fuerza motriz 11

65
UNIVERSIDAD NACIONAL DE INGENIERIA FIM DISEÑO PLANTA TERMICA DE CICLO COMBINADO CON COGENERACION A GAS NATURAL Y CARBON REGION: ANCASH- HUANUCO - UCAYALI Profesor: Ing. Aguilar Vizcarra Duilio Leoncio Alumnos: Reaño Segura, Walter Jimenez Navarrete, José Málaga Luyo, Federico Nina Ochoa, Carlos 2011 - II

Upload: luis-palacios

Post on 03-Feb-2016

45 views

Category:

Documents


5 download

DESCRIPTION

Fuerza Motriz 11

TRANSCRIPT

Page 1: Fuerza Motriz 11

UNIVERSIDAD NACIONAL DE INGENIERIA

FIM

DISEÑO PLANTA TERMICA DE CICLO COMBINADO CON COGENERACION A GAS NATURAL Y CARBON

REGION: ANCASH- HUANUCO - UCAYALI

Profesor: Ing. Aguilar Vizcarra Duilio Leoncio Alumnos: Reaño Segura, Walter Jimenez Navarrete, José Málaga Luyo, Federico Nina Ochoa, Carlos

2011 - II

Page 2: Fuerza Motriz 11
Page 3: Fuerza Motriz 11

INDICE

INTRODUCCION

OBJETIVO

MARCO TEORICO

ANALISIS DE LA POSIBILIDAD DE LAS REGION

ESTIMACION DE LA POTENCIA REQUERIDA

ESTABLECR EL TIPO DE PLANTA

SELECCIÓN DE EQUIPOS QUE CONSTITUYEN UNA PLANTA TERMICA

TURBINA

CALDERA

IINTERCAMBIADORES DE CALOR

BOMBA

TUBERIAS PARA VAPOR

VALVULAS

CONCLUSIONES

RECOMENDACIONES

BIBLIOGRAFIA

ANEXSOS

CATALOGO DE TURBINAS A GAS SIEMENS

CATALOGO DE TURBINAS A VAPOR SIEMENS

MANUAL DE BOMBAS

Page 4: Fuerza Motriz 11

INTRODUCCION

La transformación de energía constituye una de las áreas más importantes en

la formación del Ingeniero Mecánico, por lo tanto el futuro profesional deberá

desarrollar la habilidad para evaluar y decidir cual ha de ser la planta térmica

más apropiada para el aprovechamiento de la energía que se libera al quemar

un combustible con base en aspectos económicos, sociales, tecnológicos y

ambientales. También debe tener criterios de evaluación y de análisis de los

parámetros de operación de centrales termoeléctricas para permitir la

optimización del proceso de aprovechamiento energético.

Page 5: Fuerza Motriz 11

OBJETIVO GENERAL

Poder determinar las magnitudes térmicas que definen los procesos para

satisfacer una necesidad de energía mediante una planta de gas, y de vapor

combinadas que trabajen en condiciones de máximo rendimiento o máxima

producción. Adicionalmente el estudiante podrá identificar los equipos que

constituyen una planta térmica, explicar su principio de funcionamiento y

evaluar la eficiencia de cada uno de los elementos componentes considerando

su efecto en el rendimiento térmico del ciclo y valorando el impacto ambiental

de cada elemento de la planta estudiada.

Para las regiones de ANCASH - HUANUCO - UCAYALI

Page 6: Fuerza Motriz 11

MARCO TEORICO

COGENERACION La cogeneración es un proceso mediante el cual se

generan dos o más formas de energía de manera simultánea, agotando

únicamente una fuente principal de energía.Cogeneración significa producción

simultánea de dos o más tipos de energía. Normalmente las energías

generadas son electricidad y calor, aunque puede ser también energía

mecánica y calor (y/o frío).

La producción simultánea supone que puede ser utilizada simultáneamente, lo

que implica proximidad de la planta generadora a los consumos, en

contraposición al sistema convencional de producción de electricidad en

centrales termoeléctricas independientes, donde también se desprende calor,

pero éste no es aprovechado y ha de ser eliminado al ambiente. Recordemos

que la termodinámica obliga a la evacuación de una cierta cantidad de calor en

todo proceso térmico de producción de electricidad, ya que todo el calor

absorbido no puede transformarse en trabajo. El objetivo de la cogeneración es

que no se pierda esta gran cantidad de energía.

PRINCIPALES CARACTERISTICAS

Analizando lo que antecede podemos señalar las principales características

diferenciales de la cogeneración, a saber:

Debido a estas características, la cogeneración contribuye de forma importante

a la seguridad del abastecimiento energético y a la protección del medio

ambiente los cuales se describe a continuación.

a) Mayor seguridad del abastecimiento energético

Al ser un sistema distribuido de producción de electricidad (muchas

plantas de pequeña potencia cerca de los centros de consumo), se

producen diversas ventajas:

Un ahorro de inversión en líneas de transporte y distribución.

Una disminución de las pérdidas de las líneas de transporte y

distribución.

Una importante contribución a la estabilidad del sistema (muchas

plantas, pequeñas y muy distribuidas).

Page 7: Fuerza Motriz 11

b) Mejora la protección del medio ambiente

Permite un ahorro de energía primaria de 900.000 tep/año

Evita 8,5 Millones de toneladas de CO2 al año

Sin la cogeneración el incumplimiento de España con su

compromiso de Kioto sería un 5% superior al actual.

TURBINA A GAS

Una turbina de gas simple está compuesta de tres secciones principales: un

compresor, un quemador y una turbina de potencia. Las turbinas de gas operan

en base en el principio del ciclo Brayton, en donde aire comprimido es

mezclado con combustible y quemado bajo condiciones de presión constante.

El gas caliente producido por la combustión se le permite expanderse a través

de la turbina y hacerla girar para llevar a cabo trabajo. En una turbina de gas

con una eficiencia del 33%, aproximadamente 2/3 del trabajo producido se usa

comprimiendo el aire. El otro 1/3 está disponible para generar electricidad,

impulsar un dispositivo mecánico, etc.

TURBINA A GAS

Page 8: Fuerza Motriz 11

La máquina está compuesta de los siguientes elementos: 1. Un compresor de flujo axial 2. Una o varias cámaras de combustión (según el fabricante) 3. La turbina a gas 4. Sistemas auxiliares para su operación: a) Sistemas de lubricación b) Sistema de alimentación de combustible c) Sistema de regulación de velocidad d) Sistema de puesta en marcha y parada e) Sistemas de protección de máquina f) Sistema de acoplamiento hidráulico g) Sistema de virado (virador)

5. Motor de lanzamiento (motor Diesel, o motor eléctrico)

VENTAJAS DE LAS TURBINAS A GAS

a) Muy buena relación potencia vs. peso y tamaño b) Bajo costo de instalación c) Rápida puesta en servicio d) Es una máquina rotante (no tiene movimientos complejos como son los movimientos roto alternativos de los motores de combustión interna) e) Al ser una máquina rotante el equilibrado de la misma es prácticamente perfecto y simple, a diferencia de máquinas con movimiento alternativos f) Menos piezas en movimiento (comparado con los motores de combustión interna) g) Menores pérdidas por rozamiento al tener menores piezas en movimiento h) Sistema de lubricación más simple por lo expresado anteriormente i) Bajas presiones de trabajo (es la máquina térmica que funciona a más baja presiones) j) El proceso de combustión es continuo y se realiza a presión constante en la cámara de combustión (diferente a los motores de combustión interna) k) Pocos elementos componentes: compresor, cámara/s de combustión y turbina propiamente dicha l) No necesitan agua (diferente a las turbinas a vapor que requieren de un condensador) m) Permiten emplear diferentes tipos de combustibles como kerosene, gasoil, gas natural, carbón pulverizado, siempre que los gases de combustión no corroan los álabes o se depositen en ellos

Page 9: Fuerza Motriz 11

n) El par motor es uniforme y continuo

DESVENTAJAS DE LAS TURBINAS A GAS

Bajo rendimiento térmico (alto consumo específico de combustible) debido a: 1. Alta pérdida de calor al ambiente que se traduce por la alta temperatura de salida de los gases de escape por chimenea, entre 495ºC a 560 ºC 2. Gran parte de la potencia generada por la turbina es demandada por el compresor axial, en el orden de las ¾ partes, o sea un 75% de la potencia total de la turbina. Las turbinas a gas, al igual que las turbinas a vapor, se clasifican en: 1. Turbinas a gas de acción 2. Turbinas a gas de reacción En las turbinas de acción la caída total de presión de los gases de combustión se produce en las toberas que están ubicadas antes del/los estadios móviles y fijos de la misma. De esta manera se produce una transformación de energía de presión a energía de velocidad (energía cinética) en los gases. La presión de los gases dentro de la turbina, estadios móviles y fijos, permanece constante. En las turbinas de reacción, en cambio, la caída de presión de los gases de combustión se produce tanto en las toberas, como en los estadios móviles y fijos que componen la misma. La presión de los gases dentro de la turbina, estadios móviles y fijos, va disminuyendo. También las turbinas a gas se clasifican de acuerdo al número de estadios móviles, en cuyo caso pueden ser: 1.-Turbinas a gas mono etapa (un solo estadio móvil)

2.- Turbinas a gas multi etapas (varios estadios móviles)

Page 10: Fuerza Motriz 11

Admisión de aire

El sistema de admisión de aire consta de todos los elementos necesarios para que el aire entre en la turbina en las condiciones más adecuadas de presión, temperatura y limpieza. Para ello cuenta con filtros de varios tipos, que se encargarán de eliminar la suciedad que pueda arrastrar el aire; y de una serie de sistemas que acondicionarán la temperatura para facilitar que entre a la turbina la mayor cantidad posible de masa de aire.

