framework for stochastic modeling of dragline energy efficiency

24
FRAMEWORK FOR STOCHASTIC MODELING OF DRAGLINE ENERGY EFFICIENCY Maryam Abdi Oskouei Dr. Kwame Awuah-offei 1

Upload: maryam-abdi

Post on 25-May-2015

651 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Framework for stochastic modeling of dragline energy efficiency

FRAMEWORK FOR STOCHASTIC

MODELING OF DRAGLINE ENERGY

EFFICIENCY

Maryam Abdi OskoueiDr. Kwame Awuah-offei

1

Page 2: Framework for stochastic modeling of dragline energy efficiency

Introduction

2

Operators’ skills

Operating conditions

Equipment Efficiency

Energy consumption

Page 3: Framework for stochastic modeling of dragline energy efficiency

Objectives:• Study the effects of operators’ practice on

dragline energy efficiency– t-test

• Study the relation between operating parameters and energy efficiency to create a framework for stochastic model of dragline energy efficiency– Correlation analysis

3

Page 4: Framework for stochastic modeling of dragline energy efficiency

Dragline operation

4

Hoist Bucket

Swing out

Dump material

Swing in (Return)

Spot Bucket

Fill Bucket

• A cycle of dragline operation

Ho

ist

Drag

Swing

Page 5: Framework for stochastic modeling of dragline energy efficiency

Data Acquisition

• A coal mine in Powder River basin, Wyoming• Dragline Bucyrus-Erie 1570w – 85 yd3 removes the

blasted overburden5

6- 1300 HP hoist motors4-1300 HP drag motors4- 1045 HP swing motors

Page 6: Framework for stochastic modeling of dragline energy efficiency

Monitoring system• AccuWeigh monitoring system

– Real time monitoring system• Records operating parameters in each cycle

– Adjusted to record energy consumption of three sets of motors

– Records 44 parameters in each cycle stores in database

– 34,327 cycles recorded in 33 days6

Page 7: Framework for stochastic modeling of dragline energy efficiency

Statistical analysis

• Useful parameters # Parameter1 Cycle time2 Swinging out time3 Swing in time4 Bucket loading time5 Dumping time6 Spotting time7 Angle of swinging out8 Bucket loading energy9 Dumping height10 Payload11 Drag energy12 Hoist energy13 Swing energy

Cycle time & cycle time components

Energy consumption

7

Page 8: Framework for stochastic modeling of dragline energy efficiency

Removing the outliers

• Outliers cause inaccurate inferences in the analysis– Number of bucket reloads

Bucket Reload Count Proportion (%)

1 33,493 97.56

2 738 2.15

3 or more 96 0.28

8

Page 9: Framework for stochastic modeling of dragline energy efficiency

Boxplot

9

Middle quartile/ median

• Boxplot is used to identify the outliers Upper whisker

Upper quartile (q3)

Lower quartile (q1)

Lower whisker

Quartile group 1

Quartile group 2

Quartile group 3

Quartile group 425%

25%

25%

25%

++

+

+outlier

+

• Upper whisker = q3+1.5(q3-q1)

• Lower whisker = q1-1.5(q3-q1)

Page 10: Framework for stochastic modeling of dragline energy efficiency

Removing the outliers

10

Page 11: Framework for stochastic modeling of dragline energy efficiency

Operators• 13 operators operated during the 33 days• Working hours more than 32 hours or 2,200 cycles

Operator# of

cyclesTime

(hours)

Material weight

(tonnes)

Energy (kw-h)

Hourly production

(tonnes/hours)

A 3,897 56.9 496,18 44,850 8,719

B 3,611 54.6 450,22 43,894 8,243

C 3,350 49.6 427,23 39,827 8,613

D 3,058 45.6 383,55 36,879 8,404

E 2,211 32.8 277,55 23,395 8,46911

Page 12: Framework for stochastic modeling of dragline energy efficiency

Energy Efficiency• η – energy efficiency• P – payload• E – energy consumption

A B C D E9.5

10

10.5

11

11.5

12

12.5

13

En

erg

y E

ffic

ien

cy

(to

nn

es/K

w-h

)

12

𝜂=𝑈𝑠𝑒𝑓𝑢𝑙𝑤𝑜𝑟𝑘𝐼𝑛𝑝𝑢𝑡𝑒𝑛𝑒𝑟𝑔𝑦

≅𝑃𝐸

Page 13: Framework for stochastic modeling of dragline energy efficiency

Normality

• To use the t-test data must follow normal distribution

• Kolmogrov-Smirnov test on energy efficiency of different operators rejects the hypothesis of normality

