extended sibships danielle posthuma kate morley files: \\danielle\extsibs

33
Extended sibships Danielle Posthuma Kate Morley Files: \\danielle\ExtSibs

Post on 20-Dec-2015

236 views

Category:

Documents


1 download

TRANSCRIPT

Extended sibships

Danielle PosthumaKate Morley

Files: \\danielle\ExtSibs

TC 19 - Boulder 2006

Classic Twin Design

ACE / ADE heterogeneity multivariate Sibling interaction Developmental

Issues generalizibility >Additional Siblings Assortative mating >Parents/spouses Cultural transmission >Parents

Twins share the same womb at the same time, this may not only make them more similar, but sharing the womb itself may also lead to complications specific to twin births, rendering twins unrepresentative of the normal population

Due to assortative mating, DZ twin correlations will rise, leading to increased estimates of C.Cultural transmission may lead to GE covariance in the offspring

TC 19 - Boulder 2006

Random vs Assortative Mating Random mating

Assortment will increase DZ correlations When fitting ACE model, with assortment present, C will be

overestimated When fitting AE model, with assortment present, A will be

overestimated

TC 19 - Boulder 2006

There is more than the classical twin design Larger pedigrees

Parent-offspring (incl. cultural transmission, assortative mating)

Grandparents-parents-offspring Spouses of co-twins/siblings Larger sibships

Adoption studies MZA DZA MZT DZT Non-biological siblings Virtual twins (non-biological siblings of same age)

Parent - Offspring

TC 19 - Boulder 2006

Genetic Transmission Model

Genetic transmission Fixed at .5

Residual Genetic Variance Fixed at .5 Equilibrium of variances

across generations

P M

P m P f

A

A A

A

a a

a a

.5 .5.5.5P F

1

.5

1

.5

E

e

1

E

e

1

E

e

1

E

e

1

TC 19 - Boulder 2006

Common Environment Model

Common environment Same for all family

members Assortment

Function of common environment

P M

P m P f

A

A A

A C

a a

a

c c

c c

.5 .5.5.5P F

1

.5

11

.5

E

e

1

E

e

1

E

e

1

E1

ae

TC 19 - Boulder 2006

Social Homogamy Model

Assortment Social

Cultural Transmission From C to C

Non-parental Shared Environment Residual

P M

P m P f

A

A A

C

C

A C

a a

a a

c c

c c

.5 .5.5.5P F

1

r .5

111

.5

E

e

1

E

e

1

E

e

1

E

e

1

f f

d

TC 19 - Boulder 2006

Phenotypic Assortment Model Assortment

Phenotypic Cultural Transmission

From P to C Non-parental Shared

Environment Residual

Genotype-Environment Covariance

P M

P m P f

A

A A

C

C

A C

a a

a a

c c

c c

.5 .5.5.5P F

g

r .5

gxx

.5

E

e

1

E

e

1

E

e

1

E

e

1

f f

d

s s

Spouses and offspring of twins

TC 19 - Boulder 2006

Model for spouses and children of twins (Eaves)

Extended sibships

TC 19 - Boulder 2006

Twins Only

1

P-t1

E AC C A E

ec ecaa

P-t2

1/0.5

TC 19 - Boulder 2006

MZ

t1 t2

t1 a2+c2+e2 a2+c2

t2 a2+c2 a2+c2+e2

DZ

t1 t2

t1 a2+c2+e2 0.5a2+c2

t2 0.5a2+c2 a2+c2+e2

In Mx:

MZ group:

A+C+E | A+C_

A+C | A+C+E ;

In Mx:

DZ group:

A+C+E | H@A+C_

H@A+C| A+C+E ;

Twins Only: var-cov matrices

TC 19 - Boulder 2006

Adding siblings

Is easy!

But why should I?

