fig. 18-3b-2 (b) tryptophan present, repressor active, operon off tryptophan (corepressor) no rna...

21
Fig. 18-3b-2 (b) Tryptophan present, repressor active, operon off Tryptophan (corepressor ) No RNA made Active represso r mRNA Protein DNA

Upload: francis-antony-gray

Post on 02-Jan-2016

222 views

Category:

Documents


0 download

TRANSCRIPT

Fig. 18-3b-2

(b) Tryptophan present, repressor active, operon off

Tryptophan(corepressor)

No RNA made

Activerepressor

mRNA

Protein

DNA

Fig. 18-4b

(b) Lactose present, repressor inactive, operon on

mRNA

Protein

DNA

mRNA 5

Inactiverepressor

Allolactose(inducer)

5

3

RNApolymerase

Permease Transacetylase

lac operon

-Galactosidase

lacYlacZ lacAlacI

Fig. 18-6

DNA

Signal

Gene

NUCLEUS

Chromatin modification

Chromatin

Gene availablefor transcription

Exon

Intron

Tail

RNA

Cap

RNA processing

Primary transcript

mRNA in nucleus

Transport to cytoplasm

mRNA in cytoplasm

Translation

CYTOPLASM

Degradationof mRNA

Protein processing

Polypeptide

Active protein

Cellular function

Transport to cellulardestination

Degradationof protein

Transcription

Levels of gene regulation in eukaryotes

- Eukaryotes can control the availability of DNA for expression by altering the extent of DNA packing

Fig. 16-21a

DNA double helix (2 nm in diameter)

Nucleosome(10 nm in diameter)

Histones Histone tailH1

DNA, the double helix Histones Nucleosomes, or “beads on a string” (10-nm fiber)

Figure 18.7

Amino acidsavailablefor chemicalmodification

Histone tails

DNA double helix

Nucleosome(end view)

(a) Histone tails protrude outward from a nucleosome

Unacetylated histones Acetylated histones(b) Acetylation of histone tails promotes loose chromatin

structure that permits transcription

Figure 7-80 Molecular Biology of the Cell (© Garland Science 2008)

Fig. 15-8X chromosomes

Early embryo:

Allele fororange fur

Allele forblack fur

Cell division andX chromosomeinactivationTwo cell

populationsin adult cat:

Active XActive X

Inactive X

Black fur Orange fur

Fig. 18-7

Histonetails

DNAdouble helix

(a) Histone tails protrude outward from a nucleosome

Acetylated histones

Aminoacidsavailablefor chemicalmodification

(b) Acetylation of histone tails promotes loose chromatin structure that permits transcription

Unacetylated histones

Fig. 15-18Normal Igf2 alleleis expressed

Paternalchromosome

Maternalchromosome

Normal Igf2 alleleis not expressed

Mutant Igf2 alleleinherited from mother

(a) Homozygote

Wild-type mouse(normal size)

Mutant Igf2 alleleinherited from father

Normal size mouse(wild type)

Dwarf mouse(mutant)

Normal Igf2 alleleis expressed

Mutant Igf2 alleleis expressed

Mutant Igf2 alleleis not expressed

Normal Igf2 alleleis not expressed

(b) Heterozygotes

Figure 7-82 Molecular Biology of the Cell (© Garland Science 2008)

Fig. 18-6

DNA

Signal

Gene

NUCLEUS

Chromatin modification

Chromatin

Gene availablefor transcription

Exon

Intron

Tail

RNA

Cap

RNA processing

Primary transcript

mRNA in nucleus

Transport to cytoplasm

mRNA in cytoplasm

Translation

CYTOPLASM

Degradationof mRNA

Protein processing

Polypeptide

Active protein

Cellular function

Transport to cellulardestination

Degradationof protein

Transcription

Levels of gene regulation in eukaryotes

-Alternative splicing can be generated

Fig. 18-11

or

RNA splicing

mRNA

PrimaryRNAtranscript

Troponin T gene

Exons

DNA

Alternative splicing

The DSCAM gene (Drosophila): ~38,000 possible splice variants

Fig. 18-6

DNA

Signal

Gene

NUCLEUS

Chromatin modification

Chromatin

Gene availablefor transcription

Exon

Intron

Tail

RNA

Cap

RNA processing

Primary transcript

mRNA in nucleus

Transport to cytoplasm

mRNA in cytoplasm

Translation

CYTOPLASM

Degradationof mRNA

Protein processing

Polypeptide

Active protein

Cellular function

Transport to cellulardestination

Degradationof protein

Transcription

Levels of gene regulation in eukaryotes

- Proteins can be selectively degraded

Fig. 18-12

Proteasomeand ubiquitinto be recycledProteasome

Proteinfragments(peptides)Protein entering a

proteasome

Ubiquitinatedprotein

Protein tobe degraded

Ubiquitin

Ubiquitin ligase

Fig. 12-17b

Cyclin isdegraded

Cdk

MPF

Cdk

MS

G 1G2

checkpoint

Degradedcyclin

Cyclin

(b) Molecular mechanisms that help regulate the cell cycle

G 2

Cyclin accumulation

Fig. 12-6d

Metaphase Anaphase Telophase and Cytokinesis

Cleavagefurrow

Nucleolusforming

Metaphaseplate

Centrosome atone spindle pole

SpindleDaughterchromosomes

Nuclearenvelopeforming

Fig. 18-6

DNA

Signal

Gene

NUCLEUS

Chromatin modification

Chromatin

Gene availablefor transcription

Exon

Intron

Tail

RNA

Cap

RNA processing

Primary transcript

mRNA in nucleus

Transport to cytoplasm

mRNA in cytoplasm

Translation

CYTOPLASM

Degradationof mRNA

Protein processing

Polypeptide

Active protein

Cellular function

Transport to cellulardestination

Degradationof protein

Transcription

Levels of gene regulation in eukaryotes

Small, non-coding RNAs can affect gene regulation at multiple levels

Fig. 18-6

DNA

Signal

Gene

NUCLEUS

Chromatin modification

Chromatin

Gene availablefor transcription

Exon

Intron

Tail

RNA

Cap

RNA processing

Primary transcript

mRNA in nucleus

Transport to cytoplasm

mRNA in cytoplasm

Translation

CYTOPLASM

Degradationof mRNA

Protein processing

Polypeptide

Active protein

Cellular function

Transport to cellulardestination

Degradationof protein

Transcription

Levels of gene regulation in eukaryotes

Small, non-coding RNAs can affect gene regulation at multiple levels

Nematodes with a GFP transgene Nematodes with a GFP transgene

Treated with GFP dsRNA

dsRNA can reduce gene expression for generations

Fig. 18-13

miRNA-proteincomplex(a) Primary miRNA transcript

Translation blocked

Hydrogenbond

(b) Generation and function of miRNAs

Hairpin miRNA

miRNA

Dicer

3

mRNA degraded

5