experiments with entangled photons

139
Experiments With Entangled Photons Paulo Henrique Souto Ribeiro Instituto de Física - UFRJ Summer School of Optics Concépcion January/2010

Upload: lei

Post on 13-Jan-2016

79 views

Category:

Documents


1 download

DESCRIPTION

Experiments With Entangled Photons. Paulo Henrique Souto Ribeiro Instituto de Física - UFRJ. Summer School of Optics Concépcion January/2010. Quantum Optics Group at IF/UFRJ. Group members. Experiments: Prof. Paulo Henrique Souto Ribeiro Prof. Stephen Patrick Walborn Theory: - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Experiments With Entangled Photons

Experiments With Entangled Photons

Paulo Henrique Souto RibeiroInstituto de Física - UFRJ

Summer School of OpticsConcépcion January/2010

Page 2: Experiments With Entangled Photons

Quantum Optics Group at IF/UFRJ

Page 3: Experiments With Entangled Photons

Group membersExperiments:Prof. Paulo Henrique Souto Ribeiro Prof. Stephen Patrick Walborn

Theory:Prof. Luiz Davidovich Prof. Nicim ZaguryProf. Ruynet Matos FilhoProf. Fabricio Toscano

Msc and PhD students: Adriana Auyuanet Larrieu, Adriano H. de Oliveira Aragão, Bruno de Moura Escher , Bruno Taketani, Daniel Schneider Tasca, Gabriel Horacio Aguilar, Osvaldo Jimenez farias, Gabriela Barreto Lemos, Rafael Chaves.

Page 4: Experiments With Entangled Photons

UFRJ

UFMG

USP-SÃO PAULO

UFAL

UFF

Page 5: Experiments With Entangled Photons

Outline:

Part I-Simultaneity in parametric down-conversion-Violation of a classical inequality-Consequences of simultaneity: i)localized one-photon state; ii)the Hong-Ou-Mandel interferometer iii) measurement of the tunneling time

Part II-Polarization entanglement-Bell’s inequalities -Entanglement measurement

Part III-Entanglement dynamics-Kraus operators-Entanglement sudden death-Process tomography-Evolution of entanglement

Part VI-Spatial correlations-The transfer of the angular spectrum-Continuous variables etanglement- EPR paradox-Non-gaussian entanglement-Non-local optical vortex

Page 6: Experiments With Entangled Photons

Part I

- Simultaneity in parametric down-conversion

- Violation of a classical inequality

- Consequences of simultaneity:

i) localized one-photon state;

ii) the Hong-Ou-Mandel interferometer

iii) measurement of the tunneling time

Page 7: Experiments With Entangled Photons

Parametric Down-conversion

Espontaneous emission

Stimulated emission

TwinPhotons

p i s

p i sk k k

Page 8: Experiments With Entangled Photons

Parametric Down-conversion

Page 9: Experiments With Entangled Photons

Observation of simultaneity

Page 10: Experiments With Entangled Photons

Observation of simultaneity

Page 11: Experiments With Entangled Photons

Parametric down-conversion: quantum state

Time evolution

Time evolution operator

Time integral

Page 12: Experiments With Entangled Photons

Simultaneity in parametric down-conversion

Quantum state for weak interaction

Page 13: Experiments With Entangled Photons

Simultaneity in parametric down-conversion

Quantum state including some approximations

Page 14: Experiments With Entangled Photons

Simultaneity in parametric down-conversion

, , ,ˆ ˆ( ) ( )s i s i s iI t t E t E t t

ˆ ˆ ˆ ˆ, ( ) ( )i s s s i i i i s sC t t t E t E t E t E t t

Calculation of expectation values

.1ˆ,

i k r t

k kk

E r t l a e

Electric field operator

Intensity

Coincidence

Page 15: Experiments With Entangled Photons

Simultaneity in parametric down-conversion:very simple view

Page 16: Experiments With Entangled Photons

Simultaneity in parametric down-conversion:very simple view

0

1 2( ) 1 1i si t ti s i s i st c vac c d d v e

i tE t c d a e

2

, ( ) ( )

