fluidized bed reactor.ppt

23
Fluid Bed Reactors Chapter (Not in book) CH EN 4393 Terry A. Ring

Upload: helberth-lopes

Post on 26-Oct-2015

448 views

Category:

Documents


19 download

TRANSCRIPT

Page 1: Fluidized bed reactor.ppt

Fluid Bed Reactors

Chapter (Not in book)

CH EN 4393

Terry A. Ring

Page 2: Fluidized bed reactor.ppt

Fluidization

• Minimum Fluidization– Void Fraction– Superficial Velocity

• Bubbling Bed Expansion

• Prevent Slugging– Poor gas/solid contact

Page 3: Fluidized bed reactor.ppt

Fluidization

• Fluid Bed– Particles– mean particle size, Angular

• Shape Factor• Void fraction = 0.4 (bulk density)

Geldart, D. Powder Technology 7,285(1973), 19,133(1978)

Page 4: Fluidized bed reactor.ppt

FluidizationRegimes

Page 5: Fluidized bed reactor.ppt

Fluidization Regimes

• Packed Bed

• Minimum Fluidization

• Bubbling Fluidization

• Slugging (in some cases)

• Turbulent Fluidization

Page 6: Fluidized bed reactor.ppt

Minimum Fluidization

• Bed Void Fraction at Minimum Fluidization

Page 7: Fluidized bed reactor.ppt

Overlap of phenomenon

• Kinetics– Depend upon solid content in bed

• Mass Transfer– Depends upon particle Re number

• Heat Transfer– Depends upon solid content in bed and gas Re

• Fluid Dynamics– Fluidization – function of particle Re– Particle elution rate – terminal settling rate vs gas

velocity– Distribution Plate Design to prevent channeling

Page 8: Fluidized bed reactor.ppt

Packed Bed

• Pressure Drop

P vo LR

vo

Dp

1

3

150 1 ( )

Dp

1.75 vo

Void Fraction, ε=0.2-0.4, Fixed

0 0.2 0.4 0.6 0.810

100

1 103

1 104

1 105

P vft

s

psi

v

Page 9: Fluidized bed reactor.ppt

Now if particles are free to move?

• Void Fraction

0 0.2 0.40

0.2

0.4

0.6

0.8

Superficial Gas Velocity (ft/s)

Bed

Voi

d F

ract

ion f vo

ft

s

mf

f vR

vo

Gmf

ft

s

vR

ft

s

P f vo if vo

Gmf

LR

vo

Dp

1 f vo

f vo 3

150 1 f vo

Dp

1.75 vo

LR

vo

Dp

1

3

150 1 ( ) Dp

1.75 vo

Void Fraction, ε=0.2-0.4 packed BecomesεMF=0.19 to εF=0.8.

MF Pressure drop equals the weight of Bed

015 2 1 ( )

3

vo Dp

1.75

3

vo Dp

2

Dp

3 S g

2

Page 10: Fluidized bed reactor.ppt

Fluid Bed Pressure Drop

• Lower Pressure Drop @ higher gas velocity

• Highest Pressure Drop at onset of fluidization

0 0.2 0.40

20

40

60

Superficial Gas Velocity (ft/s)

Pre

ssur

e D

rop

(psi

)

P f voft

s

psi

P mf

psi

P f vR psi

vo

Gmf

ft

s

vR

ft

s

Page 11: Fluidized bed reactor.ppt

Bed at Fluidization Conditions

• Void Fraction is High

• Solids Content is Low

• Surface Area for Reaction is Low

• Pressure Drop is Low

• Good Heat Transfer

• Good Mass Transfer

Page 12: Fluidized bed reactor.ppt

Distributor Plate Design

• Pressure Drop over the Distributor Plate should be 30% of Total Pressure Drop ( bed and distributor) – Pressure drop at distributor is ½ bed pressure

drop.

• Bubble Cap Design is often used

Page 13: Fluidized bed reactor.ppt

Bubble Caps

• Advantages– Weeping is reduced or totally avoided

• Sbc controls weeping– Good turndown ratio– Caps stiffen distributor plate– Number easily modified

• Disadvantages– Expensive– Difficult to avoid stagnant regions– More subject to bubble coalescence– Difficult to clean– Difficult to modify

From Handbook of Fluidization and Fluid-Particle Systems By Wen-Ching Yang

Page 14: Fluidized bed reactor.ppt

Bubble Cap Design

• Pressure drop controlled by – number of caps– stand pipe diameter– number of holes

• Large number of caps– Good Gas/Solid Contact

• Minimize dead zones• Less bubble coalescence

– Low Pressure Drop

Page 15: Fluidized bed reactor.ppt

Pressure Drop in Bubble Caps

• Pressure Drop Calculation Method• Compressible Fluid• Turbulent Flow

– Sudden Contraction from Plenum to Bottom of Distributor Plate

– Flow through Pipe– Sudden Contraction from Pipe to hole– Flow through hole– Sudden Expansion into Cap

Page 16: Fluidized bed reactor.ppt

Elution of Particles from Bed

• Particle Terminal Setting Velocity

• When particles are small they leave bed

Terminal Settling Velocity

0 50 100 150 2000

1

2

3

4

Particle Diameter (microns)

Term

inal S

ettlin

g Velo

city (

ft/s)

Gas Velocity

vt4

3

g Dp

f

S

2Dp

2

2

S g

9

Page 17: Fluidized bed reactor.ppt

Cyclone

• Used to capture eluted particles and return to fluid bed

• Design to capture most of eluted particles

• Pressure Drop

Big particles

P i V( ) 0.24 V2

Page 18: Fluidized bed reactor.ppt

Cyclone Design

• Inlet Velocity as a function of Cyclone Size

• Cut Size (D50%)

Cyclone EquationsPerry's HB 5th ed, P 20-85+7th ed, 17-28

Vin Dc QR

Dc2

4 2

D50 Dc 9

Dc

4

N Vin Dc Vin Dc Si

1

2

D50 Dc 9

Dc

4

N Vin Dc Vin Dc Si

1

2

Dc = Cyclone diameter

Page 19: Fluidized bed reactor.ppt

Cyclone Cut Size

• Diameter where 50% leave, 50% captured

0 1 2 3 40

10

20

30

40

50

60

70

80

90

100

Cyclone Diameter(ft)

Cut

Siz

e P

artic

le D

iam

eter

(m

icro

ns)

D50

9 Dc

4

N Vin S

1

2

Page 20: Fluidized bed reactor.ppt

Size Selectivity Curve

20 40 600

0.2

0.4

0.6

0.8

24 in cyclone14 in cycloneD50 for 24 in Cyclone20 in cycloneDiameter of Eluted Particles

Particle Diameter (microns)

Siz

e S

elec

tivity

SS D( ) 1 exp 0.693D

D50

3.12

Page 21: Fluidized bed reactor.ppt

Mass Transfer

• Particle Mass Transfer– Sh= KMTD/DAB = 2.0 + 0.6 Re1/2 Sc1/3

• Bed Mass Transfer– Complicated function of

• Gas flow• Particles influence turbulence• Particles may shorten BL• Particles may be inert to MT

Page 22: Fluidized bed reactor.ppt

Fluid Bed Reactor Conclusions

• The hard part is to get the fluid dynamics correct

• Kinetics, MT and HT are done within the context of the fluid dynamics

Page 23: Fluidized bed reactor.ppt

Heat Transfer

• Particle Heat Transfer– Nu= hD/k = 2.0 + 0.6 Re1/2 Pr1/3

• Bed Heat Transfer– Complicated function of

• Gas flow• Particle contacts