Compresor de aire

La función del compresor es elevar la presión del aire de combustión (una vez filtrado) antes que entre en la cámara de combustión, en una relación que varía según la turbina pero que normalmente está comprendida entre 10:1 y 40:1. Esta compresión se realiza en varias etapas y consume aproximadamente las 2/3 partes del trabajo producido por la turbina.

El control de la entrada de aire para la combustión se realiza variando el ángulo de inclinación de las ruedas iniciales de álabes del compresor. A mayor ángulo, mayor cantidad de aire de entrada al compresor, y por tanto, a la turbina. Este método se usa para mejorar el comportamiento a carga parcial de la turbina de gas, como se verá más adelante.

Una parte del aire del compresor se utiliza para refrigeración de álabes y de la cámara de combustión, de forma que aproximadamente un 50% de la masa de aire es usado para este fin.

Page 11: Fuerza Motriz 11

Cámara de combustión

En ella tiene lugar la combustión a presión constante del gas combustible junto con el aire. Esta combustión a presión obliga a que el combustible sea introducido a un nivel de presión adecuado, que oscila entre 16 y 50 bar.

Debido a las altas temperaturas que pueden alcanzarse en la combustión y para no reducir demasiado la vida útil de los elementos componentes de la cámara, se trabaja con un exceso de aire alto, utilizando del 300 al 400% del

aire teórico necesario, con lo que se consigue por un lado reducir la temperatura de llama y por otro refrigerar las partes más calientes de la cámara. Parte del aire que procede del compresor, se dirige directamente hacia

las paredes de la cámara de combustión para mantener su temperatura en valores convenientemente bajos. Otra parte se hace circular por el interior de los álabes de la turbina, saliendo por orificios en los bordes que crean una

película sobre la superficie de los álabes

Turbina de expansión

En la turbina es donde tiene lugar la conversión de la energía contenida en los gases de combustión, en forma de presión y temperatura elevada (entalpía), a potencia mecánica (en forma de rotación de un eje). Como se ha indicado antes, una parte importante de esta potencia es absorbida directamente por el compresor.

Los gases, que entran a la turbina a una temperatura de 1200-1400ºC y una presión de 10 a 30 bar., salen a unos 450-600ºC. Esa alta temperatura hace que la energía que contienen pueda ser aprovechada bien para mejorar el rendimiento de la turbina (con un sistema conocido como REGENERACIÓN, que consiste en utilizar estos gases para calentar adicionalmente la mezcla en la cámara de combustión) o bien, como es más habitual, para generar vapor en una caldera de recuperación. Ese vapor posteriormente se introduce en una turbina de vapor consiguiéndose un aumento del rendimiento global igual o incluso superior al 55% (el rendimiento de la turbina de gas es de 30-35%).

Page 12: Fuerza Motriz 11

CICLO TERMODINAMICO BRAYTON TEORICO

El ciclo termodinámico teórico por el cual funcionan todas las turbinas a gas es

el Ciclo BRAYTON.

Las transformaciones teóricas que se realizan en el ciclo son las siguientes: La compresión 1-2 representa la compresión isoentrópica del aire que se realiza en el compresor axial. La transformación 2-3 representa el proceso de combustión a presión constante donde se produce el aporte de calor (Q suministrado) del medio al sistema debido a la oxidación del combustible inyectado en el punto 2. La transformación 3-4 representa la expansión isoentrópica de los gases de combustión que se desarrolla en la turbina. No existe la transformación 4-1. En los diagramas se representa solo a modo de cerrar el ciclo ya que el ciclo BRAYTON es en realidad, como se ha explicado anteriormente, un ciclo abierto. Podemos interpretar que del punto 3 a 4 se produce la devolución de calor (Q devuelto) del sistema al medio, es decir la pérdida de calor al ambiente a través de los gases de escape de la turbina.

Page 13: Fuerza Motriz 11

TRABAJO TEORICO REALIZADO POR LA TURBINA

El trabajo teórico realizado por la turbina a gas (trabajo positivo) está representado en el diagrama “p – v” de la Fig. 9 por el área comprendido entre la adiabática de expansión y el eje de ordenadas, es decir por el área rayada:

(a-3-4-b).

Trabajo teórico turbina = h3 – h4 Donde: h3 = entalpía de los gases de combustión a la entrada a la turbina (kcal/kg)

h4 = entalpía de los gases de combustión al salir de la turbina (kcal/kg

Page 14: Fuerza Motriz 11

TRABAJO TEORICO ABSORBIDO POR EL COMPRESOR

El trabajo teórico absorbido por el compresor axial (trabajo negativo) está representado en el diagrama “p – v” de la Fig. 10 por el área comprendida entre

la adiabática de compresión y el eje de ordenadas, o sea por el área (a-2-1-b)

Trabajo teórico del compresor = h2 –h1 Donde: h1 = entalpía del aire a la entrada del compresor (kcal/kg)

h2 = entalpía del aire al salir del compresor (kcal/kg)

Page 15: Fuerza Motriz 11

TRABAJO UTIL TEORICO ENTREGADO POR LA TURBONA

El trabajo útil teórico o trabajo neto teórico que entrega la turbina es la diferencia entre el trabajo teórico de turbina menos el trabajo teórico del

compresor

Gráficamente el trabajo útil teórico entregado por la turbina está representado por el área (1-2-3-4) de la Fig. 11 Del trabajo total producido por la turbina, el compresor axial absorbe aproximadamente el 70 %, quedando solamente el 30 % disponible como

trabajo útil.

RENDIMIENTO TEORICO DE LA TURBINA A GAS

Supongamos que en el ciclo BRAYTON, representado en la figura, las evoluciones (1-2) y (3-4) son adiabáticas, con lo cual nos apartamos ligeramente de la realidad, ya que las evoluciones reales son politrópicas de exponente variable: El calor aportado por el medio a través del combustible que se oxida es:

Q1 = Cp( T3 – T2)

Page 16: Fuerza Motriz 11

Q2 = Cp( T4 – T1 )

η = ( Q1 –Q2 )/ Q1 r = P2/P1= P3 / P4 ( relacion de presion )

η = 1- ( 1/ ε^(k-1) )

Es decir que el rendimiento térmico teórico del ciclo depende exclusivamente

de la relación de presiones (r), o bien, de la relación de volúmenes (ε) entre

los

cuales se comprime.

RENDIMIENTO REAL DE LA TURBINA A GAS

Sabemos que en toda máquina térmica el rendimiento y la potencia del ciclo real siempre son inferiores a los del ciclo teórico por varias razones, tales como: 1. La compresión no es isoentrópica 2. La expansión no es isoentrópica 3. En todo el sistema se producen pérdidas de presión 4. El proceso de la combustión es incompleto, por lo cual no toda la energía química contenida en el combustible es liberada en ella como energía calórica, debido a la presencia de inquemados 5. Existen pérdidas por radiación y convección a través de todo el cuerpo de la máquina 6. Existen pérdidas de energía cinética a través de los gases de escape la

cual no se utiliza en las máquinas industriales

Page 17: Fuerza Motriz 11

De todas estas pérdidas solo consideraremos las pérdidas en la compresión y en la expansión por ser las más significativas, pudiendo despreciar el resto frente a estas. Por lo tanto para obtener el rendimiento térmico real debemos tener presente que la compresión del aire en el compresor no es isoentrópica como estudiamos anteriormente, sino que esta es politrópica. Además y de igual modo deberemos tener presente que la expansión de los gases en la turbina no es isoentrópica como supusimos, sino que esta es también politrópica.

Los diagramas representan las transformaciones reales

A efectos del análisis a realizar, llamaremos: Ltt = Trabajo teórico de la turbina Ltc = Trabajo teórico del compresor El trabajo útil teórico de la máquina (Ltm) está dado por la diferencia entre el trabajo teórico de la turbina menos el trabajo teórico del compresor, es decir: Ltm = Ltt – Ltc = Trabajo útil teórico de la máquina Ahora bien, el trabajo útil real de la máquina (Lrm) está dado por la diferencia entre el trabajo real de la turbina (Lrt) y el trabajo real del compresor (Lrc):

Lrm = Lrt – Lrc = Trabajo útil real de la máquina.

