exercise wastewater

Upload: mothman22

Post on 17-Oct-2015

24 views

Category:

Documents


0 download

DESCRIPTION

Excercise

TRANSCRIPT

  • UNIVERSITTSTUTTGART

    Wastewater Technology Part 1: Urban DrainageExercise - Wastewater Quantity

    2

    Contents

    Calculation of wastewater inflow into a WWTP

    Calculation of wastewater load into a WWTP for dry weather conditions and for design inflow

    Dimensioning principles of primary sedimentation

    Short description of the Activated Sludge biological treatment

    Fundamental parameters of the Activated Sludge biological treatment

    Dimensioning principles of the aeration tank of the Activated Sludge system

    Dimensioning principles of the sedimentation tank (secondary sedimentation) of the Activated Sludge system

  • UNIVERSITTSTUTTGART

    Wastewater Technology Part 1: Urban DrainageExercise - Wastewater Quantity

    3

    Basic Flow Scheme of a WWTP

    Secondary sludge

    = Excess sludge

    Dewatering and

    -agricultural use

    -landfill

    -incineration

    Primary treatment Biological treatment

    Return sludge

    Screenings Sand

    Influent

    Effluent

    GreasePrimary

    sludge

    Aeration

    tank

    Secondary

    sediment.

    Raw sludge

    Digester

    35C

    Thickener and

    storage tank

    BiogasGas storage

    Thickener

    Screening Grit

    rem.

    Grease

    rem.

    Primary

    sediment.

    Supernatant

    Sludge treatment Gu

    jer,

    199

    9

  • UNIVERSITTSTUTTGART

    Wastewater Technology Part 1: Urban DrainageExercise - Wastewater Quantity

    4

    Design inflow of a WWTP

    Gu

    jer,

    19

    99

  • UNIVERSITTSTUTTGART

    Wastewater Technology Part 1: Urban DrainageExercise - Wastewater Quantity

    5

    Definitions

    Wastewater (Sewage)

    Dry weather flow (DWF)

    Combined wastewater flow (CWF)

    (about 100 times the dry weather flow)

    Qww = Qd + Qi + Qi

    QDW = QWW + Qinf

    Qcomb = QDW + QR

    So

    urc

    e: A

    TV

    -DV

    WK

    -A 1

    98

    E

  • UNIVERSITTSTUTTGART

    Wastewater Technology Part 1: Urban DrainageExercise - Wastewater Quantity

    6

    Daily Variations of Wastewater Flow

    Determination of yearly wastewater flow (sewage flow on all days)

    Determination of yearly dry weather flow (dry weather flow on days without rain)

    Determination of peak flow during dry weather

    iq

    C,iA

    WW,dwP

    WW,aMQ

    86400

    Inf,aMQ

    WW,aMQ

    DW,aMQ

    Inf,aMQ

    Qx

    WW,aMQ

    DW,Q

    max

    24

    max

    Sou

    rce: A

    TV

    -DV

    WK

    -Arb

    eitsbla

    tt A

    198 (

    April 2003)

    [ l/s ]

    So

    urc

    e: A

    TV

    -DV

    WK

    -A 1

    98

    E

  • UNIVERSITTSTUTTGART

    Wastewater Technology Part 1: Urban DrainageExercise - Wastewater Quantity

    7

    Design inflow of a WWTP

    InfhWWd QQQ max,,32

    So

    urc

    e: A

    TV

    -DV

    WK

    -A 1

    98

    E

  • UNIVERSITTSTUTTGART

    Wastewater Technology Part 1: Urban DrainageExercise - Wastewater Quantity

    8

    Specific Loads and Concentrations per Inhabitant

    Specific Load

    Wastewater concentration [mg/l] for a wastewater production of Parameter

    g/Cd 150 l/ Cd 200 l/ Cd 250 l/ Cd

    BOD5 60 400 300 240

    COD 120 800 600 480

    N 11 73 55 44

    P 1.8 12 9 7

    TS 70 470 350 280

    < 15 mg/l

    < 75 mg/l

    < 13 mg/l

    < 1 mg/l

    < 20 mg/l

    Typical effluent

    values of a

    WWTP with

    100,000 EW

    e.g. Lmg

    dC

    LdC

    g

    CBOD /300200

    60000

    200

    60

    5

    So

    urc

    e: A

    TV

    -DV

    WK

    -A 1

    31

    E

  • UNIVERSITTSTUTTGART

    Wastewater Technology Part 1: Urban DrainageExercise - Wastewater Quantity

    9

    Primary sedimentation - dimensioning

    Treatment methodqA[m/h]

    t

    [min]

    T

    [m]