( )

i s s s i i i i s s

i i s s

C t t t E t E t E t E t t

E t E t t

Quantum state: simple version

Electric field operator: plane wave, almost monochromatic

Coincidence

Page 17: Experiments With Entangled Photons

Simultaneity in parametric down-conversion:very simple view

0 02

,

1 1i i s s

i s

i t t t i t t ti s i s i s

C t t

d d v e e

2

, i sii s i sC t t d e

1 2

1 2

0

2

1 2,

1 1

i s

i s

i t i t

i s i t ti s i s i s

d a e d a eC t t

d d v e

Plane wave pumping field 0 i s i sv

Page 18: Experiments With Entangled Photons

Coincidence detection

Page 19: Experiments With Entangled Photons

Coincidence detection

0,0 0,5 1,0 1,5 2,0 2,5 3,00,0

0,2

0,4

0,6

0,8

1,0 = 370ps

even

ts (

norm

aliz

ed)

time delay (ns)

Page 20: Experiments With Entangled Photons

Measurement of time delays

=168ps

=185ps

Page 21: Experiments With Entangled Photons

Simultaneity in parametric down-conversion:very simple view + detection filters

0 02

( ) ( 1)

,

1

i i s s

i s

i s

i t t t i t t ti s i s i s

C t t

d d ef efv

22 2

( ), i sis si iC t t d ef F

1 2

1 2

0

1 2

2

1 2 )

1

(

1

),

(

i s

i s

i t i t

i s i t ti s i s i s

f fd a e d a eC t t

d d v e

Plane wave pumping field i s i sv

Page 22: Experiments With Entangled Photons

Simultaneity in parametric down-conversion:very simple view + detection filters

( )f

0 5 10 15 20 25 30

0,0

0,2

0,4

0,6

0,8

1,0

= 3.8 x 1013 Hz

tran

smit

ance

(%)

frequency (Hz)

Interference filter: typical = 10nm, = 3.8 x 1013 Hz, t = 82 fs << 100ps

0 100 200 300 400 500 600

0,0

0,2

0,4

0,6

0,8

1,0

= 82 x 10-15 s

amplit

ude

time(fs)

( )f ( )tF

Page 23: Experiments With Entangled Photons

Simultaneity in parametric down-conversion:very simple view + timing resolution

Page 24: Experiments With Entangled Photons

Localized one photon state

Page 25: Experiments With Entangled Photons

Localized one photon state

Page 26: Experiments With Entangled Photons

Violation of a classical inequality

Page 27: Experiments With Entangled Photons

Violation of a classical inequality

Page 28: Experiments With Entangled Photons

Hong, Ou and Mandel Interferometer

Page 29: Experiments With Entangled Photons

Hong, Ou and Mandel Interferometer:single mode approach

Beam splitter Input-output relations

122

211

ariatb

ariatb

21

221

22211

122121

aaraataairtaairt

ariatariatbb

trFor

221121 aaaairtbb

22

211

21221

212111

aaraataairtaairt

ariatariatbb

11

222

21221

121222

aaraataairtaairt

ariatariatbb

Page 30: Experiments With Entangled Photons

Hong, Ou and Mandel Interferometer:single mode approach

Beam splitter Two-photon input state

Coincidence probability

2111 aa

011

11),(

2

2211

2

21

22121

21

21

aa

aa

aaaairt

bbbbbbC

011

11),(

2

222

112

1221

2

112

1111

21

21

aa

aa

aaraataairtaairt

bbbbbbC

011

11),(

21

21

112

222

1221

222222

aa

aa

aaraataairtaairt

bbbbbbC

Page 31: Experiments With Entangled Photons

Hong, Ou and Mandel Interferometer

2.1

i s

C e

( )f

.c

( )f

2c

Page 32: Experiments With Entangled Photons

Single-photon tunneling time

Page 33: Experiments With Entangled Photons

Part II

- Polarization entanglement

- Bell’s inequalities

- Entanglement measurement

Page 34: Experiments With Entangled Photons

Polarization entanglement:generation

Kwiat et al. PRL 75, 4337 (1995)