El rendimiento real de la turbina ηt está dado por la relación entre los trabajos

real y teórico de la turbina: ηt = Lrt/ Ltt Lrt = ηt * Ltt

Lo que nos dice que el trabajo real que entrega la turbina es menor que el

Page 18: Fuerza Motriz 11

teórico. El rendimiento de una turbina actual ηt es del orden del 0,95 (95%).

Por su parte, el rendimiento real del compresor ηc está dado por el cociente

entre los trabajos teórico y real, resultando este último, mayor que el teórico: η c = Ltc / Lrc Lrc = Ltc / ηc Como se sabe, el compresor real absorbe mayor trabajo que el teórico para llevar el aire del estado (1) al (2). En la actualidad, el rendimiento de un

compresor axial de turbina ηc es aproximadamente del 0,87 (87%)

Reemplazando en la ecuación Lrm = Ltt *ηt – Ltc/ ηc

El rendimiento real o efectivo ηe de la máquina considerada como conjunto

compresor-turbina está dado por: ηe = ηtem* Lrm / Ltm = ηtem *( Ltt*ηt – Ltc / ηc) / (Ltt – Ltc ) ηe = ηtrm (ηt – Ltc / Ltt ηc ) / ( 1 – Ltc / Ltt ) El cociente Ltc / Ltt es la relación de los trabajos teóricos del compresor y de la turbina. Se lo indica mediante un coeficiente K que depende de la construcción de la máquina, pudiendo determinarse con solo conocer sus condiciones de operación: temperatura de trabajo de la turbina y relación de compresión.

TURBINA A VAPOR

Una turbina de vapor es una turbomáquina motora, que transforma la energía de un flujo de vapor en energía mecánica a través de un intercambio de cantidad de movimiento entre el fluido de trabajo (entiéndase el vapor) y el rodete, órgano principal de la turbina, que cuenta con palas o álabes los cuales tienen una forma particular para poder realizar el intercambio energético. Las turbinas de vapor están presentes en diversos ciclos de potencia que utilizan un fluido que pueda cambiar de fase, entre éstos el más importante es el Ciclo Rankine, el cual genera el vapor en una caldera, de la cual sale en unas condiciones de elevada temperatura y presión. En la turbina se transforma la energía interna del vapor en energía mecánica que, típicamente, es aprovechada por un generador para producir electricidad. En una turbina se pueden distinguir dos partes, el rotor y el estátor. El rotor está formado por ruedas de álabes unidas al eje y que constituyen la parte móvil de la turbina. El estátor también está formado por álabes, no unidos al eje sino a la carcasa de la turbina.

El término turbina de vapor es muy utilizado para referirse a una máquina motora la cual cuenta con un conjuntos de turbinas para transformar la energía del vapor, también al conjunto del rodete y los álabes directores

Page 19: Fuerza Motriz 11

TURBINA A VAPOR

Presión de vapor: con el objetivo de optimizar la potencia y rendimiento de la turbina de vapor, se parte de la máxima temperatura posible para el vapor y de la presión con la que se obtendría el máximo trabajo en la turbina, teniendo en cuenta las limitaciones impuestas por la presión en el condensador y el contenido máximo admisible de humedad en el último escalón de la turbina de vapor debido a la erosión de los álabes. La potencia en el eje de la turbina depende del gasto másico y el salto entálpico disponible en la turbina de vapor como se indica en la siguiente ecuación:

P = m * ∆h

La presión de vapor se selecciona de tal forma que el valor de la ecuación anterior sea el máximo posible pero siendo compatible con los parámetros económicos impuestos a la instalación:

Una presión de vapor elevada supondría una generación menor de vapor al aumentar la temperatura de saturación a medida que lo hace la presión, lo que implica una recuperación de calor inferior de lo gases de escape del ciclo de gas y un menor

rendimiento de la caldera de recuperación de calor.

• Sin embargo, pese a que presiones de vapor pequeñas provocarían una mayor

producción de vapor, una mayor recuperación de calor de los gases de escape y

Page 20: Fuerza Motriz 11

consecuentemente un aumento del rendimiento de la caldera al ser la densidad menor

se originan mayores pérdidas internas en los equipos, encareciendo así los sistemas principales (caldera, tuberías, turbina, válvulas, condensador, etc.) y de toda la instalación en general. Desde el punto de vista termodinámico y con el objetivo de optimizar el salto entálpico,

la presión óptima para una temperatura determinada es aquella que, siendo lo más alta posible y compatible con la máxima recuperación de calor, no dé lugar al final de la etapa de expansión un contenido de humedad superior al máximo

admisible por el último escalón. La presión obtenida de forma teórica siempre será algo menor puesto que el salto real en la turbina no es isentrópico.

Temperatura de vapor: el valor máximo de la temperatura de vapor se fija de tal forma que sea igual o menor que la temperatura de los gases menos 25ºC teniendo en cuenta que el salto entálpico de la turbina mejora con la del caudal de vapor que se

produce aumentando la temperatura del vapor y el coste mayor de los materiales a utilizar en el sobrecalentador y tuberías de vapor a turbina. El incremento de la temperatura eleva ligeramente la potencia de la turbina puesto que

prevalece la mejora del salto entálpico frente al descenso en la producción de vapor al disminuir la energía de los gases disponibles para la vaporización. También, la mayor temperatura del vapor contribuye a aumentar el título del vapor en los álabes de los

últimos escalones, permitiendo aumentar el vacío en el condensador e incrementar aún más la potencia. Pinch point: es la diferencia entre la temperatura del vapor a la salida del

evaporador y la temperatura de los gases en esa zona. Cuanto menor sea el valor del pinch point, mayor cantidad de vapor generado, mayor es la superficie total de intercambio de calor requerida del evaporador y

sobrecalentador y por tanto se incrementa el coste de la caldera. Approach temperatura: es la diferencia entre la temperatura de salida en el calderín y la del fluido a la salida del economizador. Esta diferencia es

necesaria para evitar la evaporación en los tubos del economizador en la puesta en marcha, elevación de la carga y operación a carga parcial. Un valor pequeño de este parámetro supone un mayor

aprovechamiento del calor pero también un incremento de la superficie de intercambio en el economizador y puede que la necesidad de emplear materiales aleados en su última etapa para resistir sobrecalentamientos eventuales en el caso de que se produzcan vaporizaciones. Es crítico el valor

a carga parcial porque si es pequeño se pueden producir vaporizaciones que impidan el paso del fluido en las calderas horizontales de circulación natural Una vez fijadas la presión y temperatura los valores de pinch point y

approach determinan la producción de vapor. Sin embargo para una misma suma de ambos parámetros se obtienen superficies de caldera diferentes por lo que el óptimo de cada parámetro debe escogerse según la condición de

operación. Caída de presión en el evaporador: en función de la caída de presión variará la producción de vapor; cuanto mayores sean las pérdidas menor será dicha producción.

El motivo por el cual se produce esta disminución de vapor es porque para mantener el vapor a la entrada de la turbina, la presión y la temperatura de saturación deben ser mayores por lo que no se podrían aprovechar la energía de los gases con temperaturas

inferiores a saturación durante la evaporación. La eficiencia del evaporador así como las pérdidas de carga depende en gran medida de la geometría y diámetro de los tubos pero siempre hay que buscar un equilibrio entre coste y eficiencia.

Caída de presión en el economizador: tiene una influencia directa en el

Page 21: Fuerza Motriz 11

consumo de las bombas del agua de alimentación, por lo que la geometría y diámetro

de sus tubos se escogen en función de su eficiencia y coste. Temperatura del agua de alimentación: el rendimiento de la caldera de recuperación se incrementa cuanto menor es la temperatura del agua a la entrada del economizador puesto que es la forma de reducir la temperatura de los gases de salida hacia la

chimenea. Por esta razón no existen calentadores de agua en ciclos gas-vapor, y el agua de alimentación sólo es calentada en el desgasificador o a través del sistema de vacío del condensador. Esta baja temperatura del agua de alimentación es una

característica de diferenciación de las centrales de ciclo combinado con respecto a las centrales de caldera convencional, consiguiendo estas últimas mayores eficiencias al calentar el agua de alimentación mediante extracciones múltiples de la turbina.

En ciclos donde las paradas y arranques son frecuentes se diseña para evitar corrosiones internas mediante aireación completa en el aporte de agua a la caldera, optimizando el condensador, la inyección de hidracina. La

temperatura en los tubos más fríos del economizador debe mantenerse por encima del punto de rocío de los humos para evitar condensaciones ácidas que provocarían corrosiones, lo cual se logra calentando el agua de

alimentación (inyectando vapor en el desgasificador).

CALDERAS DE RECUPERACION DE CALOR

Las calderas de recuperación aprovechan el calor de los humos producidos en procesos de combustión o de las corrientes de evacuación de procesos industriales para la generación de agua sobrecalentada o vapor saturado.