    PS combined with activated sludge

    process (without addition of excess

    sludge)6 15 1.5

    PS combined with activated sludge

    process (with addition of excess

    sludge)2 3 45 2.0

    PS combined with trickling filter or

    rotating contactors (with/without

    addition of excess sludge)3 30 1.5

    (m/h) q

    (m/h) Q (m) A SurfaceTank

    A

    dmin

    (h)t (m/h) Q (m) V VolumeTank dmin

  • UNIVERSITTSTUTTGART

    Wastewater Technology Part 1: Urban DrainageExercise - Wastewater Quantity

    10

    Efficiency of Primary Sedimentation

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 1 2 3 4

    Eli

    min

    ati

    on

    [%

    ]

    Retention Time [h]

    Settleable Solids

    Filterable Solids

    BOD5 and COD

    Nitrogen

    So

    urc

    e: A

    TV

    -Handbu

    ch, 199

    7a

  • UNIVERSITTSTUTTGART

    Wastewater Technology Part 1: Urban DrainageExercise - Wastewater Quantity

    11

    Activated Sludge Process (scheme)

    Influent

    Effluent

    Excess

    sludge

    Return sludge

    Aeration tank Final sedimentation

    Aeration

    Gu

    jer,

    199

    9

  • UNIVERSITTSTUTTGART

    Wastewater Technology Part 1: Urban DrainageExercise - Wastewater Quantity

    12

    Parameters of Activated Sludge System

    Sludge Loading (kgBOD/(kgTSS*d)

    Sludge Age, Sludge retention time; Mean Cell Residence Time (d)

    Biomass Concentration = Total suspended solids (TSS)MLSS = Mixed Liquor Suspended Solids (kg/m)

    SV = Sludge Volume (mL/L)

    SVI = Sludge Volume Index (mL/g)

    Return Sludge Ratio (%)

    Excess Sludge Production (kgTSS/d)

    Oxygen Concentration and Consumption (mg/L)

    Volumetric Loading (kgBOD/(m*d))

  • UNIVERSITTSTUTTGART

    Wastewater Technology Part 1: Urban DrainageExercise - Wastewater Quantity

    13

    Sludge Volume Index

    In this Example

    Sludge Volume Index SVI = 110 ml/g or l/kg

    (Diluted) Sludge Volume SV=330 ml/l or l/m

    800

    600

    200

    400

    1000

    800

    600

    1000

    400

    200

    Start of Test After 30 min

    1 liter of Act. Sludge

    SSAT =3.0 g/l

    Volume: 330 ml/l

    SVI=330/3.0

    =110 ml/g

  • UNIVERSITTSTUTTGART

    Wastewater Technology Part 1: Urban DrainageExercise - Wastewater Quantity

    14

    Sludge Loading BX

    BSS = Sludge Loading kgBOD5/(kgSS*d)

    Bd,BOD = Daily BOD5 load in influent kg/(m3*d)

    VAT = Volume of aeration tank m3

    SSAT = Dry solids in aeration tank kg SS/m3

    M

    F

    ismsMicroorgan

    Food

    SSV

    BB

    ATAT

    BOD,d

    SS

    5

    So

    urc

    e: A

    TV

    -DV

    WK

    -A 1

    31

    E

  • UNIVERSITTSTUTTGART

    Wastewater Technology Part 1: Urban DrainageExercise - Wastewater Quantity

    15

    Sludge Loading BSS and Treatment Efficiency

    100

    80

    60

    40

    20

    > 13C

    < 11C

    Sludge Loading BSS

    BO

    D -

    Elim

    ina

    tio

    n [%

    ]

    1,0 100,1 0,2

    Gu

    jer,

    199

    9

  • UNIVERSITTSTUTTGART

    Wastewater Technology Part 1: Urban DrainageExercise - Wastewater Quantity

    16

    Sludge Retention Time SRT / Sludge Age tSS

    Sludge Retention Time (SRT) = Sludge Age = Mean Cell

    Residence Time (MCRT)

    The SRT is the average retention time of every sludge floc in the

    system

    The SRT controls the microbial population in the activated sludge

    High SRT slowly growing organisms can stay in the system (e.g. nitrifying

    bacteria)

    The SRT is difficult to measure, but it can be calculated as:

    Mass of TSS in the aeration tank/daily sludge production

    ][]/[

    ][]/[, ddsolidskgES

    mVmkgXSRT

    d

    ATATTSS

    So

    urc

    e: A

    TV

    -DV

    WK

    -A 1

    31

    E

  • UNIVERSITTSTUTTGART

    Wastewater Technology Part 1: Urban DrainageExercise - Wastewater Quantity

    17

    Sludge Age tSS (SRT)

    Size of the plant

    < 20.000 PE > 100.000 PE

    Dimensioning temperature Treatment target

    10 C 12 C 10 C 12 C

    Without nitrification 5,0 4,0

    With nitrification 10,0 8,2 8,0 6,6

    With nitrogen removal

    VD/VBB = 0,2 12,5 10,3 10,0 8,3

    VD/VBB = 0,3 14,3 11,7 11,4 9,4

    VD/VBB = 0,4 16,7 13,7 13,3 11,0

    VD/VBB = 0,5 20,0 16,4 16,0 13,2

    Sludge stabilization incl. nitrogen removal

    25,0 not recommended

    Selection of sludge age according to treatment purpose

    So

    urc

    e: A

    TV

    -DV

    WK

    -A 1

    31

    E

  • UNIVERSITTSTUTTGART

    Wastewater Technology Part 1: Urban DrainageExercise - Wastewater Quantity

    18

    With return sludge, thickened activated sludge is pumped back into the aeration reactor

