εt, εt ∼ N(0,σ2) and independent.

xt−2 xt−1 xt xt+1 xt+2

Nt

Johan Lindstrom - [email protected] Gaussian Markov Random Fields 5/33

Page 6: Gaussian Markov Random Fields · Likelihood approximation Various statistical or numerical approximation methods ... Gaussian Markov random fields (Rue and Held, 2005) Let the neighbours

Spatial GMRF Q Model INLA Extensions References Markov Precision Computations

Good neighbours

Johan Lindstrom - [email protected] Gaussian Markov Random Fields 6/33

Page 7: Gaussian Markov Random Fields · Likelihood approximation Various statistical or numerical approximation methods ... Gaussian Markov random fields (Rue and Held, 2005) Let the neighbours

Spatial GMRF Q Model INLA Extensions References Markov Precision Computations

Let me introduce: The precision matrix Q = S−1

Using the precision matrix the model becomes

X ∼ N(μ,Q−1

)cf. X ∼ N (μ,Σ)

With conditional expectation

E (X|Y) = μx − Q−1xx Qxy(Y − μy).

instead of

E (X|Y) = μx +ΣxyΣ−1yy (Y − μy).

Johan Lindstrom - [email protected] Gaussian Markov Random Fields 7/33

Page 8: Gaussian Markov Random Fields · Likelihood approximation Various statistical or numerical approximation methods ... Gaussian Markov random fields (Rue and Held, 2005) Let the neighbours

Spatial GMRF Q Model INLA Extensions References Markov Precision Computations

The conditional expectation for a single location is

E(xi

∣∣xj, j 6= i)= μi −

∑j 6=i Qij(xj − μj)

Qii

= μi −1

Qii

j∈Ni

Qij(xj − μj)+∑

j/∈{Ni,i}

Qij(xj − μj)

If Qij = 0 for all j /∈ Ni then

E(xi

∣∣xj, j 6= i)= E

(xi

∣∣xj, j ∈ Ni

).

The precision matrix is sparse

Elements in the precision matrix of a Gaussin Markov randomfield are non-zero only for neighbours and diagonal elements.

j /∈ {i,Ni} ⇐⇒ Qij = 0.

Johan Lindstrom - [email protected] Gaussian Markov Random Fields 8/33

Page 9: Gaussian Markov Random Fields · Likelihood approximation Various statistical or numerical approximation methods ... Gaussian Markov random fields (Rue and Held, 2005) Let the neighbours

Spatial GMRF Q Model INLA Extensions References Markov Precision Computations

Computational details

If Q is a sparse matrix then (under mild conditions) the Choleskyfactorisation Q = R⊤R will also be sparse.

◮ Simulation of X ∈ N(μ,Q−1

).

X = μ+ R−1E, E ∈ N (0, I)

◮ Conditional expectations

E (X|Y) = μx − R−1xx

(R−⊤

xx

(Qxy(Y − μy)

))

◮ Computing the determinant

1

2log |Q| =

1

2log

∣∣∣R⊤R∣∣∣ = log |R| =

i

log Rii

◮ Never compute R−1, use back substitution for triangularsystems instead.

Johan Lindstrom - [email protected] Gaussian Markov Random Fields 9/33

Page 10: Gaussian Markov Random Fields · Likelihood approximation Various statistical or numerical approximation methods ... Gaussian Markov random fields (Rue and Held, 2005) Let the neighbours

Spatial GMRF Q Model INLA Extensions References Matern SPDE Basis functions Lattice

How to create Q?

The Matern covariance family (Matern, 1960)

The covariance between two points at distance ‖h‖ is

r(‖h‖) =σ2

2n−1Γ(ν)(κ ‖h‖)n Kn(κ ‖h‖), h ∈ R

d

Fields with Matern covariances are solutions to a Stochastic PartialDifferential Equation (SPDE) (Whittle, 1954, 1963),

(κ2 −Δ

)a/2x(s) = W(s).

Here W(s) is white noise, Δ =∑

i∂2

∂s2i

, and α = ν+ d/2.

Johan Lindstrom - [email protected] Gaussian Markov Random Fields 10/33

Page 11: Gaussian Markov Random Fields · Likelihood approximation Various statistical or numerical approximation methods ... Gaussian Markov random fields (Rue and Held, 2005) Let the neighbours

Spatial GMRF Q Model INLA Extensions References Matern SPDE Basis functions Lattice

Does the Matern covariance produce Markov fields?