Las calderas de recuperación se emplean en un gran número de aplicaciones en combinación con turbinas de gas y plantas de cogeneración. Asimismo, considerando los costes energéticos en contínuo aumento, en los procesos industriales cada vez se

aprovecha más el calor generado a través de calderas de recuperación.

Page 22: Fuerza Motriz 11

ESQUEMA DE PLANTA CICLO COMBINADO

• Comportamiento muy flexible y buena eficiencia a cargas parciales. • Combustible: gas natural o ciclos de gasificación de carbón.

• Calderas de recuperación más grandes que conveccionales (5 veces) pues sólo hay convección. • Calderas acuotubulares, con circulación natural, con economizador, generador de

vapor y sobrecalentador (tres niveles de P).

• Riesgo de corrosión ácida en economizador Emplea cogeneración por fiabilidad del

suministro y por la rentabilidad económica.

• Características energéticas del sector industrial frente a la cogeneración: – Consumos importantes y continuos. – RCE elevada.

– Q útil en forma de vapor o gases de escape. – La T del proceso determina el tipo de motor. – Tarifas de electricidad y combustibles ventajosas: gran consumo y continuo.

– En algunos procesos se instalan sistemas de cola.

Page 23: Fuerza Motriz 11

La rentabilidad viene de la diferencia de precio entre la electricidad y los combustibles fósiles.

• Sectores más adaptables: alimentario, papel,refinerías, químico, textil, cerámico y madera. • Turbina de vapor: grandes consumidores de vapor.

• Turbina de gas: consumidores medios con procesos de secado. • Ciclos combinados: grandes consumidores con RCE bajos. • M.A.C.I.: consumidores pequeños y medianos con muchas paradas y variaciones de

carga. La cogeneración se usa en hospitales, hoteles, centros comerciales, edificios públicos, universidades, polideportivos,...

• Principal característica: en invierno,necesidades de electricidad y calor (calefacción) y en verano, de electricidad y frío (aire acondicionado). • Para que sea rentable el frío ha de producirse a partir de energía térmica: máquina

de producción de frío por absorción Þ sistema de trigeneración (producción simultánea de electricidad, calor y frío). Las leyes favorecedoras de la cogeneración surgen con la crisis del petróleo y la

necesidad de reducir la dependencia energética en él.

Page 24: Fuerza Motriz 11

Uso del GNC en la planta de ciclo combinado con cogeneración

El gas natural se ha constituido en el combustible más económico para la generación

de electricidad, ofrece las mejores oportunidades en términos de economía, aumento

de rendimiento y reducción del impacto ambiental. Estas ventajas pueden conseguirse

tanto en las grandes centrales termoeléctricas así como en las pequeñas.

Una central de ciclo combinado a gas se basa en la producción de energía a través de

ciclos diferentes, una turbina de gas y otra turbina de vapor. El calor no utilizado por

uno de los ciclos se emplea como fuente de calor del otro. De esta forma los gases

calientes de escape del ciclo de turbinas de gas entregan la energía necesaria para el

funcionamiento del ciclo de vapor acoplado. Esta configuración permite un muy

eficiente empleo del gas natural.

La energía obtenida en estas instalaciones puede ser utilizada, además de la

generación eléctrica, para calefacción a distancia y para la obtención de vapor de

proceso.

La cogeneración es la producción simultánea de energía eléctrica y energía térmica

utilizando un único combustible como el gas natural.

Las plantas de Cogeneración producen electricidad y calor para aplicaciones

descentralizadas y donde se requieran. Estas plantas tienen una óptima eficiencia en

las transformaciones energéticas y con mínimas contaminaciones ambientales.

Usualmente la ubicación de estas plantas es próxima a los consumidores, con lo cual

las pérdidas por distribución son menores que las de una central eléctrica y un

generador de calor convencional.

La sustitución de centrales convencionales de carbón y diesel por centrales de ciclo

combinado que utilizan gas natural es una manera efectiva de contribuir a la reducción

del efecto invernadero. Por otro lado, la tecnología de ciclo combinado consume un

35% menos de combustible fósil que las convencionales, lo que aporta, de hecho, la

mejor solución para reducir las emisiones de CO2 a la atmósfera y, por tanto,

contribuir a preservar el entorno medioambiental. Respecto al resto de contaminantes,

la emisión unitaria por kWh producido a través de plantas de ciclo combinado es, en

general, sensiblemente menor, aunque destaca especialmente la reducción de emisión

de dióxido de azufre, que es despreciable frente a la de una central alimentada por

carbón o fuel.

En cuanto a los costos; en una planta de ciclo combinado, la inversión necesaria para

instalar un módulo es del orden de 50% en relación a la inversión en una planta con

carbón importado; el tiempo de construcciones, aproximadamente, 30 % menor. La

repercusión, en términos de costos de capital, sobre el precio final del kWh producido

en una planta de ciclo combinado es la tercera parte que en el caso de utilizar carbón

de importación. También resulta significativa la menor cantidad de agua que se utiliza

Page 25: Fuerza Motriz 11

en el proceso, ya que la turbina de gas no precisa de refrigeración alguna y

únicamente se requiere agua para el ciclo de vapor, lo que supone que una central de

ciclo combinado con gas natural necesita tan sólo un tercio del agua que se precisa en

un ciclo simple de fuel o de carbón.

USO DEL CARBON COMO COMBUSTIBLE EN EL CALDERO RECUPERADOR

ASPECTOS GEOLÓGICOS DE LAS MINAS ESTUDIADAS

Las minas estudiadas en el departamento de La Libertad corresponden a la cuenca del

Alto Chicama, donde el yacimiento de carbón ocurre en una extensión de 750 km2

(INGEMET, 1983). El carbón se presenta a saber en 10 mantos, de los cuales 6 son

económicamente explotables, y con diversos rumbos y buzamientos (de 50° a 80°),

debido al tectonismo de los andes, viéndose afectados por diversas fallas y

deformaciones. Las rocas encajonantes por lo general son ortocuarcitas. Las reservas

de carbón en esta cuenca superan los 250 000 000 TM, con poder calorífico que varía

entre 7000 y 7500 Kcal/Kg. Tal como se detalla en el Cuadro N.° 3, el mismo que

muestra las características de los carbones por tipos en el territorio nacional y las

reservas estimadas en cada zona (“Inventario preliminar del carbón en el Perú”,

INGEMMET, 1983).

En la cuenca del Santa se visitó la mina Tarica, que comprende las provincias de

Pallasca, Corongo y Huaylas del departamento de Ancash. En esta cuenca el

afloramiento del carbón se extiende por 300 km2. Los mantos tienen potencias que

van de 0,60 m a 3,00 m con buzamiento de 20° a 75°, se considera que existen una

secuencia de 6 mantos con valor económico. El poder calorífico del carbón de esta

cuenca está por el orden de 6000 a 7500 Kcal/Kg.

ASPECTOS MINEROS DE LAS MINAS DE CARBÓN

Una característica común de las minas de carbón a parte de la geológica, es la forma

de explotación: completamente artesanal, a excepción de la Cía. Black Hill Co. El

carbón se arranca con las herramientas más rudimentarias como pico, lampa,

carretilla, ocasionalmente vagones sobre listones de madera como rieles (figura 1) . Así

Page 26: Fuerza Motriz 11

mismo, en las quebradas profundas se cruza el carbón de un bando a otro mediante

cables carriles, con vagones de ½ ton. En la mayoría de las minas, la explotación es al

azar sin ninguna perspectiva ni criterio, y sin las mínimas condiciones de seguridad ni

protección al personal; considerando además, que dichas labores cuentan con una

única galería de acceso de la superficie. La eficiencia de producción varía entre 0,5 a

1,5 TM/H-G, a un costo que oscila entre 20 a 35 s/TM, dependiendo de la dureza del

carbón y la consistencia de las cajas del manto. En la mayoría de los casos, los

trabajos de minado se hacen por contratos. Así mismo, para poder explotar la mina sin

problemas, algunos concesionarios mineros han optado por establecer convenios con

las comunidades, para que los propietarios de los terrenos superficiales sean los que

exploten la mina por contrato, con la condición que toda la producción de carbón sea

entregada al concesionario en cancha, fuera de la bocamina. Definitivamente, la

minería del carbón requiere una asesoría técnica y debe ser una preocupación a nivel

gubernamental, para evitar la minería informal, mediante su formalización.

Análogamente, los grandes consumidores de carbón deben evitar proveerse de esta

sustancia de los acopiadores, porque ellos son los que propician la minería informal del

carbón, traduciéndose en un alto costo social y alto riesgo para la subsistencia de las

minas. Bajo la premisa que una galería colapsada es más difícil rehabilitarla,

considerando además la capacidad financiera de los “mineros” informales.

Explotación en forma artesanal del carbón.