    RS = Return Sludge Ratio QRS/Q

    SSRS = Suspended Solids Concentration in Return Sludge

    SSAT = Suspended Solids Concentration in the Aeration Tank

    Return Sludge

    RS

    SSRSSS RSAT

    1

    So

    urc

    e: A

    TV

    -DV

    WK

    -A 1

    31

    E

  • UNIVERSITTSTUTTGART

    Wastewater Technology Part 1: Urban DrainageExercise - Wastewater Quantity

    19

    Sludge Age [days]X/C

    4 8 10 15 20 25

    0,4 0,79 0,69 0,65 0,59 0,56 0,53

    0,6 0,91 0,81 0,77 0,71 0,68 0,65

    0,8 1,03 0,93 0,89 0,83 0,80 0,77

    1,0 1,15 1,05 1,01 0,95 0,92 0,89

    1,2 1,27 1,17 1,13 1,07 1,04 1,01

    Specific excess sludge production (kg SS/kg BOD5)

    Excess Sludge Production

    X/C = Suspended solids / BOD5 in the influent

    So

    urc

    e: A

    TV

    -DV

    WK

    -A 1

    31

    E

  • UNIVERSITTSTUTTGART

    Wastewater Technology Part 1: Urban DrainageExercise - Wastewater Quantity

    20

    Required mass of suspended solids in the biological reactor (kg)

    Volume of aeration tank

    dDimATSS ESSRTM ,

    Volume of the biological reactor (m)

    AT

    ATSSAT

    SS

    MV

    ,

    So

    urc

    e: A

    TV

    -DV

    WK

    -A 1

    31

    E

  • UNIVERSITTSTUTTGART

    Wastewater Technology Part 1: Urban DrainageExercise - Wastewater Quantity

    21

    Main Parameter of Activated Sludge Processes

    Treatment TargetType of

    System

    Sludge LoadingBiomass Conc.

    SSAT

    Sludge Age

    SRT

    kg/(kgd) kg/m d

    Part TreatmentHigh

    Loaded 1.0 1.5 2.0 1

    BOD5-RemovalMedium

    Loaded0.25 0.50 2.0 3.0 2 - 4

    NitrificationLow

    Loaded0.10 0.15 3.0 5.0 7 - 12

    Nitrification and

    Denitrification

    N-Eli-

    mination0.07 0.09 3.0 5.0 12 - 15

    Aerobic

    Stabilization

    Extended

    Aeration0.04 0.07 3.0 5.0 15 - 30 D

    IN E

    N 1

    22

    55

    -6 (

    4/2

    002)

  • UNIVERSITTSTUTTGART

    Wastewater Technology Part 1: Urban DrainageExercise - Wastewater Quantity

    22

    Secondary settling tank

    Surface loading important

    Dependant from the sludge characteristics (SVI)

    Calculation of the tank surface

    [m]

    ][][

    )][

    3

    2

    ,

    kg

    L

    g

    mL

    m

    kg

    L

    ghm

    L

    SVIX

    q

    SV

    qq

    ATTSS

    SVSVA

    A

    dSST

    q

    QA

    [m/h]

    So

    urc

    e: A

    TV

    -DV

    WK

    -A 1

    31

    E

  • UNIVERSITTSTUTTGART

    Wastewater Technology Part 1: Urban DrainageExercise - Wastewater Quantity

    23

    Secondary settling tank

    Depth of the sedimentation tank

    Dependant from the sludge characteristics (SVI)

    Dimensioning of the different zones according DWA A- 131

    Sludge level

    Compression,

    Consolidation

    Removal of sludge

    Outflow

    Solids concentrationDSo

    DSRS

    Water zoneh1

    Thickening zone

    Removal zoneh4

    Separation zone h3

    Storage zone h2

    Water level

    Settling (hindered)

    o

    h1

    h4

    h3

    h2Inflow Sludge level

    Compression,

    Consolidation

    Removal of sludge

    Outflow

    Solids concentrationDSo

    DSRS

    Water zoneh1

    Thickening zone

    Removal zoneh4

    Separation zone h3

    Storage zone h2

    Water level

    Settling (hindered)

    o

    h1

    h4

    h3

    h2Inflow

    h1 = 0.5 m (min. for safety reasons)

    h2 = [0.5 qA (1 + RS)] / (1-SV / 1000)

    h3 = 0.45 qSV (1 + RS) / 500

    h4 = [XTSS,AT qA (1 + RS) tTh] / XTSS,SST

    So

    urc

    e: A

    TV

    -DV

    WK

    -A 1

    31

    E