extended nijboer-zernike analysis for vectorial diffraction … · 2006-09-18 · extended...
Embed Size (px)
TRANSCRIPT

Extended Nijboer-Zernike Analysis (vectorial)IISB Fraunhofer Lithography Workshop
17-19 September 2004Sense and Simplicity
Extended Nijboer-Zernike analysis forvectorial diffraction calculations and
aberration retrieval
1) Delft University of Technology
Optics Research Group
2) Philips Research Laboratories
Lithography group
Mathematics group
Joseph Braat1, Peter Dirksen2, Augustus J.E.M. Janssen2

Extended Nijboer-Zernike Analysis (vectorial)IISB Fraunhofer Lithography Workshop
17-19 September 2004Sense and Simplicity
OUTLINE
• What is the (extended) Nijboer-Zernike analysis?
• Axial extension of the aberrated in-focus diffraction integral to a finite focal region
• Vectorial and high-NA effects
• Future work

Extended Nijboer-Zernike Analysis (vectorial)IISB Fraunhofer Lithography Workshop
17-19 September 2004Sense and Simplicity
What is the Nijboer-Zernike analysis?
• Complete and orthogonal representation of the wavefront aberrationin the exit pupil of an optical system using circle polynomials
• Limited to a perfectly spherical support• First proposed on the unit circle by Szego in 1919• Introduced in optics by Zernike (1935) and Nijboer (thesis, 1942)
• Immensely popular thanks to Jim Wyant (interferometry) since 1980
[ ])( )exp()(
)sin()cos()(),(
maxmax,
||
,
mmmimRc
mbmaRW
mn
mn
mn
mn
mn
mn
mn
≤≤−=
+=
∑
∑ϑρ
ϑϑρϑρ

Extended Nijboer-Zernike Analysis (vectorial)IISB Fraunhofer Lithography Workshop
17-19 September 2004Sense and Simplicity
Usefulness of the Nijboer-Zernike analysis
• Optical design:The polynomials solve the aberration balancing problem in opticaldesign (Maréchal, Hopkins, Welford: 1940’s)
• Diffraction theory:Calculation of diffraction patterns for small aberration values
and modest defocusing (Nijboer, 1942, Nienhuis, 1943)• Interferometry:
Stable reconstruction of measured data;‘fringe index’ of polynomials introduced by Wyant c.s. in 1980(37 ‘first’ Zernike polynomials)
• Analytic extension of (aberrated) diffraction integrals to focal volumeand arbitrary axial position using Zernike polynomials (Janssen, 2002)

Extended Nijboer-Zernike Analysis (vectorial)IISB Fraunhofer Lithography Workshop
17-19 September 2004Sense and Simplicity
Extension through-focus N-Z analysis to high NA values
• Rigorous description of the defocus term, if necessary higher orderexpansion ( -polynomials etc.)
• Incorporation of vectorial description of focused field for arbitrary stateof polarisation
• Inclusion of radiometric effects (Abbe or other imaging conditions)
• Treatment of new (aberrated) diffraction integrals for focal volumeusing Zernike polynomials(Braat, Dirksen, Janssen & van de Nes, JOSA A, Dec. 2003)
)(04 ρR

Extended Nijboer-Zernike Analysis (vectorial)IISB Fraunhofer Lithography Workshop
17-19 September 2004Sense and Simplicity
Standard geometry of focused wave
Coordinates on pupil sphere:
)exp( ϑρνµ ii =+Coordinates in focal region:
zr ,, ϕnormalized with respect to:λ/NA (transverse direction r )
Defocus parameter f in pupil:
{ }{ }
{ }2
22
2
22
)(112
)(11)(11
)(112
NAzf
NANA
f
NAzdef
−−=→
−−−−
=
−−=Φ
λπ
ρ
ρλπ

Extended Nijboer-Zernike Analysis (vectorial)IISB Fraunhofer Lithography Workshop
17-19 September 2004Sense and Simplicity
Diffraction integral (scalar)
{ }
{ }ρ
ϑϕϑρπ
ϑρϑρρρ
πϕ
π
d
dri
iAiffrU ∫ ∫
−
×Φ=
1
0
2
02
)cos(2exp
),(exp),()exp(
1);,(
Introduction of Zernike polynomials (mapping of amplitude and phase):
{ } ∑=Φmn
mn
mn imRiA
,
|| )exp(),(exp),( ϑβϑρϑρ