Para nuestro caso elegimos carbón antracita con un poder calorífico inferior de 23

MJ/Kg la cual se queda ubicada en Tarica - Yanac - Corongo – Ancash de la compañía

Minera Sol Sofía SAC.

Page 27: Fuerza Motriz 11

UBICAREMOS NUESTRA PLANTA EN OTUSCO- Ancash

Page 28: Fuerza Motriz 11

ESTIMACION DE LA POTENCIA REQUERIDA

Población Actual de UCAYALI-HUANUCO-ANCASH y Proyección a 20 Años

Para evaluar la población actual y su proyección hemos tomado como referencia los

datos proporcionados por el ministerio de Energía y Minas (MEM) y del Instituto

Nacional de Estadística e Informática (INEI), de los cuales hemos hecho un resumen

por año desde el 2002 hasta el 2007 debido a que solo hay referencia hasta el último

Censo Nacional que se dio en ese año.

Población en el UCAYALI-HUANUCO Y ANCASH (Fuente: Ministerio de Energía y Minas)

Año: 2002

Al término del 2002, el Perú cuenta con una población de 26,9 millones de habitantes;

Lima concentra el 32% de ellos, seguido de los demás departamentos con menores

porcentajes. El consumo total de energía eléctrica, conformado por la energía

generada para uso propio (7% del total generado)más la venta de energía a cliente

final (17605GW.h), ascendió a 19 168 GW.h, donde Lima, Junín, Moquegua, Ica y

Arequipa son los departamentos con mayor consumo, representando el 46%, 9%, 8%,

6% y 5% del consumo total respectivamente. El Consumo de Electricidad per cápita a

nivel nacional en el 2002 alcanzó los 713 kW.h/hab, siendo Moquegua el departamento

con mayor consumo per cápita (9 884 kW.h/hab), seguido de Pasco, Ica, Junín, Lima y

Arequipa con menores niveles. El grado de electrificación del país ascendió a 75,3% en

todo el Perú, encontrándose los índices más altos en Lima.

Tabla Nº1. Población estimada año 2002

Page 29: Fuerza Motriz 11

Año 2003

Al término del 2003, el Perú cuenta con una población de 27,1 millones de habitantes;

Lima concentra el 32% de ellos, seguido de los demás departamentos con menores

porcentajes. El consumo total de energía eléctrica, conformado por la energía

generada para uso propio (7% del total generado) más la venta de energía a cliente

final (18 375 GW.h), ascendió a 19 168 GW.h, donde Lima, Junín, Moquegua, Ica y

Arequipa son los departamentos con mayor consumo, representando el 47%, 9%, 8%,

6% y 5% del consumo total respectivamente.

El Consumo de Electricidad per cápita a nivel nacional en el 2003 alcanzó los 734

kW.h/hab, siendo Moquegua el departamento con mayor consumo per cápita (9 568

kW.h/hab), seguido de Pasco, Ica, Junín, Lima y Arequipa con menores niveles.

Tabla Nº2. Población estimada año 2003

Page 30: Fuerza Motriz 11

Año 2004

Al término del 2004, el Perú cuenta con una población de 27,5 millones de habitantes;

Lima concentra el 32% de ellos, seguido de los demás departamentos con menores

porcentajes. El consumo total de energía eléctrica, conformado por la energía

generada para uso propio (7% del total generado) más la venta de energía a cliente

final (19641 GW.h), ascendió a 21266GW.h, donde Lima, Junín, Moquegua, Ica y

Arequipa son los departamentos con mayor consumo, representando el 47%, 8%, 8%,

6% y 5% del consumo total respectivamente.

El Consumo de Electricidad per cápita a nivel nacional en el 2004 alcanzó los 772

kW.h/hab, siendo Moquegua el departamento con mayor consumo per cápita (9 722

kW.h/hab), seguido de Pasco, Ica, Junín, Lima y Arequipa con menores niveles.

Tabla Nº3. Población estimada año 2004

Page 31: Fuerza Motriz 11

Año 2005

Al término del 2005, el Perú cuenta con una población de 27,2 millones de habitantes;

de la cual Lima concentra el 30% de ellos, seguido de Piura. La libertad y Cajamarca

con porcentajes de entre 5% y 6% del total,, lo cual muestra la alta concentración

poblacional del país en la capital. El consumo total de energía eléctrica, conformado

por la energía generada para su uso propio (1699 GW.h) más la venta de energía a

cliente final (20701 GW. H) ascendió a 22400 GW.h donde lima Moquegua, Ica,

Ancash, Cajamarca y Arequipa fueron las regiones con mayor consumo, y sus

participaciones fueron 44%, 7%, 7%, 6% y 5% del total, respectivamente.

El Consumo de Electricidad per cápita a nivel nacional en el 2005 alcanzó los 823

kW.h/hab, siendo Moquegua el departamento con mayor consumo per cápita (9 466

kW.h/hab), seguido de Ica, Pasco, Ancash, Lima y Arequipa con menores niveles.

El número de usuarios llego a los 3.98 millones, de los cuales Lima concentro 1.55

millones seguido de Arequipa y La libertad con alrededor de 230 mil usuarios cada uno.

Tabla Nº4. Población estimada año 2005

Page 32: Fuerza Motriz 11

Año 2006

Al año 2006, el Perú contó con una población de 27,5 millones de habitantes, donde se

Observó que la región Lima, tuvo una mayor participación (29% del total), seguida de

Piura, La Libertad y Cajamarca con indicadores que fluctúan entre 5% y 6% del total

nacional. El consumo total de energía eléctrica, que incluye la venta de energía a

cliente final (22 290 GW.h) y la energía generada para uso propio (1 756 GW.h),

ascendió a 24 046 GW.h. Lima, Moquegua, Ancash, Ica, Callao y Arequipa fueron las

regiones con mayor consumo, y sus participaciones alcanzaron el 42%. 7%, 6%, 6%,

6% y 5% del total, respectivamente. El consumo de energía eléctrica per cápita a nivel

nacional en el año 2006 alcanzó los 872 kW.h/hab. En el ámbito regional, dicho

indicador fue mayor en la región Moquegua que tuvo un consumo per cápita de 9 761

kW.h/hab, seguido de Ica, Pasco, Callao, Ancash, Lima y Arequipa.

El grado de electrificación o la proporción de habitantes que reciben servicio de energía

eléctrica a nivel nacional en el año 2005 fue 78,7 %. Las regiones de Arequipa, Callao,

Ica, Junín, Lambayeque, Lima, Moquegua, Tacna y Tumbes superan en magnitud al

promedio de dicho indicador a nivel del nacional.

El número de usuarios llegó a los 4,17 millones, de los cuales Lima concentró 1,59

millones, seguido de Arequipa y La Libertad con alrededor de 240 mil usuarios.

Asimismo, del total, el 89% se encuentra en el sector Residencial, 10% en el Comercial

que incluye servicios y solo el 1% pertenece al sector Industrial.

Con relación a la capacidad instalada para el mercado eléctrico, entre las regiones con

mayor representatividad podemos mencionar a: Lima con 1 147,8 MW, Huancavelica 1

017,2 MW, Callao 524 MW, Moquegua 411,8 MW, Junín 391,8 MW, Arequipa 360 MW y

Ancash que tuvo 329,0 MW. Para estos casos la potencia efectiva fluctuó entre el 85%

y 90% de la capacidad en dichas regiones. Las regiones que han generado energía en

mayor proporción con relación a la producción total para el mercado eléctrico fueron:

Huancavelica (28,5%), Lima (17,1%), Junín (8,9%), Callao (6,9%), Ancash (5,9%),

Moquegua (5,2%), Ucayali (4,8%) y Arequipa (4,5%). Durante el año 2006, la

distribución de energía a clientes finales (libres y regulados) de las empresas.

Page 33: Fuerza Motriz 11

Tabla Nº5. Población estimada año 2006

Año 2007

En el año 2007 la población del Perú fue de 27,9 millones de habitantes,

correspondiendo a la región Lima, 29% del total, seguida de Piura, La Libertad y

Cajamarca con indicadores que fluctúan entre 5% y 6% del total nacional. El consumo

total de energía eléctrica, fue de 26 464,3 GW.h, de los cuales 24 722 GW.h

corresponden a clientes finales y 1 743 GW.h a uso propio. Lima, Arequipa, Moquegua,

Ancash, Ica y Callao fueron las regiones con mayor consumo, y sus participaciones

alcanzaron el 41%. 8%, 6%, 6%, 5% y 5% del total, respectivamente.

El consumo de energía eléctrica per cápita a nivel nacional en el año 2007 alcanzó los

947 kW.h/hab. En el ámbito regional, dicho indicador fue mayor en la región

Moquegua que tuvo un consumo per cápita de 10 298 kW.h/hab, seguido de Ica,

Pasco, Arequipa, Callao, Lima y Ancash.