TC 19 - Boulder 2006

0

500

1000

1500

2000

2500

3000

c2 = 0 c2 = .1 c2 = .2 c2 = 0 c2 = .1 c2 = .2 c2 = 0 c2 = .1 c2 = .2

h2 = .3 h2 = .3 h2 = .3 h2 = .4 h2 = .4 h2 = .4 h2 = .5 h2 = .5 h2 = .5

twins only

twins and one additionalsibling

twins and two additionalsiblings

Sam

ple

size

in s

ubje

cts

Sample size required to detect A With power of 80% and probability of 5%

TC 19 - Boulder 2006

0

200

400

600

800

1000

1200

1400

1600

h2 = 0 h2 = .1 h2 = .2 h2 = 0 h2 = .1 h2 = .2 h2 = 0 h2 = .1 h2 = .2

c2 = .3 c2 = .3 c2 = .3 c2 = .4 c2 = .4 c2 = .4 c2 = .5 c2 = .5 c2 = .5

twins only

twins and one additionalsibling

twins and two additionalsiblings

Sam

ple

size

in s

ubje

cts

Sample size required to detect C With power of 80% and probability of 5%

TC 19 - Boulder 2006

Larger sibships

Provides a bit more power to detect AProvides a lot more power to detect C

Since C is usually small (e.g. A = .60, C = .20, E = .20), C is usually dropped from the model as it is not significant. As C is a familial source of variance, part of it will the end up in A, which will now be overestimated. Therefore, more power for C protects against overestimation of A.

TC 19 - Boulder 2006

Larger sibships

Will also allow you to test certain assumptions such as: Are twins different from singletons with respect to

means? Are twins different from singletons with respect to

variances? Do DZ twins correlate any different than non-twin

sibpairs?

TC 19 - Boulder 2006

1

P-t1

E AC C A E

ec ecaa

P-t2

1/0.5

A C E

eca

P-s1

10.5

10.5

Adding siblings

TC 19 - Boulder 2006

MZ and one additional sibling

t1 t2 s1

t1 a2+c2+e2 a2+c2 0.5a2+c2

t2 a2+c2 a2+c2+e2 0.5a2+c2

s1 0.5a2+c2 0.5a2+c2 a2+c2+e2

DZ and one additional sibling

t1 t2 s1

t1 a2+c2+e2 0.5a2 +c2 0.5a2+c2

t2 0.5a2 +c2 a2+c2+e2 0.5a2+c2

s1 0.5a2+c2 0.5a2+c2 a2+c2+e2

TC 19 - Boulder 2006

.

Exercise

Copy TwinsOnly.mx and mriiq.rec Open Mx script TwinsOnly.mx

Modify this script such that Data from sib 1 is included Data from sib 1 to sib 6 are included Check –2ll, df, estimated pms, n observations for

each model

TC 19 - Boulder 2006

-2ll df est obs

Twins 3878.177 494 4 498

Twins +1 5025.192 639 4 643

Twins +6 5388.980 684 4 688

TC 19 - Boulder 2006

Adding more siblings becomes tedious!

(and errorprone..)

MZ’s and 6 additional siblings

A+C+E | A+C | H@A+C |H@A+C | H@A+C |H@A+C | H@A+C |H@A+C _

A+C | A+C+E | H@A+C |H@A+C | H@A+C |H@A+C | H@A+C |H@A+C _

H@A+C | H@A+C | A+C+E |H@A+C | H@A+C |H@A+C | H@A+C |H@A+C _

H@A+C | H@A+C | H@A+C | A+C+E | H@A+C |H@A+C | H@A+C | H@A+C __

H@A+C | H@A+C | H@A+C | H@A+C | A+C+E |H@A+C | H@A+C | H@A+C __

H@A+C | H@A+C | H@A+C | H@A+C | H@A+C |A+C+E | H@A+C | H@A+C __

H@A+C | H@A+C | H@A+C | H@A+C | H@A+C |H@A+C | A+C+E | H@A+C __

H@A+C | H@A+C | H@A+C | H@A+C | H@A+C |H@A+C | H@A+C | A+C+E ;

TC 19 - Boulder 2006

Adding more siblings

6 extra siblings

MZ’s and 6 additional siblings

A+C+E | A+C | H@A+C |H@A+C | H@A+C |H@A+C | H@A+C |H@A+C _

A+C | A+C+E | H@A+C |H@A+C | H@A+C |H@A+C | H@A+C |H@A+C _

H@A+C | H@A+C | A+C+E |H@A+C | H@A+C |H@A+C | H@A+C |H@A+C _

H@A+C | H@A+C | H@A+C | A+C+E | H@A+C |H@A+C | H@A+C | H@A+C __

H@A+C | H@A+C | H@A+C | H@A+C | A+C+E |H@A+C | H@A+C | H@A+C __

H@A+C | H@A+C | H@A+C | H@A+C | H@A+C |A+C+E | H@A+C | H@A+C __

H@A+C | H@A+C | H@A+C | H@A+C | H@A+C |H@A+C | A+C+E | H@A+C __

H@A+C | H@A+C | H@A+C | H@A+C | H@A+C |H@A+C | H@A+C | A+C+E ;