Extended Nijboer-Zernike Analysis (vectorial)IISB Fraunhofer Lithography Workshop
17-19 September 2004Sense and Simplicity
Diffraction integral (scalar)
∑=mn
mn
mn
m mfrVifrU,
cos),(2);,( ϕβϕ
Analytic solution for the V – functions (A.J.E.M. Janssen):
rvmnplv
vJvififfrV
l
p
jl
jlmlj
lmn π2,2/)(;
)()2()exp();(
1 0
21 =−=−= ∑ ∑∞
= =
++−
ρρπρρρ drJRiffrV mmn
mn ∫=
1
0
2 )2()()exp();(
2/)(;1
1
1
1
1)2()1( mnq
l
jlq
jp
l
l
lj
l
ljmjlmv p
lj +=
++
−
−
−−+
−
−++++−=

Extended Nijboer-Zernike Analysis (vectorial)IISB Fraunhofer Lithography Workshop
17-19 September 2004Sense and Simplicity
Diffraction integral (scalar)
+= ∑ ++
mn
nmn
n mv
vJi
v
vJrU
,
111 cos)()(
2)0;,( ϕβϕ
Convergence conditions:
In-focus Nijboer-Zernike result (1942):
Extended (through-focus) result :
+= ∑
m,n
mn
mn
m00 mcos)f,r(Vi)f,r(V2)f;,r(U ϕβϕ
6
max
10error abs.,60,202,2||
:for25−≤≤≤≤≤=≤
==
qprvf
lL
ππ

Extended Nijboer-Zernike Analysis (vectorial)IISB Fraunhofer Lithography Workshop
17-19 September 2004Sense and Simplicity
Some calculated patterns
Re{V4,0}, Im{V4,0} and |V4,0|2 High-frequent pupil ‘noise’; intensity pattern image plane

Extended Nijboer-Zernike Analysis (vectorial)IISB Fraunhofer Lithography Workshop
17-19 September 2004Sense and Simplicity
Extension to high-NA case
1) Correct treatment of defocus-parameter:
−− 22
00
1exp ρsu
if
2) Inclusion of ‘radiometric’ effect (aplanatic system with magnification M=0): ( ) 4/122
01
1
ρs−
3) Finite-size point-source (accounted for by Gaussian pupil ‘transmission’): a complex defocus parameter is used!
− 2
~
exp ρf~
fiffC +=
4) Higher than quadratic effects are ‘stored’ in symmetrical polynomials of order 2n leading to the formal expression at high NA:
( )∑=
+max
0
02
2 )(expk
kkkC Rhfg ρρ
( )200 11 su −−=

Extended Nijboer-Zernike Analysis (vectorial)IISB Fraunhofer Lithography Workshop
17-19 September 2004Sense and Simplicity
Extension to vectorial treatment
The Ignatowsky / Richards & Wolf treatment of the aberrated case leads to threediffraction integrals that recall the
−+−
−+−
−++
×
−−−−=
−
−
−
∑
)exp()exp(
)2exp(2
)2exp(2
)2exp(2
)2exp(2
)exp(11
exp);,(
1,01,0
2,
20
2,
20
2,
20
2,
20
0,
,
,
20
20
ϕϕ
ϕϕ
ϕϕ
ϕβγϕ
iVisiVis
iVis
iVis
iVs
iVs
V
imis
ifsifrE
mn
mn
mn
mn
mn
mn
mn
mn
xmn
mx�
integrals and, 210 −−− III
Each aberration term creates its own ).2,1( terms)exp( and ,0, ±±=kikVV mkn
mn ϕ