El grado de electrificación o la proporción de habitantes que reciben servicio de energía

eléctrica a nivel nacional en el año 2007 fue 79,5 %. Las regiones de Callao, Lima,

Tacna, Arequipa, Ica, Lambayeque, Moquegua, Junín, Tumbes y Ancash superan en

magnitud al promedio de dicho indicador a nivel nacional. El número de usuarios llegó

a los 4,36 millones, de los cuales Lima concentró 1,64 millones, seguido de Arequipa y

Page 34: Fuerza Motriz 11

La Libertad con más de 250 mil usuarios cada uno. Asimismo, del total, el 89% se

encuentra en el sector Residencial, 10% en el Comercial que incluye servicios y solo el

1% pertenece al sector Industrial.

La potencia instalada a nivel nacional alcanzó 7 027,5 MW, entre las regiones con

mayor representatividad están: Lima con 1 701,7 MW, Huancavelica 1 022,8 MW,

Callao 568,1 MW, Arequipa 445,6 MW, Moquegua 440,7 MW, Junín 436,3 MW y

Ancash que tuvo 407,6 MW. Para estos casos la potencia efectiva fluctuó entre el 85%

y 90% de la capacidad en dichas regiones.

La energía total generada por las regiones ascendió a 29 943 GW.h, donde se destacan

las participaciones de las siguientes regiones: Huancavelica (25,3%), Lima (23,0%),

Callao (10,4%), Junín (7,4%), Ancash (5,5%), Ucayali (4,2%), Moquegua (4,0%) y

Arequipa (3,6%). Durante el año 2007, la distribución de energía a clientes finales

(libres y regulados) de las empresas generadoras y distribuidoras fue de 24 722 GW.h.

Lima, Arequipa, Moquegua, Ancash, Ica, Callao y Junín tienen mayores consumos de

energía. Por otro lado, en la mayoría de las regiones (16), la venta estuvo dirigida

principalmente al sector Industrial, tres regiones consumieron más electricidad en el

sector Comercial y Servicios, mientras que 6 regiones tuvieron mayor demanda en el

sector Residencial, estas últimas regiones se encuentran ubicadas en el Centro y

Oriente del país

Tabla Nº6. Población estimada año 2007

Page 35: Fuerza Motriz 11

Año 2008

En el año 2008 el Perú tiene una población de 28,8 millones de habitantes y cuenta con 25

regiones, entre ellas se destaca la región lima que concentra el 31% del total de habitantes

seguido de Piura, La Libertad y Cajamarca con porcentajes de entre 55 y 6% del total, lo cual

muestra la alta concentración de nuestro país en la capital.

El consumo total de energía eléctrica, conformada por la energía generada para uso propio

(1869GW.h) mas la energía vendida a cliente final (26 964GW.h), ascendió a 28 833GW.h. Del

consumo total, Lima tuvo 41% de participación, Arequipa 8%, Moquegua e Ica tuvieron una

participación similar de 6% cada región, mientras Ancash y Callao han consumido 5% del total,

respectivamente.

El consumo de energía eléctrica percápita a nivel nacional es otro indicador importante, en el

año 2008 alcanzo los 1 000,9KW.h/hab, siendo Moquegua la región con mayor consumo

percápita, 10 539,7KW.h/hab, seguida de Ica, Pasco, Arequipa, Callao, Ancash, Lima y Junin con

menores niveles.

El numero de clientes finales llego a 4.6 millones, de los cuales Lima concentro 1,7 millones, a

continuación Arequipa con 279 mil, La Libertad con 270 mil y piura con 261 mil usuarios.

Cuadro Nº 7 Población estimada año 2008

Page 36: Fuerza Motriz 11

Año 2009

El año pasado (2009) el Perú tiene una población de 29.1 millones de habitantes y cuenta con

25 regiones entre ellos se destaca la Región Lima que concentra el 30.8% del total de

habitantes seguida de Piura, La Libertad y Cajamarca con porcentajes de entre 5.1% y 6.0% del

total, lo cual muestra la alta concentración poblacional del país en la capital.

El consumo total de energía eléctrica, conformada por la energía generada pasa uso propio (1

779GW.h) mas la energía vendida a cliente final (27 197GW.h), ascendió a 28 977GW.h. Del

consumo total, Lima tuvo 41.1% de participación, Arequipa 7,7%, Moquegua e Ica Tuvieron

una participación similar de 6% cada región, mientras Callao y Ancash han consumido 5.3% y

5.0% del total, respectivamente.

El consumo de energía eléctrica percápita a nivel nacional es otro indicador importante, en el

año 2009 alcanzo los 994,7KW.h/hab, seguida de Ica, Pasco, Arequipa, Callao; Lima, Ancash y

Junín.

El numero de clientes finales llego a 4,9 millones, de los cuales Lima concentro 1,7 millones, a

continuación de Arequipa con 292 mil, La Libertad con 286 mil y Piura con 273 mil usuarios.

Cuadro Nº 8 Población estimada año 2009

Page 37: Fuerza Motriz 11

LA REGIÓN UCAYALI

De toda la información antes presentada mostraremos un cuadro de resumen de la

Población en la región UCAYALI, Consumo de Energía Eléctrica y el grado de

electrificación por cada año, la cual más adelante nos servirá para hacer una

aproximación del número de pobladores en el año 2031.

Año Población en

Región UCAYALI

Consumo de Energía Eléctrica (GW.h)

Consumo Per cápita

(KW.h/hab.)

Grado de Electrificación

2002 483285 103.82 214.8 63.0%

2003 460557 113.03 245.4 63.0%

2004 464399 121.67 262.0 62.4%

2005 418865 136.13 325.0 67.5%

2006 413760 146.14 353.2 67.5%

2007 419139 162.5 386.6 68,7%

Tabla Nº 9: Población, Consumo de energía y grado de electrificación anual

De toda la información antes presentada mostraremos un cuadro de resumen de la

Población en la región HUANUCO, Consumo de Energía Eléctrica y el grado de

electrificación por cada año, la cual más adelante nos servirá para hacer una

aproximación del número de pobladores en el año 2031

Año Población en

Región HUANUCO

Consumo de Energía Eléctrica (GW.h)

Consumo Per cápita

(KW.h/hab.)

Grado de Electrificación

2002 822027 92.20 112.2 36.9%

2003 822804 99.50 120.9 36.9%

2004 833640 104.55 125.4 38.0%

2005 760690 109.58 144.0 40.9%

2006 797349 121.40 152.3 44.3%

2007 807715 132.60 164.2 47.3%

Tabla Nº 10 Población, Consumo de energía y grado de electrificación anual

Page 38: Fuerza Motriz 11

LA REGIÓN ANCASH

De toda la información antes presentada mostraremos un cuadro de resumen de la

Población en la región ANCASH, Consumo de Energía Eléctrica y el grado de

electrificación por cada año, la cual más adelante nos servirá para hacer una

aproximación del número de pobladores en el año 2031

Año Población en

Región ANCASH

Consumo de Energía Eléctrica (GW.h)

Consumo Per cápita

(KW.h/hab.)

Grado de Electrificación

2002 1100775 634.25 576.2 61.8%

2003 1123410 647.56 576.4 64.1%

2004 1139083 715.19 627.9 63.3%

2005 1081823 1417.08 1309.9 75.5%

2006 1145688 1466.30 1279.8 79.3%

2007 1160582 1531.98 1320.0 79.7%

Tabla Nº 11 Población, Consumo de energía y grado de electrificación anual

Page 39: Fuerza Motriz 11

CRECIMIENTO POBLACIONAL

Calculo del índice de crecimiento poblacional.

Nuestros cálculos están basados para solucionar dicho problema para un periodo de 20

años teniendo en cuenta la Población, Crecimiento Poblacional, Consumo Anual de

Energía (CAE), el Grado de Electrificación (GE) y el índice de crecimiento de la potencia

demandada.

Consumo Per cápita (CP):

Población sin electrificación (PSE):

Energía No Cubierta (ENC):

Potencia Necesaria a Instalar (PNI):

Energía Proyectada:

Potencia Proyectada:

Donde n es número de años e i es la proyección anual de la demanda.

Page 40: Fuerza Motriz 11

CALCULO DE LA POTENCIA A INSTALAR REGION UCAYALI

Año Población en Región

ucayali

Consumo de Energía Eléctrica (GW.h)

Consumo Percápita

(KW.h/hab.)

Grado de Electrificación

Población sin electrificación

en Region Ucayali

Energía No Cubierta (MW.h)

Potencia Necesaria a Instalar

(MW)

2002 483285 103.82 214.8 63.0% 178815 38409558.66 4.38

2003 460557 113.03 %

2004 464399 %

2005 418865 %

2006 413760 %

2007 419139 162.5 386.6 68.7% 131191 50718250 5.79

2011 419234 425.9 69.% 129963 55351045.78 6.32

2031 %

Tabla Nº 12 Población sin electrificación, Energía No Cubierta y Potencia Necesaria a instalar

CALCULO DE LA POTENCIA A INSTALAR REGION HUANUCO

Tabla Nº 13 Población sin electrificación, Energía No Cubierta y Potencia Necesaria a Instalar

Año Población en Región Huanuco

Consumo de Energía Eléctrica (GW.h)

Consumo Percápita

(KW.h/hab.)