H V1

2HV ie

Page 35: Experiments With Entangled Photons

HH1

2VVie

Kwiat et al. PRA 60, R773 (1999)White et al. PRL 83, 3103 (1999)

Polarization entanglement:generation

Page 36: Experiments With Entangled Photons

V V1

2H Hie

Kwiat et al. PRA 60, R773 (1999)White et al. PRL 83, 3103 (1999)

Polarization entanglement:generation

Page 37: Experiments With Entangled Photons

12 1 2 1 2

1

2 H H V V

Mixed state

12 1 2 1 2

1

2 H H V V

Pure entangled state

Mixed states and entangled states

Page 38: Experiments With Entangled Photons

Detection of entanglement:violation of the Bell inequality

Page 39: Experiments With Entangled Photons

Bell-CHSH inequality

1 1 2 2 2 1 1 2, , , , 2 S E E E E

, , , ,,

, , , ,

C C C CE

C C C C

Bell inequality and Bell states

Page 40: Experiments With Entangled Photons

1,2 1 2 1 2

1

2H V V H 1,2 1 2 1 2

1

2H H V V

Bell states for the photon polarization

Coincidence rate for +: 2

, i sC E E

Bell inequality and Bell states

Page 41: Experiments With Entangled Photons

1,2 1 2 1 2

1

2 H H V V

Bell states for the photon polarization

2

2

2

2

2

,

cos cos cos cos

cos cos sin sin

cos

i s

i s i s

C E E

a a H H V V

H H V V

H H H H

Bell inequality and Bell states

Coincidence rate for +:

Page 42: Experiments With Entangled Photons

0 0 0 01 1 2 2

0 0 0 01 1 2 2

0 , 22,5 , 45 , 67,5

90 , 112,5 , 135 , 157,5

2

1 1 1 1

2

1 1 1 1

, , cos 22.5 0.854

, , cos 67.5 0.146

C C

C C

2

1 2 1 2

2

1 2 1 2

0.146

0.8

, , cos 67.5

, , cos 22 5 4. 5

C C

C C

Maximal violation

Bell inequality and Bell states

Page 43: Experiments With Entangled Photons

2

2 1 2 1

2

2 1 2 1

, , cos 22.5 0.854

, , cos 67.5 0.146

C C

C C

2

2 2 2 2

2

2 2 2 2

, , cos 22.5 0.854

, , cos 67.5 0.146

C C

C C

Maximal violation

Bell inequality and Bell states

0 0 0 01 1 2 2

0 0 0 01 1 2 2

0 , 22,5 , 45 , 67,5

90 , 112,5 , 135 , 157,5

Page 44: Experiments With Entangled Photons

1 2

0.146 0.146 0.854 0.854,

0.146 0.146 0.854 0 854

2

. 2

E

1 1

0.854 0.854 0.146 0.146 2,

0.854 0.854 0.146 0.146 2

E

2 1

0.854 0.854 0.146 0.146 2,

0.854 0.854 0.146 0.146 2

E

2 2

0.854 0.854 0.146 0.146 2,

0.854 0.854 0.146 0.146 2

E

1 1 2 2 2 1 1 2, , , 2, 2 2 .83 E E E ES

Maximal violation 0 0 0 01 1 2 2

0 0 0 01 1 2 2

0 , 22,5 , 45 , 67,5

90 , 112,5 , 135 , 157,5

Bell inequality and Bell states

Page 45: Experiments With Entangled Photons

Violation of a Bell inequality

- Detects but does not quantify the entanglement properly - Some entangled states do not violate the Bell inequality- Valid for dichotomic or dichotomized systems

Bell inequality and entanglement

Page 46: Experiments With Entangled Photons

Take a set of measurements :

(H,H); (H,V); (V,H); (V,V); (H,D); (H,L); (D,H); (R,H);

(D,D); (R,D); (R,L); (D,R); (D,V); (R,V); (V,D); (V,L)