Extended Nijboer-Zernike Analysis (vectorial)IISB Fraunhofer Lithography Workshop
17-19 September 2004Sense and Simplicity
New integral V to be treated
[ ]
( ) ( )
),( ofsolution
expansion series analytic theusing treatedbecan integral second The
)2()(
1111
exp11),(
:) treatment(vectorial integral-),( New
)2()( exp),(
eatment)(scalar tr integral-),( Old
||
1
0
2202
0
1||22
0||
,
,
||1
0
2
frV
drJR
ss
ifsfrV
frV
drJRiffrV
frV
mn
jmm
n
jjm
jn
mjn
mm
nm
n
mn
ρρρπρ
ρρρ
ρρρπρρ
+
+−×
−−
−−−+=
=
∫
∫

Extended Nijboer-Zernike Analysis (vectorial)IISB Fraunhofer Lithography Workshop
17-19 September 2004Sense and Simplicity
Results of analytic vectorial analysis (no aberrations)
Comparison of scalar (Airy-disc)intensity cross-section and vectorialcases:• θ = 0• θ = π / 2

Extended Nijboer-Zernike Analysis (vectorial)IISB Fraunhofer Lithography Workshop
17-19 September 2004Sense and Simplicity
Introduction of aberrations
[ ][ ]
)sin(
)cos(
RADIAL :onpolarisati of typesSpecial
ncebirefringe (phase) the and aberration wavefront W thefunction,ion transmiss theisA
),(),(2exp),(),(
),(2exp),(),(
as written isfunction pupilcomplex The
00
00
ϑϑϑϑ
ε
ϑρεϑρπϑρϑρϑρπϑρϑρ
+=
+=
+==
AA
AA
iWiAB
WiAB
y
x
yy
xx

Extended Nijboer-Zernike Analysis (vectorial)IISB Fraunhofer Lithography Workshop
17-19 September 2004Sense and Simplicity
Radiometric effect and Zernike expansion
( ) [ ] [ ]
( ) [ ]
)1(2)()(
toaccordingion normalisatwith
exp)(1
),(1
followingusually as calculated are The
. to from runs aperture; numerical theis
exp)(),(2exp1
),(),(
as written iseffect cradiometri theincludingfunction pupilcomplex The
’||||’
1
0
||1
0
2
0 4/1220
,
,
maxmax0
||
,
,4/122
0
+=
−−
+=
+−
=−
=
∫
∫ ∫
∑
ndRR
ddimRs
Bn
mmms
imRWis
BB
nnmn
mn
mn
xxm
n
xmn
mn
mn
xmn
xxR
δρρρρ
ϑρρϑρρ
ϑρπ
β
β
ϑρβϑρπρ
ϑρϑρ
π

Extended Nijboer-Zernike Analysis (vectorial)IISB Fraunhofer Lithography Workshop
17-19 September 2004Sense and Simplicity
Results of analytic vectorial analysis
Tracing the EM energy flow field through the focal region(using the analytic expression for the Poynting vector)
Linearly polarised light Right circularly polarized light

Extended Nijboer-Zernike Analysis (vectorial)IISB Fraunhofer Lithography Workshop
17-19 September 2004Sense and Simplicity
Results of analytic vectorial analysis
Tracing the EM energy flow field through the focal region(using the analytic expression for the Poynting vector)
Orbital angular momentum (l=1) OAM (l=1) + right circularly polarised light

Extended Nijboer-Zernike Analysis (vectorial)IISB Fraunhofer Lithography Workshop
17-19 September 2004Sense and Simplicity
Results of analytic vectorial analysis
Tracing the EM energy flow field through the focal region(using the analytic expression for the Poynting vector)
Orbital angular momentum (l=1) Orbital angular momentum (l=1) + right circular polarisation + left circular polarisation

Extended Nijboer-Zernike Analysis (vectorial)IISB Fraunhofer Lithography Workshop
17-19 September 2004Sense and Simplicity
How to obtain a parametric expression for the fielddensity in the imaging volume?
{ } : with44
*33
*22
*11
20220 EEEEEEnEnw rrE ++== εε
!in time eunit volumper exposureresist thedetermineshat quantity t theis
)exp()exp(
)2exp(2
)2exp(2
)2exp(2
)2exp(2
)exp(11
exp);,(
exp
1,01,0
2,
20
2,
20
2,
20
2,
20
0,
,
,
20
20
ttt
wdW
iVisiVis
iVis
iVis
iVs
iVs
V
imis
ifsifrE
E
mn
mn
mn
mn
mn
mn
mn
mn
xmn
mx
∆∆∂
∂=
−+−
−+−
−++
×
−−−−=
−
−
−
∑
ϕϕ
ϕϕ
ϕϕ
ϕβγϕ�

Extended Nijboer-Zernike Analysis (vectorial)IISB Fraunhofer Lithography Workshop
17-19 September 2004Sense and Simplicity
Basic term in the expression for the exposure
{ } { }
∑ ∑
∑
∑ ∑
=
+
−=++
−−−
−
−
+=
−+−−
=−−×
=
max max
max0
)(
)(*0
,0,*0
02/
*,
0,0
*00
2/
)(
00
’,’
’*,’,
’*’
’*,’
’’
’
, ’,’,
),(),()1(
),(),();,(
t)coefficien- g(dominatinion approximat- Small
),(),()’(exp2/)’(exp
)exp()’exp()exp()exp(
);,(
ν
ν
νµ
νµµµ
νµ
νµϕµπ
νµ
µν
µν
µϕµπϕ
βαε
βαϕ
ββ
βαϕπ
ϕϕβϕϕαϕ
frVfrVee
frVfrVeeefrG
frVfrVlkmmimmi
ilimViikimVi
frG
lkii
lkii
lkikl
mn
mln
mkn
mn
mn
mln
mn
m
mn mn
mkn
mn
m
kl

Extended Nijboer-Zernike Analysis (vectorial)IISB Fraunhofer Lithography Workshop
17-19 September 2004Sense and Simplicity
Representation of light intensity (fully polarised case)
[ ] { } { }{ }[ ] { } { }{ }[ ] [ ]{ }[ ] [ ]{ }
[ ] { } { }{ }
+−−
+++−
+++−
++−
+−−
+
=
=+
=
=
−+−+
−−
−−
−−
),(Im)Re(2),(Re||||2
),()Im(21),()Im(21
),()Im(21),()Im(212
),(Im)Re(2),(Re||||
),(Im)Re(2),(Re||||
),(
4);,(
purposes)ion normalisatfor 1|||(|
1,1*
1,1222
0
1,1*
1,1*2
0
2,2*
2,2*
40
2,0*
2,0222
0
2,0*
2,0222
0
00
20
20
22
,
,
ββββ
ββββ
ββββ
ββββ
ββββββ
εϕ
ββββ
GabGbas
GabGabs
GabGabs
GabGbas
GabGbas
G
snfrw
ba
b
a
rE
mn
ymn
mn
xmn

Extended Nijboer-Zernike Analysis (vectorial)IISB Fraunhofer Lithography Workshop
17-19 September 2004Sense and Simplicity
Strehl intensity
case! vectorialin the also trueremainsrelation the
expansion, Zernikein the includedeffect cradiometri With the
ion)approximat(scalar
)exp()(1
)exp()(1
),(1
A
expansion type- usingintensity (Srehl) axisOn
200
00
2
0
1
0,
2
0
1
0,
2
0
1
0S
β
βϑρρϑρπ
β
ϑρρϑρβπ
ϑρρϑρπ
β
π
π
π
=→
=
=
==
−
∫ ∫∑
∫ ∫ ∑
∫ ∫
S
mn
mn
mn
mn
mn
mn
I
ddimR
ddimR
ddB

Extended Nijboer-Zernike Analysis (vectorial)IISB Fraunhofer Lithography Workshop
17-19 September 2004Sense and Simplicity
Best focus
- focus
+ focus
Wavefront
Complex pupil function reconstruction remainspossible in the vectorial case?
Intuitive picture of aberration retrieval

Extended Nijboer-Zernike Analysis (vectorial)IISB Fraunhofer Lithography Workshop
17-19 September 2004Sense and Simplicity
Further developments
• Complex amplitude retrieval of the pupil function at large NA shouldremain possible thanks to the parametric description of the intensitydistribution in the focal volume using the Zernike ß-expansion and theextended Nijboer-Zernike theory applied to the vectorial diffraction.
• Much of the numerical work in solving the system of equations for theß-coefficients has to be done only once and the results can betabulated and stored for further use.
• Simultaneous retrieval of aberration and birefringence possible?