Grado de Electrificación

Población sin electrificación

en Region Huanuco

Energía No Cubierta (KW.h)

Potencia Necesaria a Instalar

(MW)

2002 822027 92.20 112.2 36.9% 518699 58198031.9 6.64

2003 822804 99.50 120.9 36.9% 519189 62769950 7.16

2004 833640 104.55 125.4 38.0% 516857 64813842.72 7.39

2005 760690 109.58 144.0 40.9%

2006 797349 121.40 152.3 44.3%

2007 807715 132.60 164.2 47.3% 425666 69894325.18 7.98

2011 823395 140.48 168.26 54.32.% 376292 63314810.31 7.23

2031 %

Page 41: Fuerza Motriz 11

CALCULO DE LA POTENCIA NECESARIA A INSTALAR REGION ANCASH

Tabla Nº 14 Población sin electrificación, Energía No Cubierta y Potencia Necesaria a

Instalar

Año Población en Región

Ancash

Consumo de Energía Eléctrica (GW.h)

Consumo Percápita

(KW.h/hab.)

Grado de Electrificación

Población sin electrificación

en Región Ancash

Energía No Cubierta (KW.h)

Potencia Necesaria a Instalar

(MW)

2002 1100775 634.25 576.2 61.8% 420496 242289824 27.66

2003 1123410 647.56 576.4 64.1% 403304 232464535.1

2004 1139083 715.19 627.9 63.3%

2005 1081823 1417.08 1309.9 75.5%

2006 1145688 1466.30 1279.8 79.3%

2007 1160582 1531.98 1320.0 79.7% 243722 321713330.4 36.73

2011 1201571 1696.0 1668.70 85.54% 180236 300759229.1 34.33

2031 %

Page 42: Fuerza Motriz 11

CALCULO DE LA POTECIA PROYECTADA

Ahora sumaremos todas las potencias necesarias de cada año de las 3 regiones

Año Potencia necesaria a

instalar en MW

2002 36.68

2007 50.50

2011 62.65

2016 86.38

2021 119.11

2026 164.23

2031 226.45

Page 43: Fuerza Motriz 11

CALCULO TERMODINAMICO DEL CICLO SELECCIONADO

Datos Principales

Potencia solicitda 450 MW

Presión de Vapor: 350 bares

Tipo de Vapor: Sobrecalentado

Combustible turbina Gas natural

Combustible Caldero Carbón

Ubicación de la Planta: Ancash

Temperatura ambiente (T5): 21ºC

Presión Atmosférica (P5): 0,94 bar

Datos Considerados

Eficiencia de los generadores (ηg): 95%

Eficiencia mecánica (ηm): 85%

Eficiencia adiabática Turbina a Gas (ηtg): 85%

Eficiencia adiabática Compresor (ηc): 80%

Eficiencia adiabática Turbina a Vapor (ηtv): 90%

Eficiencia adiabática Bomba (ηb): 80%

Eficiencia del caldero recuperador (ηcr): 87%

Relación de presiones (π): 19

Presión a la salida de la Turbina a Vapor (P4): 6.7kpa

Estado de Vapor Sobrecalentado: P3: 350 bar

T3: 450ºC

Page 44: Fuerza Motriz 11

Poder Calorífico de Combustible carbon (PC): 25000 KJ/Kg

Poder calorífico Gas natural (PC) 44000 KJ/ Kg

Exceso de Aire en la Cámara de Combustión: 250%

MOSTRAMOS EL ESQUEMA SIMPLIFICADO DE LA PLANTA

Datos de diseño:

- Potencia eléctrica a generar: 55 MW

- Presión de vapor máxima: 100 bar

- Combustible: GNC

- Ciclo : Sobrecalentado

- Altura 1050 m.s.n.m. (Ancash )

- P atmosférica = 0,893 bar

- T ambiente = 25 C=298k

- aire = 1.21 Kg/m3

Fig. Nº10: Esquema simplificado de la planta

Page 45: Fuerza Motriz 11

ANALISIS DE CICLO DE GAS

Cámara de Combustión

Cálculo de la ecuación de reacción de combustión química

El combustible a utilizar es el GNC y su fórmula química es:

624 04,096,0: HCCHGNC

Combustión Teórica

22222624 .76,304,096,0 dNOcHCOaNObHCCH

Balanceando

Por lo tanto la reacción teórica será:

22222624 75,7.04,2.04,176,306,204,096,0 NOHCONOHCCH

Combustión Real con exceso de aire del 200%

222222624 76,3204,096,0 rOzNOyHxCONObHCCH

Balanceando

Page 46: Fuerza Motriz 11

Por lo tanto la reacción real será:

222222624 09.3364.19.04,2.04,176,312.404,096,0 ONOHCONOHCCH

Cálculo de la Relación Aire-Combustible

69.42

3004,01696,0

14276,33206,22

car

(1)

Cálculo de Calor Específico a presión constante de los gases de combustión (Cpg)

CpfmCpg

9216,0534.25

09.30416,1

534.25

364.198723,1

534.25

04,28418,0

534.25

04,1Cpg

KKg

KJCpg

085.1

(2)

Cálculo del Flujo de Calor Entrante (Qentrada)

rac TTCpgmmPCQentrada 67

00

* (3)

Compresor

Cálculo de Presión (P6) y Temperatura (T6r) a la salida del Compresor

Sabemos:

Π =(P6/P5) = 19 P5 = 18421.05 KPa

KTkT

Tk

k

15,6914.1, 6

1

5

6

KTTT

TTn r

r

c 44,78980,0 6

56

56

(4)

Reemplazando (1), (2) y (4) en (3), tenemos:

KT 38.17397 (5)

Page 47: Fuerza Motriz 11

Cálculo del Trabajo Neto al Compresor (Wnc)

Es la Potencia Neta transmitida de la Turbina a Gas hacia el Compresor.

56 TTCpgmWnc ra

o

(6)

Turbina a gas

Cálculo de la Potencia Neta del Ciclo Joule-Brayton ( )

Teniendo en cuenta que el Potencia Neta en la Turbina a Gas , está

determinada:

(7)

Cálculo de Temperatura Ideal a la salida de la Turbina a Gas (T8r)

KTkT

Tk

k

55.82433,1; 8

1

8

7

KTTT

TTn r

r

tg 3.94385,0 8

87

87

(8)

Cálculo de Flujo Másico de aire, combustible y gases de combustión.

Sabemos que:

r

o

g

gm

ntg TTCpgm

nn

WWncngasturbWideal 87

1 ***

*__

(9)

De (2), (5), (7), (8) y (9), tenemos:

s

Kgm

s

Kgm

s

Kgm

g

o

c

o

a

o

37.120

75.2

62.117

Con estos datos podremos determinar el Flujo de Calor entrante en la Cámara de

Combustión mediante la ecuación (1).

0

cmPCQentrada

Page 48: Fuerza Motriz 11

s

Kg

Kg

MJmPCQentrada c 75.244

0

MWQentrada 121

RESUMEN TURBINA DE GAS

Potencia Turbina(MW) 105

Calor de combustión(MW) 121

Caudal de gases de escape(Kg/s) 120.37

CALDERO RECUPERADOR

Cálculo del Calor Recuperado por el Caldero Recuperador

2398 )( hhmnTTCpgmQ vap

o

crrg

o

CR (10)

Análisis del ciclo de vapor

Turbina de Vapor

Cálculo de la Potencia Neta del Ciclo Rankine (Wn2)

Teniendo en cuenta que el Potencia Neta en la Turbina a Vapor (Wn2), está

determinada:

MWaWproyectadWn 33,1855*3

1

3

12

Determinación de parámetros en la entrada y salida de la Turbina a Vapor

Datos de entrada:

P3 = 100 bar

T3 = 450 ºC (Centrales de Vapor – Gaffert – pag. 557)

De tablas de vapor sobrecalentado:

h3= 3242.278 kJ /kg

Page 49: Fuerza Motriz 11

s3= 6.422 kJ/kg.K

Teniendo en cuenta que en lo ideal: ⁄

Y teniendo como P4=6.32 kPa

Entonces, de la tabla e interpolando:

h4i =1982.37 kJ /Kg

Tenemos tv = 95%

Además sabemos que:

itv

i

tv hhhhhh

hh4334

43

43

4h = 2045.36kJ/kg

Por lo tanto:

Cálculo del Flujo Másico de Vapor

tvgm

nivap

o

vaporturbidealnnn

WhhmW

**)(* 2

43__

(8)