C C C C C C C C

C C C C C C C C

Reconstruction of the density matrix

Quantum state tomography

Page 47: Experiments With Entangled Photons

Quantum state tomography

Page 48: Experiments With Entangled Photons

12

V V VV

V V V V V VV V

V

HH HH H HH H HH HH

HH H H H H H H

HH H H H H H H

HH H H

V V V V VV V

VV V VV V VV VV VV

Quantum state tomography

Page 49: Experiments With Entangled Photons

12

V V VV

V V V V V VV V

V

HH HH H HH H HH HH

HH H H H H H H

HH H H H H H H

HH H H

V V V V VV V

VV V VV V VV VV VV

Quantum state tomography

With one can compute all quantities related to the system

Page 50: Experiments With Entangled Photons

Concurrency:

0,

0

y y y

iC

i

Direct measurement of entanglement

Page 51: Experiments With Entangled Photons

Mintert, Kus, and Buchleitner, Phys. Rev. Lett. 95 260502 (2005).

12 01 10

2C P

Direct measurement of entanglement using copies of states

Page 52: Experiments With Entangled Photons

1 2

1 11 1 1 11 1

10;

20C

1

1 1

I / 2

1I / 4 ( )

41

14

P C

Direct measurement of entanglement:pure states

Pure state

Two copies

Maximally entangled state

Two copies

Page 53: Experiments With Entangled Photons

Experiment with entangled photons

Page 54: Experiments With Entangled Photons

1 21 2H2

VH1

Vie

Two copies of a state in a single photon

Polarization state

Page 55: Experiments With Entangled Photons

11 22

1

2ia be ba

Linear momentum state

Two copies of a state in a single photon

Page 56: Experiments With Entangled Photons

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 1;

2 212

i iMOM POL

i i

a a e b b H H e V V

a a e b b H H e V V

Simultaneous entanglement in polarization and linear momentum

Two copies of a state in a single photon

Page 57: Experiments With Entangled Photons

1 1

2 2aV bH aH bV

1

21

2

CNOT H V b b

CNOT H V a a

Bell state projection

Bell states combining momentum and polarization

Page 58: Experiments With Entangled Photons

aH bH aV aV

bH aH bV bV

C-NOT with a SAGNAC interferometer

Page 59: Experiments With Entangled Photons

Spatial rotations with cilyndrical lenses

Page 60: Experiments With Entangled Photons

Spatial rotations with cilyndrical lenses

Page 61: Experiments With Entangled Photons

Direct measurement of entangled with two copies

Page 62: Experiments With Entangled Photons

S. P. Walborn, P. H. Souto Ribeiro, L. Davidovich,

F. Mintert, A. Buchleitner, Nature 440 1022 (2006)

Direct measurement of entangled with two copies

Page 63: Experiments With Entangled Photons

S. P. Walborn, P. H. Souto Ribeiro, L. Davidovich,

F. Mintert, A. Buchleitner, Nature 440 1022 (2006)

Direct measurement of entangled with two copies

Page 64: Experiments With Entangled Photons

Part III

-Entanglement dynamics

-Kraus operators

-Entanglement sudden death

-Process tomography

-Evolution of entanglement

Page 65: Experiments With Entangled Photons

0,0

0,2

0,4

0,6

0,8

1,0

t

P1(e) e P

2(e)

0,0

0,2

0,4

0,6

0,8

1,0

?

t

Concurrency

Entanglement dynamics

1,2 1 2 1 2

1

2e g g e

1,2 1 2 1 2

in the computational basis

11 0 0 1

2

T. Yu, J. H. Eberly, Phys. Rev. Lett. 93, 140404 (2004). T. Yu, J. H. Eberly, Phys. Rev. Lett. 97, 140403 (2006).

Page 66: Experiments With Entangled Photons

0,0

0,2

0,4

0,6

0,8

1,0

t

P(e)

Amplitude decay channel

0 0 0 0

1 0 1 1 0 0 1

E ES S

E E ES S Sp p

Quantum channel and Kraus map

Page 67: Experiments With Entangled Photons

0,0

0,2

0,4

0,6

0,8

1,0

t

P(e)