The Matern covariance has wave number spectrum

R(k) ∝1

(κ2 + ‖k‖2)a cf.

(κ2 −Δ

)a/2x(s) = W(s).

Spectral density for Markov fields

According to Rozanov (1977) a stationary field is Markov if andonly if the spectral density is a reciprocal of a polynomial.

For the SPDE this implies α ∈ Z (or ν ∈ Z for R2).

Johan Lindstrom - [email protected] Gaussian Markov Random Fields 11/33

Page 12: Gaussian Markov Random Fields · Likelihood approximation Various statistical or numerical approximation methods ... Gaussian Markov random fields (Rue and Held, 2005) Let the neighbours

Spatial GMRF Q Model INLA Extensions References Matern SPDE Basis functions Lattice

Basic idea

Construct a discrete approximation of the continious field usingbasis functions, {ψk}, and weights, {wk},

x(s) =∑

k

ψk(s)wk

Find the distribution of wk by solving(κ2 −Δ

)a/2x(s) = W(s)

Johan Lindstrom - [email protected] Gaussian Markov Random Fields 12/33

Page 13: Gaussian Markov Random Fields · Likelihood approximation Various statistical or numerical approximation methods ... Gaussian Markov random fields (Rue and Held, 2005) Let the neighbours

Spatial GMRF Q Model INLA Extensions References Matern SPDE Basis functions Lattice

Solving the SPDE

A stochastic weak solution to the SPDE is given by

[⟨φk,

(κ2 −Δ

)a/2x⟩]

k=1,...,n

D= [〈φk, W〉]k=1,...,n

for each set of test functions {φk}

Replacing x with∑

k ψkwk gives

[⟨φi,

(κ2 −Δ

)a/2ψj

⟩]i,j

wD= [〈φk, W〉]k

Study the case α = 2 and φi = ψi (Galerkin)

κ2

[⟨ψi, ψj

⟩]︸ ︷︷ ︸

C

+[⟨ψi, −Δψj

⟩]︸ ︷︷ ︸

G

w

D= [〈ψk, W〉]︸ ︷︷ ︸

N(0,C)

Johan Lindstrom - [email protected] Gaussian Markov Random Fields 13/33

Page 14: Gaussian Markov Random Fields · Likelihood approximation Various statistical or numerical approximation methods ... Gaussian Markov random fields (Rue and Held, 2005) Let the neighbours

Spatial GMRF Q Model INLA Extensions References Matern SPDE Basis functions Lattice

Solution to the SPDE

A weak solution to the SPDE

(κ2 −Δ

)x(s) = W(s).

is given by

x(s) =∑

k

ψk(s)wk where(κ2C + G

)w ∼ N (0,C)

The precision of the weights, w, is

V (w)−1= Q2 =

(κ2C + G

)⊤C−1

(κ2C + G

)

Q1 =κ2C + G

Q2 =(κ2C + G

)⊤C−1

(κ2C + G

)

Qa =(κ2C + G

)⊤C−1Qa−2C−1

(κ2C + G

), α = 3, 4, 5, . . .

Johan Lindstrom - [email protected] Gaussian Markov Random Fields 14/33

Page 15: Gaussian Markov Random Fields · Likelihood approximation Various statistical or numerical approximation methods ... Gaussian Markov random fields (Rue and Held, 2005) Let the neighbours

Spatial GMRF Q Model INLA Extensions References Matern SPDE Basis functions Lattice

What’s a good basis?

Several possible basis functions exist:

Harmonic functions gives a spectral representation (Thon et al.,2012; Sigrist et al., 2012).

Eigenfunctions of the covariance matrix give Karhunen-Loeve.

Piecewise linear basis gives (almost) a GMRF (Lindgren et al., 2011).

Waveletts also gives a GMRF (Bolin and Lindgren, 2013).

Johan Lindstrom - [email protected] Gaussian Markov Random Fields 15/33

Page 16: Gaussian Markov Random Fields · Likelihood approximation Various statistical or numerical approximation methods ... Gaussian Markov random fields (Rue and Held, 2005) Let the neighbours

Spatial GMRF Q Model INLA Extensions References Matern SPDE Basis functions Lattice

But it’s not a Markov field! — Yet

Using a piecewise linear basis only neighbouring basis functionsoverlap, so both

Gij =⟨ψi, −Δψj

⟩and Cij =

⟨ψi, ψj

are sparse. However, C−1 is not sparse.