Reemplazando los datos y parámetros en (8), tendremos: s

Kgmvap

o

96.18

RESUMEN TURBINA DE VAPOR

Potencia Turbina(MW) 22.7

Presión de entrada(MPa) 10

Flujo de vapor(Kg/s) 18.96

Page 50: Fuerza Motriz 11

BOMBA DE AGUA

Determinación de parámetros en la entrada y salida de la Bomba

Para la entrada tenemos:

Punto1:

Tsat = T4 = 37.1 ºC

Psat = P4 = 6.32 kPa

De las tablas obtenemos:

s1 = 0.5337 kJ/kg.k

h1= 155.468 kJ /Kg

Punto 2:

Dato: P2 = P3 = 100 bar

s2i = s1 = 0.5337 kJ/kg.k

De tabla e interpolando:

h2i= 165.51 kJ /Kg

Se tiene:

Se sabe que:

1

12

2

12

12 hhh

hhh

hh

b

ii

b

2h = 168.02 kJ /Kg

Por lo tanto

Calentador de agua (intercambiador de calor)

Cálculo del Flujo de Calor Saliente (Qsale)

14

0

hhmQ vapsale

Reemplazando datos y parámetros hallados tenemos: MWQsale 83.35

Page 51: Fuerza Motriz 11

Como la eficiencia del calentador de agua es 92 %, el calor transferido al agua será

de:

MWMWdoQtransferi 96.3292.083.35

En esta etapa de los cálculos también podremos determinar la temperatura de los

gases a la salida del Caldero Recuperador, reemplazando los parámetros determinados

en la ecuación (10)

KT 45.2769

Resumen del ciclo combinado

Potencia del ciclo combinado

MWPOTneta

POtneta

POTvaporPOTgasPOTneta

99,54

33,1866,36

Eficiencia total del ciclo (G/V)

%28.56

95.085.04475.2

99,54

/

/

./

VG

VG

GNCcomb

VG

PCm

netaPOT

Page 52: Fuerza Motriz 11

SELECCIÓN DE LOS COMPONENTES DE LA PLANTA DE GENERACIÓN

Selección de turbina a gas

Según se puede observar en el catálogo deTurbinas a Gas Siemens (ver anexo

01), podemos seleccionar las características de la Turbina a Gas:

CALCULADO SELECCIONADA

POTENCIA 104 MW 47 MW

EFICIENCIA TÉRMICA 85%

RELACIÓN DE COMP. 19 : 1

FLUJO MÁSICO 120.37 Kg/s 131,5 Kg/s

Por lo tanto se selecciona la turbina a gas de Marca SIEMENS Modelo SGT-800

Turbina de gas modelo SGT – 800

Page 53: Fuerza Motriz 11

SELECCIÓN DE TURBINA A VAPOR

Según se puede observar en el catálogo de Turbinas a Vapor Siemens (ver anexo

02), podemos seleccionar las características de Turbina a Vapor:

CALCULADO SELECCIONADO

POTENCIA 22.7 MW Hasta 20 MW

TEMP. INGRESO 450 ºC Hasta 505 ºC

PRESIÓN INGRESO 100 bar 103 bar

Por lo tanto se seleccionará la Turbina a Vapor de Marca SIEMENS Modelo SST-150

Turbina de vapor modelo SST – 150

Page 54: Fuerza Motriz 11

SELECCIÓN DE LA BAMBA DE ALIMENTACION DE CALDERA

Características de la Bomba:

CALCULADO SELECCIONADO

CAUDAL 90.3 m3/h Hasta 2300m3/h

ALTURA 1050 m.s.n.m Hasta 5300 m.s.n.m

TEMPERATURA 38 ºC Hasta 210ºC

PRESIÓN 0.0632 bar Hasta 560 bar

Por lo tanto se seleccionará la Bomba de marca KSB con modelo HG/HD (bomba de

alimentación de calderas).

Bomba de alimentación a la caldera modelo HG/HD

SELECCIÓN DE ABLANDADOR DE AGUA

Según se puede observar en el catálogo de ablandadores de agua (ver anexo 04),

podemos seleccionar las características del ablandador de agua:

CALCULADO SELECCIONADO X2

CAUDAL 90.3 m3/h 104 m3/h

Por lo tanto se seleccionaran dos ablandadores, que trabajaran en paralelo, de

agua Modelo HAA-130

Page 55: Fuerza Motriz 11

Selección de caldero de recuperación

Según se puede observar en el catálogo de calderos de recuperación (ver anexo

05), podemos seleccionar las características del caldero de recuperación:

CALCULADO SELECCIONADO X4

CAUDAL 90.3 ton/h 100 ton/h

Por lo tanto se seleccionaran cuatro calderos de recuperación

ModeloVapoprex3GN,que trabajaran en paralelo

TORRES DE ENFRIAMIENTO

Según se puede observar en el catálogo de torres de enfriamiento (ver anexo 06),

podemos seleccionar las características de la torre de enfriamiento:

CALCULADO SELECCIONADO HD 1510

CAUDAL 90.3 m3/h Hasta 150 m3/h

Por lo tanto se seleccionara el Modelo HD 1510

CORRECCIÓN DE DATOS TERMODINÁMICOS

En lo que respecta a la corrección de datos termodinámicos hemos corrido con suerte

la mayoría de elementos ha coincidido con las especificaciones requeridas, solo la

turbina a vapor representa problemas ya que la presión de admisión tiene como

máximo 104 bar y en nuestros cálculos hemos considerado 120 bar por lo tanto

procedemos al recalculo con una presión de 100 bar.

Recalculo de parámetros de entrada y salida de la turbina de vapor.

Datos de entrada:

P3 = 100 bar

Asumimos la temperatura máxima: T3 = 450 ºC (Centrales de Vapor – Gaffert –

pág. 557)

De tablas de vapor sobrecalentado:

h3= 3240.8 kJ /kg

S3= 6.4189 kJ/kg.K

Para la entrada tenemos: P4 (Presión de vacío) = 50.8mmHg = 0.067bar =

6.7 kPa

Page 56: Fuerza Motriz 11

Entonces, de la tabla e interpolando:

T4 = 38.05 ºC

S4i = S3 = 6.4189 kJ/kg.K

Sabemos que: S4i = Sf + x * Sfg… (1)

De tabla e interpolando:

Sf4i = 0.5462 kJ/kg.k

Sfg4i = 7.7480 kJ/kg.k

hf4i = 159.409 kJ /Kg

hfg4i= 2411.33 kJ /Kg

De (1): 6.4189 = 0.5462 + x * 7.7480

x = 0.758

Además: h4i = hf + x * hfg… (2)

De (2): h4i = 159.409 + 0.758 * 2411.33 = 1986,89 kJ /Kg

Si asumimos tv = 85%

Además sabemos que:

itv

i

tv hhhhhh

hh4334

43

43

4h = 2174,977 kJ/kg

Cálculo del Flujo Másico de Vapor

tvgm

nvap

o

vaporturbidealnnn

WhhmW

**)(* 2

43__

Reemplazando los datos y parámetros, tendremos: s

Kgmvap

o

66,23

Page 57: Fuerza Motriz 11

RESUMEN TURBINA DE VAPOR

Potencia Turbina MW 18,33

Presión de entrada MPA 10

Flujo de vapor Kg/s 23,66

El cálculo nos arroja un flujo menor pero no tan distante del anterior, así que la turbina

elegida anteriormente puede ser usada así como la bomba y demás componentes.

DISPOSICIÓN DE LA PLANTA

Para ubicar la planta de GNC tendremos en consideración tres puntos importantes:

a) La electrificación para poder vender la electricidad generada

b) Si hay disposición de GNC ya que es la materia prima a usar

c) La presencia de agua para el uso de refrigeración.

LA ELECTRIFICACION SEGÚN EL MAPA DEL PERU

a) Según el mapa de electrificación nacional:

Page 58: Fuerza Motriz 11

LA RED DE INTERCONECTADO

Sistema eléctrico Interconectado Nacional

b) Disponibilidad de GNC

En ANCASH se encuentra existen y proyectados como se muestra en las siquientes

imágenes hay disponibilidad de GNC.

Page 59: Fuerza Motriz 11

c) Presencia de agua

Para el uso de sistema de refrigeracion en la planta de GNC se requiere la

disponibilidad de agua tenemos el rio de otusco.

Page 60: Fuerza Motriz 11

ANEXO 01

CATÁLOGO DE TURBINAS A GAS SIEMENS

Page 61: Fuerza Motriz 11

ANEXO 02

CATÁLOGO DE TURBINAS A VAPOR SIEMENS

Page 62: Fuerza Motriz 11

ANEXO 03

MANUAL DE BOMBAS

Page 63: Fuerza Motriz 11

ANEXO 04

CALDERO DE RECUPERACION

Page 64: Fuerza Motriz 11

ANEXO 05

TORRES DE ENFRIAMIENTO

Page 65: Fuerza Motriz 11

ANEXO 06

ABLANDADORES DE AGUA