Operadores de Kraus para o canal de amplitude

1 2 3 4

1 0 0 ˆ, , 00 1 0 0

pK K K K

p

†$( ) K K

Quantum channel and Kraus operators

Page 68: Experiments With Entangled Photons

0 0 0 0

1 0 1 1 0 0

0 0

0 1 0 1

1

E ES S

E E ES S

E ES S

E E

S

ES S S

H H

V p

p

V p H

p

Amplitude decay channel for one photon polarization

HH

V1 pp V H

Environment

Environment

Page 69: Experiments With Entangled Photons

Amplitude decay channel for one photon polarization

0 0 0 0

1 0 1 1 0 0

0 0

0 1 0 1

1

E ES S

E E ES S

E ES S

E E

S

ES S S

H H

V p

p

V p H

p

Page 70: Experiments With Entangled Photons

Amplitude decay channel for one photon polarization

Page 71: Experiments With Entangled Photons

Amplitude decay channel for one photon polarization

Page 72: Experiments With Entangled Photons

Amplitude decay channel for one photon polarization

Page 73: Experiments With Entangled Photons

Amplitude decay channel for one photon polarization

Page 74: Experiments With Entangled Photons

Amplitude decay channel for one photon polarization

Page 75: Experiments With Entangled Photons

Amplitude decay channel for one photon polarization

Page 76: Experiments With Entangled Photons

Amplitude decay channel for one photon polarization

Page 77: Experiments With Entangled Photons

Amplitude decay channel for one photon polarization

Page 78: Experiments With Entangled Photons

Amplitude decay channel for one photon polarization

Page 79: Experiments With Entangled Photons

Amplitude decay channel for one photon polarization

Page 80: Experiments With Entangled Photons

Amplitude decay channel for one photon polarization

Page 81: Experiments With Entangled Photons

Amplitude decay channel for one photon polarization

Page 82: Experiments With Entangled Photons

Amplitude decay channel for one photon polarization

Page 83: Experiments With Entangled Photons

Amplitude decay channel for one photon polarization

Page 84: Experiments With Entangled Photons

Amplitude decay channel for one photon polarization

Page 85: Experiments With Entangled Photons

Amplitude decay channel for one photon polarization

Page 86: Experiments With Entangled Photons

Amplitude decay channel for one photon polarization

Page 87: Experiments With Entangled Photons

Amplitude decay channel for one photon polarization

Page 88: Experiments With Entangled Photons

V V1

2H Hie

Kwiat et al. PRA 60, R773 (1999)White et al. PRL 83, 3103 (1999)

Polarization entangled state

Page 89: Experiments With Entangled Photons

M. P. Almeida et al., Science 316, 579 (2007)

Experimental observation of theentanglement sudden death

Page 90: Experiments With Entangled Photons

M. P. Almeida et al., Science 316, 579 (2007)

HH VV3

ie

HH 3 VVie

Experimental observation of theentanglement sudden death

Page 91: Experiments With Entangled Photons

/ 2

/ 2

H

V

H V

R H i V

$ ,with ,

and , , ,

j j j j

j H V R

1 2 3 4

$ Kraus operators

, , e

j

K K K K

Process tomography

[( $) ]C I

Page 92: Experiments With Entangled Photons

Reconstruction of the Kraus operators

Page 93: Experiments With Entangled Photons

( )C

$

[( $) ]C I

'

[( $) ] [( $) ] ( )

For pure states

C I C I C

T. Konrad et al., Nature Physics 4, 99 (2008).

A dynamical law for the entanglement

[( $) ] [( $) ] ( )

For mixed states

C I C I C

Page 94: Experiments With Entangled Photons

$

'

( )C [( $) ]C I

[( $) ] [( $) ] ( ) C I C I C

A dynamical law for the entanglement

Page 95: Experiments With Entangled Photons

$

'

( )C [( $) ]C I

[( $) ] [( $) ] ( ) C I C I C

A dynamical law for the entanglement

Page 96: Experiments With Entangled Photons

$

'