GMRF approximation

To obtain sparse precision matrices we replace the C-matrix with

a diagonal matrix C with elements

C i,i =

∫ψi(s) ds

The resulting approximation error is small (Bolin and Lindgren,2013; Simpson et al., 2010)

Johan Lindstrom - [email protected] Gaussian Markov Random Fields 16/33

Page 17: Gaussian Markov Random Fields · Likelihood approximation Various statistical or numerical approximation methods ... Gaussian Markov random fields (Rue and Held, 2005) Let the neighbours

Spatial GMRF Q Model INLA Extensions References Matern SPDE Basis functions Lattice

Regular lattice in R2

Solving the SPDE gives a GMRF with precision elements

Order α = 1 (ν = 0):

κ2

1

+

−1−1 4 −1

−1

︸ ︷︷ ︸≈−D

Order α = 2 (ν = 1):

κ4

1

+ 2κ2

−1−1 4 −1

−1

︸ ︷︷ ︸≈−D +

12 −8 2

1 −8 20 −8 12 −8 2

1

︸ ︷︷ ︸≈D2

Johan Lindstrom - [email protected] Gaussian Markov Random Fields 17/33

Page 18: Gaussian Markov Random Fields · Likelihood approximation Various statistical or numerical approximation methods ... Gaussian Markov random fields (Rue and Held, 2005) Let the neighbours

Spatial GMRF Q Model INLA Extensions References Observations E(Y|X) Hierarchical Posterior

Observations— The A-matrix

The field is created as a weighted sum of basis functions.

x(s) =

N∑

k=1

ψk(s)wk,

The locations of the basis functions do not need to matchobservation locations.

Observations

y(s) = x(s)+ ε

=

k

ψk(s)wk + ε

We introduce a sparse matrix

Ai· =[ψ1(si) · · · ψN(si)

]

linking the field to theobservation.

Johan Lindstrom - [email protected] Gaussian Markov Random Fields 18/33

Page 19: Gaussian Markov Random Fields · Likelihood approximation Various statistical or numerical approximation methods ... Gaussian Markov random fields (Rue and Held, 2005) Let the neighbours

Spatial GMRF Q Model INLA Extensions References Observations E(Y|X) Hierarchical Posterior

Conditional expectation

Given a matrix A with rows

Ai· =[ψ1(si) · · · ψN(si)

]

we can write the observation equation on matrix form as

Y|w ∈ N(

Aw,Q−1e )w ∈ N

(μ,Q−1

)

Kriging with GMRF

E (w|y) = μ+ Q−1w|y A⊤Qe (y − Aμ)

V (w|y) = Q−1w|y =

(Q + A⊤QeA

)−1

Johan Lindstrom - [email protected] Gaussian Markov Random Fields 19/33

Page 20: Gaussian Markov Random Fields · Likelihood approximation Various statistical or numerical approximation methods ... Gaussian Markov random fields (Rue and Held, 2005) Let the neighbours

Spatial GMRF Q Model INLA Extensions References Observations E(Y|X) Hierarchical Posterior

Bayesian hierarchical modelling using GMRF

Data model, p (y|x, θ): Describing how observations arise assuming aknown latent field x.

Latent model, p (x|θ): Describing how the latent field behaves.

X = Aw + Bβ w ∼ N(

0,Q−1(θ))

Parameters, p (θ): Describing our, sometimes vauge, prior knowledgeof the parameters.

For INLA we require that

p (y|x, θ) =∏

i

p (yi|xi, θ)

Johan Lindstrom - [email protected] Gaussian Markov Random Fields 20/33

Page 21: Gaussian Markov Random Fields · Likelihood approximation Various statistical or numerical approximation methods ... Gaussian Markov random fields (Rue and Held, 2005) Let the neighbours

Spatial GMRF Q Model INLA Extensions References Observations E(Y|X) Hierarchical Posterior

Inference

Given a Bayesian hierarchical model we are interested in

Posteriors for the parameters

p (θ|y) ∝ p (y|θ) p (θ)

Posteriors for the latent field

p (x|y) ∝

∫p (x|y, θ) p (θ|y) dθ

Johan Lindstrom - [email protected] Gaussian Markov Random Fields 21/33

Page 22: Gaussian Markov Random Fields · Likelihood approximation Various statistical or numerical approximation methods ... Gaussian Markov random fields (Rue and Held, 2005) Let the neighbours

Spatial GMRF Q Model INLA Extensions References Observations E(Y|X) Hierarchical Posterior

Computing the posterior — A “trick”

Conditional distributions provide the equality

p (y|x, θ)p (x|θ) = p (y, x|θ) = p (x|y, θ)p (y|θ)

This gives

p (θ|y) ∝p (y|x, θ)p (x|θ)

p (x|y, θ)︸ ︷︷ ︸p(y|θ)

·p (θ) for any x.