TC 19 - Boulder 2006

MZ’s and 6 additional siblings

1 | 1 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 _

1 | 1 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 _

0.5 | 0.5 | 1 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 _

0.5 | 0.5 | 0.5 | 1 | 0.5 | 0.5 | 0.5 | 0.5 _

0.5 | 0.5 | 0.5 | 0.5 | 1 | 0.5 | 0.5 | 0.5 _

0.5 | 0.5 | 0.5 | 0.5 | 0.5 |1 | 0.5 | 0.5 _

0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 1 | 0.5 _

0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 1 ;

@ A =

A | A | 0.5A | 0.5A | 0.5 A| 0.5A| 0.5A | 0.5A _

A | A | 0.5A | 0.5A | 0.5A | 0.5A | 0.5A | 0.5A _

0.5A | 0.5A | A | 0.5A | 0.5A | 0.5A | 0.5A | 0.5A _

0.5A | 0.5A | 0.5A | A | 0.5A | 0.5A | 0.5A | 0.5A _

0.5A | 0.5A | 0.5A | 0.5A | A | 0.5A | 0.5A | 0.5A _

0.5A | 0.5A | 0.5A | 0.5A | 0.5A |A | 0.5A | 0.5A _

0.5A | 0.5A | 0.5A | 0.5A | 0.5A | 0.5A | A | 0.5A _

0.5A | 0.5A | 0.5A | 0.5A | 0.5A | 0.5A | 0.5A | A ;

Q@A

TC 19 - Boulder 2006

Twin pair and 6 additional siblings

1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 _

1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 _

1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 _

1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 _

1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 _

1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 _

1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 _

1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 ;

@ C =

C | C | C | C | C | C | C | C _

C | C | C | C | C | C | C | C _

C | C | C | C | C | C | C | C _

C | C | C | C | C | C | C | C _

C | C | C | C | C | C | C | C _

C | C | C | C | C | C | C | C _

C | C | C | C | C | C | C | C _

C | C | C | C | C | C | C | C ;

S@C, S Unit 8 8

TC 19 - Boulder 2006

Twin pair and 6 additional siblings

1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 _

0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 _

0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 _

0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 _

0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 _

0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 _

0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 _

0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 ;

@ E =

E | 0 | 0 | 0 | 0 | 0 | 0 | 0 _

0 | E | 0 | 0 | 0 | 0 | 0 | 0 _

0 | 0 | E | 0 | 0 | 0 | 0 | 0 _

0 | 0 | 0 | E | 0 | 0 | 0 | 0 _

0 | 0 | 0 | 0 | E | 0 | 0 | 0 _

0 | 0 | 0 | 0 | 0 | E | 0 | 0 _

0 | 0 | 0 | 0 | 0 | 0 | E | 0 _

0 | 0 | 0 | 0 | 0 | 0 | 0 | E ;

T@E, T = Ident 8 8

TC 19 - Boulder 2006

.

Mx

Copy Twins&6.mx Open Twins&6.mx

TC 19 - Boulder 2006

.

Exercise

Modify this script for maximum nr of siblings = 3, 4, or 5, write down –2ll, df, estimated pms, n observations for each model

TC 19 - Boulder 2006

-2ll df est obs

Twins 3878.177 494 4 498

Twins +1 5025.192 639 4 643

Twins +2 5279.002 671 4 675

Twins +3 5337.380 678 4 682

Twins +4 5374.617 682 4 686

Twins +5 5381.883 683 4 687

Twins +6 5388.980 684 4 688

TC 19 - Boulder 2006

Exercise

Modify the script with 6 additional siblings (so 8 persons) to a bivariate script for wmem and greym. If correct:

-2ll=8083.085, df = 935 You can start the mean for wmem at 60 and

the mean for greym at 400. all variance components (SD) can be started at 30

Add standardization matrices for A and E

TC 19 - Boulder 2006

In Summary

Be aware of assumptions of the twin design

Adding additional persons: add expectations to Covariance statement

Adding additional phenotypes: change matrix dimensions