$

[( $) ]C I

( )C [( $) ]C I

[( $) ] [( $) ] ( )C I C I C

A dynamical law for the entanglement

Page 97: Experiments With Entangled Photons

A dynamical law for the entanglement

Page 98: Experiments With Entangled Photons

O. Farias et al., Science 324, 1414 (2009)

A dynamical law for the entanglement

Page 99: Experiments With Entangled Photons

O. Farias et al., Science 324, 1414 (2009)

[( $) ] ( )C I C

[( $) ]C I

A dynamical law for the entanglement:experimental test

Page 100: Experiments With Entangled Photons

( ) mixed state C [( $) ]C I

Inequality

[( $) ] [( $) ] ( ) C I C I C

$

A dynamical law for the entanglement:generalization for mixed states

T. Konrad et al., Nature Physics 4, 99 (2008).

Page 101: Experiments With Entangled Photons

$'I

( )C [( $$') ]C I

[( $) ]C I

[( $) ] [( $$') ] ( )C I C I C

$' $

( )C $' $

[( $) ]C I

A dynamical law for the entanglement:generalization for mixed states

Page 102: Experiments With Entangled Photons

( )C [( $) ]C I

[( $) ] [( $$') ] ( )C I C I C

$' $

$

[( $ '$) ]C I $'

A dynamical law for the entanglement:generalization for mixed states

Page 103: Experiments With Entangled Photons

[( $') ]I

A. Jamiołkowski, Rep. Math. Phys. 3, 275 (1972)

$'

1 2tr 1 i i ii

r e e i i ii

r e f

How to find $'

1/ 2$' i j i j a i j babf f r r f e e f

A dynamical law for the entanglement:generalization for mixed states

Page 104: Experiments With Entangled Photons

O. Farias et al., Science 324, 1414 (2009)

[( $ '$) ] ( )C I C

[( $) ]C I

A dynamical law for the entanglement:generalization for mixed states

experimental test

Page 105: Experiments With Entangled Photons

Part VI

-Spatial correlations

-The transfer of the angular spectrum

-Continuous variables etanglement- EPR paradox

-Non-gaussian entanglement

-Non-local optical vortex

Page 106: Experiments With Entangled Photons

Spatial correlations in the far field

Page 107: Experiments With Entangled Photons

Spatial correlations in the far field

Page 108: Experiments With Entangled Photons

Spatial correlations in the far field

Page 109: Experiments With Entangled Photons

Spatial correlations in the far field

Page 110: Experiments With Entangled Photons

Spatial anti-bunching:non-classical behavior

Cauchy-Swartz inequality

Homogeneity and stationarity

Page 111: Experiments With Entangled Photons

0δ 2,22,2

t,,,, 222,2 ρIρIρρ 11

2ρρδ 1

For 0

222,2 ,, ρρρρ 11 C

-15 -10 -5 0 5 10 15

0,0

0,2

0,4

0,6

0,8

1,0

C(

)

2,2 C δ δ

Spatial anti-bunching:non-classical behavior

Page 112: Experiments With Entangled Photons

S. Mancini, V. Giovannetti, D. Vitali, and P. TombesiPhys. Rev. Lett. 88, 120401 (2002).

S. Mancini, V. Giovannetti, D. Vitali, and P. TombesiPhys. Rev. Lett. 88, 120401 (2002).

2 2

2 1 2 1 1x x p p

Lu-Ming Duan, G. Giedke, J. I. Cirac, and P. ZollerPhys. Rev. Lett. 84, 2722 (2000).

Lu-Ming Duan, G. Giedke, J. I. Cirac, and P. ZollerPhys. Rev. Lett. 84, 2722 (2000).