For non-Gaussian observations we need a good approximation of

p (x|y, θ)

Johan Lindstrom - [email protected] Gaussian Markov Random Fields 22/33

Page 23: Gaussian Markov Random Fields · Likelihood approximation Various statistical or numerical approximation methods ... Gaussian Markov random fields (Rue and Held, 2005) Let the neighbours

Spatial GMRF Q Model INLA Extensions References Observations E(Y|X) Hierarchical Posterior

Approximating the posterior

For non-Gaussian observations we have that

log p (x|y, θ) = log p (y|x, θ)+ log p (x|θ)+ const.

Using a second order Taylor approximation of

f(x) = log p (y|x, θ) around x0

we can obtain a Gaussian approximation pG(x|y, θ), with

Ex0(x|y, θ) ≈

(Q − diag (f ′′(x0))

)−1(Qμ+ f ′(x0)− f ′′(x0)x0

)

Vx0(x|y, θ) ≈

(Q − diag (f ′′(x0))

)−1

Johan Lindstrom - [email protected] Gaussian Markov Random Fields 23/33

Page 24: Gaussian Markov Random Fields · Likelihood approximation Various statistical or numerical approximation methods ... Gaussian Markov random fields (Rue and Held, 2005) Let the neighbours

Spatial GMRF Q Model INLA Extensions References

Integrated Nested Laplace Approximation – INLA

To evaluate p (θ|y) using the Taylor/Laplace approximation do:

1. For a given θ find the mode

x0 = argmaxx

p (x|y, θ)

2. Compute the Taylor expansion of f(x) around x0

3. The approximation of p (θ|y) is

p (θ|y) ∝p (y|x0, θ) p (x0|θ) p (θ)

pG (x0|y, θ)

The (approximate) maximum likelihood estimate is

θML ≈ argmaxθ

p (θ|y)

Use numerical integration over θ to obtain posteriors for [x|y]

p (xi|y) =

∫p (xi|θ, y) p (θ|y) dθ ≈

k

pG (xi|θk, y) p (θk|y)

Johan Lindstrom - [email protected] Gaussian Markov Random Fields 24/33

Page 25: Gaussian Markov Random Fields · Likelihood approximation Various statistical or numerical approximation methods ... Gaussian Markov random fields (Rue and Held, 2005) Let the neighbours

Spatial GMRF Q Model INLA Extensions References

INLA (Rue et al., 2009)

◮ Posteriors computed include◮ p(θi|y)◮ p(θ|y)◮ p(xi|y)◮ Some linear combinations of the field.

◮ The full joint posterior p(x|y) is not computed.

◮ Errors due to the Taylor expansion and numerical integrationare usually smaller than the MCMC errors.

◮ R-package: http://www.r-inla.org

◮ The package is fast, but memory intensive for large problems.

◮ See also Lindgren and Rue (2013) for applications to theSPDE-model.

Johan Lindstrom - [email protected] Gaussian Markov Random Fields 25/33

Page 26: Gaussian Markov Random Fields · Likelihood approximation Various statistical or numerical approximation methods ... Gaussian Markov random fields (Rue and Held, 2005) Let the neighbours

Spatial GMRF Q Model INLA Extensions References Global Data General SPDEs

Global Temperature Data

January 2003 July 2003

Johan Lindstrom - [email protected] Gaussian Markov Random Fields 26/33

Page 27: Gaussian Markov Random Fields · Likelihood approximation Various statistical or numerical approximation methods ... Gaussian Markov random fields (Rue and Held, 2005) Let the neighbours

Spatial GMRF Q Model INLA Extensions References Global Data General SPDEs

Global Temperature Data

Johan Lindstrom - [email protected] Gaussian Markov Random Fields 27/33

Page 28: Gaussian Markov Random Fields · Likelihood approximation Various statistical or numerical approximation methods ... Gaussian Markov random fields (Rue and Held, 2005) Let the neighbours

Spatial GMRF Q Model INLA Extensions References Global Data General SPDEs

GMRFs based on SPDEs (Lindgren et al., 2011)

GMRF representations of SPDEs can be constructed forto oscillating, anisotropic, non-stationary, non-separablespatio-temporal, and multivariate fields on manifolds.