13

Page 14: Framework for stochastic modeling of dragline energy efficiency

Data transformation

• Right skewness• Log transformation

• The assumption of data follows normal distribution is valid:

Histogram plots Central limit theorem

14

Page 15: Framework for stochastic modeling of dragline energy efficiency

Results of the t-tests

Operators

Degree of

freedom

Pooled standard deviation

t-statistics CI p-value

D-B 6667 0.1026 2.1065 0.0004 0.0103 0.0352D-E 5267 0.1004 -19.6816 0.0606 -0.0497 <0.001D-A 6953 0.1028 -9.8622 -0.0294 0.0196 <0.001D-C 6406 0.1015 -4.0432 -0.0152 -0.0053 <0.001B-E 5820 0.1000 -22.3968 -0.0657 -0.0552 <0.001B-A 7506 0.1023 -12.6113 -0.0344 -0.0252 <0.001B-C 6959 0.1011 -6.4241 -0.0203 -0.0108 <0.001E-A 6106 0.1003 -11.4764 -0.0359 -0.0254 <0.001E-C 5559 0.0985 -16.6271 -0.0502 -0.0396 <0.001A-C 7245 0.1013 5.9610 0.0096 0.0189 <0.001

at 5% significance level all the t-tests reject the hypothesis of equal mean

15

Page 16: Framework for stochastic modeling of dragline energy efficiency

Pearson correlation

• Evaluate the relation between operating parameters and energy consumptions of swing, drag and hoist motors

16

Page 17: Framework for stochastic modeling of dragline energy efficiency

Swing Energy

Parameters PCC p-value

Swing angle 0.86 <0.0001

Cycle time 0.61 <0.0001

Swing out time 0.50 <0.0001

17

Page 18: Framework for stochastic modeling of dragline energy efficiency

Swing Energy

18

PCC = 0.62 , p-value<0.0001

PCC = 0.57 , p-value<0.0001

PCC = 0.57 , p-value<0.0001

Parameters PCC p-value

Swing angle 0.86 <0.0001

Cycle time 0.61 <0.0001

Swing out time

0.50 <0.0001

• Evaluate the relation between these parameters to avoid confounding and duplicity in the model

Page 19: Framework for stochastic modeling of dragline energy efficiency

Swing Energy

19

𝐸𝑆𝑤𝑖𝑛𝑔= 𝑓 𝑠 (𝜔𝑠 ) 𝑡𝑠

Swing power

𝑆𝑤𝑖𝑛𝑔𝑠𝑝𝑒𝑒𝑑(𝜔𝑠)=𝑆𝑤𝑖𝑛𝑔𝑎𝑛𝑔𝑙𝑒𝑆𝑤𝑖𝑛𝑔𝑡𝑖𝑚𝑒

PCC = 0.80, p-value<0.0001

Page 20: Framework for stochastic modeling of dragline energy efficiency

Hoist Energy

Parameters PCC p-value

Dump height 0.84 <0.0001

Dump time 0.36 <0.0001

Payload 0.34 <0.0001

20

𝐸𝐻𝑜𝑖𝑠𝑡= 𝑓 h (h𝑑+𝑡𝑑𝑝+𝑃 ) 𝑡h

Hoist power

Page 21: Framework for stochastic modeling of dragline energy efficiency

Drag Energy

Parameters PCC p-value

Bucket loading energy 0.84 <0.0001

Loading time 0.36 <0.0001

21

Page 22: Framework for stochastic modeling of dragline energy efficiency

Drag Energy

Parameters PCC p-value

Bucket loading energy

0.84 <0.0001

Loading time 0.36 <0.0001

22

PCC = 0.82 , p-value<0.0001

𝐸𝐷𝑟𝑎𝑔= 𝑓 𝐷 ( 𝑙𝑡 ) 𝑡𝑑

Drag power

Page 23: Framework for stochastic modeling of dragline energy efficiency

Framework of stochastic model

Drag power Swing powerHoist power

, ,t d t d h d dp h s s sE f l t f h t P t f t

23

Drag power Swing powerHoist power

Energy efficiency, , ,t d t d h d dp h s s s

P P

E f l t f h t P t f t

Page 24: Framework for stochastic modeling of dragline energy efficiency

Question?

24