2 2

2 1 2 1 2x x p p

Inseparability

DGCZ criterion

MGVT criterion

Page 113: Experiments With Entangled Photons

Inseparability

2 2 22 1 2 1 2

2 2

2 1 2 1

1

. : 1 2

The state is inseparable if

x x p p aa

ex a x x p p

Page 114: Experiments With Entangled Photons

Inseparability:proof

1 2 1 2

1 1;u a x x v a p p

a a

1 2 ii

p

2 22 2 2 2

2 2 2 2 2 21 2 1 22 2

1 2 1 2

2 2

1 1

2

i i ii

i i i i ii

i ii i i ii i

u v p u v u v

p a x x a p pa a

ap x x p p p

a

u v

Page 115: Experiments With Entangled Photons

Inseparability:proof

2 2

2 2 2 22 21 2 1 22 2

2 22 2

2 2 2 221 1 2 22

2 22 2

1 1

1

iì ì ì ìi

i i i iì i ì ii i i i

iì ì ì ìi

i i i iì i ì ii i i i

u v

p a x x a p pa a

p u p u p v p v

p a x p x pa

p u p u p v p v

Page 116: Experiments With Entangled Photons

Inseparability:proof

2 2

1 1 1 1

2 2

2 2 2 2

1,

, 1

From the Heisenberg uncertainty principle:

ì ì

ì ì

x p x p

x p x p

2 2 22

2 22 2

1 11

ii

i i i iì i ì ii i i i

u v p aa

p u p u p v p v

Page 117: Experiments With Entangled Photons

Inseparability:proof

22

22

1

From the Cauchy-Schwartz inequality:

and

i i i

ii

ìi i i

i i iìi i i

p p u p u

pp p v p v

2 2 22

2 2 2 2

11

i i i ii i i i

i i i i

u v aa

p u p u p v p v

0

Page 118: Experiments With Entangled Photons

Inseparability criterion

2 2 22

1

u v a

a

DGCZ criterion

Page 119: Experiments With Entangled Photons

Inseparability

22 2

2 1 2 1

2 2

,

. : , ,

The state is inseparable if

i i

i i i i

x x p p x p

ex x p i x p

Page 120: Experiments With Entangled Photons

Inseparability:proof

1 2 ii

p

2 2

222 2 2

1 22

222 2 2

1 22

1

1

i i iì ii ii i i

i i iì ii ii i i

u v

p a x x p u p ua

p a p p p v p va

1 2 1 2

1 1;u a x x v a p p

a a

Page 121: Experiments With Entangled Photons

Inseparability:proof

2 2

2 2

2 2 21 22

2 2

2 2 21 22

1

1

i i ii ii ii i i

i i ii ii ii i i

u v

p a x x p u p ua

p a p p p v p va

22

1i i i ii

ìi i i

p p v pp v

Using the Cauchy-Schwartz inequality:

and

Page 122: Experiments With Entangled Photons

Inseparability:proof

2 2

2 2 21 22

2 2 21 22

01

10

i i ii

i i ii

u v

p a x xa

p a p pa

22

1i i i ii

ìi i i

p p v pp v

Using the Cauchy-Schwartz inequality:

and

Page 123: Experiments With Entangled Photons

Inseparability:proof

2 2 2 2 2 21 2 1 22 2i ii i i i

i i

u v p x x p p p

2 2 2

Using the inequality:

Using again the Cauchy-Scwarz inequality:

2 2 2 21 2 1 2

212 2 2 2 4

1 2 1 2

i ii i i ii i

i i i i ii

p x x p p p

p x x p p

21

2 2 2 2 2 2 41 2 1 24 i i i i i

i

u v p x x p p

Page 124: Experiments With Entangled Photons

Inseparability:proof

Using the uncertainty principle:

2 2

1 1 1 12 2 2 21 1 2 2

, ,

4 4and

i i i i

x p x px p x p

21

2 2 2 2 2 2 41 2 1 24 i i i i i

i

u v p x x p p

2 22 22 21 2 1 2 1 1, ,i iu v x p x x p p x p

MGVT criterion

Page 125: Experiments With Entangled Photons

Inseparability

Page 126: Experiments With Entangled Photons

2 2 21 2 1 2x x p p

1 1

2 2 22 0 2 0| | 0.01x px p

Inseparability

Page 127: Experiments With Entangled Photons

Inseparability

2 2 21 2 1 2x x p p

1 1

2 2 22 0 2 0| | 0.01x px p

Page 128: Experiments With Entangled Photons

Inseparability

1

1

2 2

2 0 1 2

2 2

2 0 1 2

|

|

x

p

x x x

p p p

I t is claimed that

Therefore the inequality is violated

1 1

1 1 1

1 1 1

2 0 2 0

22 22 0 2 2 0 2 2 2 0 2

22 22 0 2 2 0 2 2 2 0 2

( | ) ( | )

| ( | ) ( | )

| ( | ) ( | )

and is measured andx p

x x x

p p p

P x P p

x x P x dx x P x dx

p p P p dp p P p dp

1 1

2 2 22 0 2 0| | 0.01x px p

Page 129: Experiments With Entangled Photons

Non-gaussian entanglement

Gaussian states are completely characterized by the secondorder momenta:

22 2 ( ) ( )x x P x dx x P x dx

Then, DGCZ, MGVT and other criteria based on second ordermomenta are non optimal for non-gaussian states.

Page 130: Experiments With Entangled Photons

Higher order criterion

E. Shchukin and W. Vogel Inseparability criteria for continuous bipartite quantum states. Phys Rev Lett. 95, 230502 (2005)

To the second order:

† †

† † † † † † †

† †2

† †

† † † † † † †

1 a a b b

a a a a a a b a b

M a aa a a ab ab

b ab a b b b bb

b ab a b b b bb

a and b are annihillation operators for modes a and b.

Page 131: Experiments With Entangled Photons

Higher order criterion

E. Shchukin and W. Vogel Inseparability criteria for continuous bipartite quantum states. Phys Rev Lett. 95, 230502 (2005)

† †

† † † † † † †

† †2

† †

† † † † † † †

1 a a b b

a a a a a a b a b

M a aa a a ab ab

b ab a b b b bb

b ab a b b b bb

The state has a positive partial transpose, if and only if all principal minors are non-negative.

Page 132: Experiments With Entangled Photons

Gaussian and non-gaussian states

Production of a gaussian state with parametric down-conversion

2 2 2 2, exp / 4 exp / 4x x N x s x t

Page 133: Experiments With Entangled Photons

Gaussian and non-gaussian states

Production of a non-gaussian state with parametric down-conversion

2 2 2 2, exp / 4 exp / 4x x N xx s x t

01 modeHG

Page 134: Experiments With Entangled Photons

Higher order criterion

We found a non-gaussian state that does not violate any second order criterion:

2 2 2 2, exp / 4 exp / 4x x N xx s x t

According to R. Simon Phys. Rev. Lett. 84, 2726 (2000), if

0 ;

,

a b a b a b a bx x p p x p p x

x x x

with

is satisfied, no second order criterion is violated.

For 0.57 < s/t < 1.73 satisfies the inequality.

Page 135: Experiments With Entangled Photons

Higher order criterion

† † †

1

HO

ab

D

a b a ab b

2 2 2 2, exp / 4 exp / 4x x N xx s x t

However it gives the negative minor below for the higher order criterion

Page 136: Experiments With Entangled Photons

Isomorphism between a multimode singlephoton field and a single mode multiphoton field

† †1 1

2 2anda a

ir x a a p a a

r

4 2 2 2 24

2 2 2 2 22

11

12 2 0

a b a b a b a b

a b a b a b a b a b a b

r x x x p p x p pr

x p p x x x p p r x x p pr

The inequality is violated for r=1/t and 0.68 < s/t < 1.53

Page 137: Experiments With Entangled Photons

Experimental observation of genuine non-gaussian entanglement

Quantum entanglement beyond Gaussian criteria R. M. Gomes, A. Salles, F. Toscano, P. H. Souto Ribeiro and S. P. WalbornProc. Nat. Acad. Sci. 106, 21517-21520(2009)

Page 138: Experiments With Entangled Photons

Experimental observation of genuine non-gaussian entanglement

Quantum entanglement beyond Gaussian criteria R. M. Gomes, A. Salles, F. Toscano, P. H. Souto Ribeiro and S. P. WalbornProc. Nat. Acad. Sci. 106, 21517-21520(2009)

Page 139: Experiments With Entangled Photons

Experimental observation of genuine non-gaussian entanglement

Quantum entanglement beyond Gaussian criteria R. M. Gomes, A. Salles, F. Toscano, P. H. Souto Ribeiro and S. P. WalbornProc. Nat. Acad. Sci. 106, 21517-21520(2009)