(κ2 −Δ)(τ x(s)) = W(s), s ∈ Rd

Johan Lindstrom - [email protected] Gaussian Markov Random Fields 28/33

Page 29: Gaussian Markov Random Fields · Likelihood approximation Various statistical or numerical approximation methods ... Gaussian Markov random fields (Rue and Held, 2005) Let the neighbours

Spatial GMRF Q Model INLA Extensions References Global Data General SPDEs

GMRFs based on SPDEs (Lindgren et al., 2011)

GMRF representations of SPDEs can be constructed forto oscillating, anisotropic, non-stationary, non-separablespatio-temporal, and multivariate fields on manifolds.

(κ2 −Δ)(τ x(s)) = W(s), s ∈ Ω

Johan Lindstrom - [email protected] Gaussian Markov Random Fields 28/33

Page 30: Gaussian Markov Random Fields · Likelihood approximation Various statistical or numerical approximation methods ... Gaussian Markov random fields (Rue and Held, 2005) Let the neighbours

Spatial GMRF Q Model INLA Extensions References Global Data General SPDEs

GMRFs based on SPDEs (Lindgren et al., 2011)

GMRF representations of SPDEs can be constructed forto oscillating, anisotropic, non-stationary, non-separablespatio-temporal, and multivariate fields on manifolds.

(κ2 eipθ −Δ)(τ x(s)) = W(s), s ∈ Ω

Johan Lindstrom - [email protected] Gaussian Markov Random Fields 28/33

Page 31: Gaussian Markov Random Fields · Likelihood approximation Various statistical or numerical approximation methods ... Gaussian Markov random fields (Rue and Held, 2005) Let the neighbours

Spatial GMRF Q Model INLA Extensions References Global Data General SPDEs

GMRFs based on SPDEs (Lindgren et al., 2011)

GMRF representations of SPDEs can be constructed forto oscillating, anisotropic, non-stationary, non-separablespatio-temporal, and multivariate fields on manifolds.

(κ2s +∇ · ms −∇ · Ms∇)(τsx(s)) = W(s), s ∈ Ω

Johan Lindstrom - [email protected] Gaussian Markov Random Fields 28/33

Page 32: Gaussian Markov Random Fields · Likelihood approximation Various statistical or numerical approximation methods ... Gaussian Markov random fields (Rue and Held, 2005) Let the neighbours

Spatial GMRF Q Model INLA Extensions References Global Data General SPDEs

GMRFs based on SPDEs (Lindgren et al., 2011)

GMRF representations of SPDEs can be constructed forto oscillating, anisotropic, non-stationary, non-separablespatio-temporal, and multivariate fields on manifolds.

(∂∂t

+ κ2s,t +∇ · ms,t −∇ · Ms,t∇

)(τs,tx(s, t)) = E(s, t), (s, t) ∈ Ω × R

Johan Lindstrom - [email protected] Gaussian Markov Random Fields 28/33

Page 33: Gaussian Markov Random Fields · Likelihood approximation Various statistical or numerical approximation methods ... Gaussian Markov random fields (Rue and Held, 2005) Let the neighbours

Spatial GMRF Q Model INLA Extensions References Global Data General SPDEs

Questions?

Johan Lindstrom - [email protected] Gaussian Markov Random Fields 29/33

Page 34: Gaussian Markov Random Fields · Likelihood approximation Various statistical or numerical approximation methods ... Gaussian Markov random fields (Rue and Held, 2005) Let the neighbours

Spatial GMRF Q Model INLA Extensions References

Bibliography I

Aune, E., Simpson, D. P., and Eidsvik, J. (2014), “Parameter estimation inhigh dimensional Gaussian distributions,” Stat. Comput., 24, 247–263.

Banerjee, S., Gelfand, A. E., Finley, A. O., and Sang, H. (2008), “Gaussianpredictive process models for large spatial data sets,” J. R. Stat. Soc. B,70, 825–848.

Bolin, D. and Lindgren, F. (2013), “A comparison between Markov

approximations and other methods for large spatial data sets,”Comput. Stat. Data Anal., 61, 7–21.

Cressie, N. and Johannesson, G. (2008), “Fixed rank kriging for very large

spatial data sets,” J. R. Stat. Soc. B, 70, 209–226.

Eidsvik, J., Finley, A. O., Banerjee, S., and Rue, H. (2012), “ApproximateBayesian inference for large spatial datasets using predictive processmodels,” Comput. Stat. Data Anal., 56, 1362–138.

Eidsvik, J., Shaby, B. A., Reich, B. J., Wheeler, M., and Niemi, J. (2014),“Estimation and Prediction in Spatial Models With Block CompositeLikelihoods,” J. Comput. Graphical Stat., 23, 295–315.

Johan Lindstrom - [email protected] Gaussian Markov Random Fields 30/33

Page 35: Gaussian Markov Random Fields · Likelihood approximation Various statistical or numerical approximation methods ... Gaussian Markov random fields (Rue and Held, 2005) Let the neighbours

Spatial GMRF Q Model INLA Extensions References

Bibliography II

Fuentes, M. (2007), “Approximate Likelihood for Large Irregularly SpacedSpatial Data,” J. Am. Stat. Assoc., 102, 321–331.

Furrer, R., Genton, M. G., and Nychka, D. (2006), “Covariance Tapering

for Interpolation of Large Spatial Datasets,” J. Comput. Graphical Stat.,15, 502–523.

Higdon, D. (2001), “Space and space time modeling using process

convolutions,” Tech. rep., Institute of Statistics and Decision Sciences,Duke University, Durham, NC, USA.

Kaufman, C. G., Schervish, M. J., and Nychka, D. W. (2008), “CovarianceTapering for Likelihood-Based Estimation in Large Spatial Data Sets,” J.

Am. Stat. Assoc., 103, 1545–1555.

Lindgren, F. and Rue, H. (2013), “Bayesian Spatial and Spatio-temporalModelling with R-INLA,” Submitted to J. Stat. Softw.

Lindgren, F., Rue, H., and Lindstrom, J. (2011), “An explicit link betweenGaussian fields and Gaussian Markov random fields: the stochasticpartial differential equation approach,” J. R. Stat. Soc. B, 73, 423–498.

Johan Lindstrom - [email protected] Gaussian Markov Random Fields 31/33

Page 36: Gaussian Markov Random Fields · Likelihood approximation Various statistical or numerical approximation methods ... Gaussian Markov random fields (Rue and Held, 2005) Let the neighbours

Spatial GMRF Q Model INLA Extensions References

Bibliography III

Matern, B. (1960), “Spatial variation. Stochastic models and theirapplication to some problems in forest surveys and other samplinginvestigations.” Ph.D. thesis, Stockholm University, Stockholm, Sweden.

Rozanov, Y. A. (1977), “Markov random fields and stochastic partialdifferential equations,” Math. USSR Sb., 32, 515–534.

Rue, H. and Held, L. (2005), Gaussian Markov Random Fields; Theory and

Applications, vol. 104 of Monographs on Statistics and AppliedProbability, Chapman & Hall/CRC.

Rue, H., Martino, S., and Chopin, N. (2009), “Approximate Bayesianinference for hierarchical Gaussian Markov random field models,” J. R.

Stat. Soc. B, 71, 1–35.

Sigrist, F., Kunsch, H. R., and Stahel, W. A. (2012), “Stochastic partialdifferential equation based modeling of large space-time data sets,”

Tech. Rep. arXiv:1204.6118v5, arXiv preprint.

Simpson, D., Lindgren, F., and Rue, H. (2010), “In order to make spatialstatistics computationally feasible, we need to forget about the

covariance function,” Environmetrics, 23, 65–74.

Johan Lindstrom - [email protected] Gaussian Markov Random Fields 32/33

Page 37: Gaussian Markov Random Fields · Likelihood approximation Various statistical or numerical approximation methods ... Gaussian Markov random fields (Rue and Held, 2005) Let the neighbours

Spatial GMRF Q Model INLA Extensions References

Bibliography IV

Stein, M. L., Chen, J., and Anitescu, M. (2013), “Stochastic approximationof score functions for Gaussian processes,” Ann. Stat., 7, 1162–1191.

Stein, M. L., Chi, Z., and Welty, L. J. (2004), “Approximating likelihoods

for large spatial data sets,” J. R. Stat. Soc. B, 66, 275–296.

Thon, K., Rue, H., Skrøvseth, S. O., and Godtliebsen, F. (2012), “Bayesianmultiscale analysis of images modeled as Gaussian Markov random

fields,” Comput. Stat. Data Anal., 56, 49–61.

Whittle, P. (1954), “On Stationary Processes in the Plane,” Biometrika, 41,434–449.

— (1963), “Stochastic processes in several dimensions,” Bull. Int. Stat.

Inst., 40, 974–994.

Johan Lindstrom - [email protected] Gaussian Markov Random Fields 33/33