evaluations of available subduction gmpes by peerpeer … · evaluations of available subduction...

52
Evaluations of available Evaluations of available subduction GMPEs by subduction GMPEs by subduction GMPEs by subduction GMPEs by PEER PEER-GEM Global GMPEs GEM Global GMPEs project project project project 2011 COSMOS Technical Session Emeryville – 4 th November 2011 Carola Di Alessandro in behalf of Global-GMPEs Consortium

Upload: tranliem

Post on 06-Apr-2018

220 views

Category:

Documents


2 download

TRANSCRIPT

Evaluations of available Evaluations of available subduction GMPEs by subduction GMPEs by subduction GMPEs by subduction GMPEs by

PEERPEER--GEM Global GMPEsGEM Global GMPEsprojectprojectprojectproject

2011 COSMOS Technical SessionEmeryville – 4th November 2011

Carola Di Alessandro in behalf of Global-GMPEs Consortium

THE GEM PROJECT

GEM MISSION: to engage a global community in the design,development and deployment of statestate--ofof--thethe--art, uniformart, uniformopen standards and tools for calculating andopen standards and tools for calculating andcommunicating earthquake riskcommunicating earthquake risk worldwide.

PEER-GEM GLOBAL GMPEs STUDY: One of the Global ComponentsGlobal Components within the GEM Hazard model.

Aims at using unified, transparent and collaborative approach to select a select a harmonized suite of GMPEsharmonized suite of GMPEs that can be used at both the global and regional level for hazard and risk assessment. regional level for hazard and risk assessment.

Based on a systematic and consistent set of evaluation criteria, existing GMPEs forGMPEs for each major tectonic environment will be screened and major tectonic environment will be screened and

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEs

selectedselected by the research team.

THE PEER-GEM Global GMPEs PROJECT

DURATION: 24 months (starting from September 1st, 2010).

ORGANIZATION CHART:

Th i j t di ti ittj t di ti itt i ti f There is a project coordination committeeproject coordination committee consisting of 4 international experts (Abrahamson, Akkar, Bozorgnia, Erdik),who coordinate the tasks, and communicate with GEM’s ExecutiveCommittee and the Regional Programs Committee and the Regional Programs.

In total there are 27 international experts27 international experts participatingin the project (from South Africa Russia China Latin America Europe etc) in the project (from South Africa, Russia, China, Latin America, Europe etc). Combined, they have extensive GMPE expertise worldwide.

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEs

MAIN TASKS

Task 1: Definition of a consistent strategy of modelling ground motion.This task is subdivided into two components: a Consistent strategy for modelling ground motion and its parametersa. Consistent strategy for modelling ground motion and its parametersb. Estimating Site Effects in parametric ground motion models

T k 2 C il ti d iti l i f GMPETask 2: Compilation and critical review of GMPEs

Task 3: Selection of a Global Set of GMPEs.

Task 4: Inclusion of near-fault effects

Task 5: Worldwide Databases compilation of recorded waveform

T k 6 S ifi ti f il ti f l b l d t b f S il Cl ifi ti

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEs

Task 6: Specifications for compilation of a global database of Soil Classification.

PROJECT COORDINATION COMMITTEEPROJECT COORDINATION COMMITTEEAbrahamson Abrahamson -- Akkar Akkar –– Bozorgnia Bozorgnia -- ErdikErdik

TASK 2 C il d C iti llC il d C iti llTASK 2: Compile and CriticallyCompile and CriticallyReview GMPEsReview GMPEs

Cotton and Douglas (Co-Chairs)g ( )Abrahamson

AkkarBoore

Di AlessandroDi Alessandro

TASK 3: Select a Global Set of GMPEsSelect a Global Set of GMPEs

Core WGDouglas and Stewart (Co-Chairs)

Abrahamson

Extended WGAkkar – Arefiev – Baker

Boroschek – Cheng Boore

BozorgniaCampbellDelavaud

Chiou – CottonFajfar – McVerry

Midorikawa – MidziMolas – Saragoni

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEs

DelavaudDi Alessandro

Erdik – Stafford

Molas SaragoniShoja – Silva

Somerville – You

TASK 2 – COMPILATION AND CRITICAL REVIEW OF GMPEs

FIVE TECTONIC CATEGORIES OF EARTHQUAKES:FIVE TECTONIC CATEGORIES OF EARTHQUAKES:

Shallow crustal earthquakes in active tectonic regionsq gEarthquakes in stable continental regionsSubduction zone interface earthquakesSubduction zone intraslab (Wadati Benioff) earthquakesSubduction zone intraslab (Wadati-Benioff) earthquakesVolcanic regions earthquakes

THREE PHASES:THREE PHASES:Compilation based on John Doulgas’s expertise,Initial screening based on exclusion criteria Selection of an initial subset of candidate GMPEs

to be tested in the following Task 3

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEs

TASK 3 - Select a Global Set of GMPEs

For each tectonic region, a set of GMPEs will be selected to be…- Applicable to a wide range of magnitude, distance etc- Compatible with the regional data

The assessment of compatibility will be based on:- GMPEs performance vs. regional data, as reviewed in available literature / papers / reports.

Our philosophy is to minimize regionalization!Our philosophy is to minimize regionalization!R d ti t t b t l l d t l l!R d ti t t b t l l d t l l!Recommendations not to be at local and country level!Recommendations not to be at local and country level!

- Expert judgment by the international experts

- Qualitative evaluation of GMPEs behavior, focusing on similarities (or not) of predicted spectral ordinates for several periods wrt magnitude, distance, soil response etc.

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEs

EXCLUSION CRITERIA applied – COTTON et al. (2006)

1. model is from a clearly irrelevant tectonic regime2 model is not published in an international peer reviewed journal2. model is not published in an international peer-reviewed journal3. documentation of model and its underlying dataset is insufficient4. model has been superseded by more recent publications5. frequency and Mw range is not appropriate for engineering application6. model has an inappropriate functional form7. regression method or regression coefficients are inappropriateg g pp p

Additional exclusion criteria for subduction GMPEs:model is specifically for fore-arc or back arc locations

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEs

2 model is not published in an international peer reviewed journal

GMPEs currently EXCLUDED

2. model is not published in an international peer-reviewed journalException: McVerry et al. [2006]McVerry et al. [2006] for New Zealand, published in the Bulletin of the New

Zealand Society of Earthquake Engineering, which is currently not listed in ISI Web of Knowledge.g

3. documentation of model and its underlying dataset is insufficientExcludes: Gupta [2010]Gupta [2010] referenced-empirical model for intraslab earthquakes in Indo-

Burmese subduction zone, because of the limited amount or recorded ground gmotions and not evidence to support distance and magnitude scaling.

5. frequency and Mw range is not appropriate for engineering applicationExcludes: unsuitably high Mmin in Atkinson & Macias [2009]Atkinson & Macias [2009] model for Cascadia and to y g [ ][ ]

the Gregor et al. [2002]Gregor et al. [2002] stochastic-simulation model (only valid for subduction interface earthquakes with Mw between 8 and 9). Si and Midorikawa [2000]Si and Midorikawa [2000] model has limited application to PGV and PGA. We use Kanno 2006 instead which predicts SA and PGV.p

7. regression coefficients are inappropriateExcludes: Crouse [1991]Crouse [1991] derives coefficients only from stiff soil sites. Megawati & Pan Megawati & Pan

[2010][2010] simulation-based model for Sumatran interface events is derived only for

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEs

[ ][ ] yvery hard rock sites (Vs30=3400 m/s), and for large distances (distance to center of fault = 200 – 1500 km).

GMPEs currently PRE-SELECTED (@ June 2011)

SUBDUCTION ZONE INTERFACE AND INTRASLAB SUBDUCTION ZONE INTERFACE AND INTRASLAB

BC Hydro (2011): Worldwide BC Hydro (2011): Worldwide Arroyo et al. (2010): Interface model for Mexico [complementary to Garcia et al. (2005)]Atki & B (2003) W ld id Atkinson & Boore (2003): Worldwide Garcia et al. (2005): Intraslab model for Mexico [complementary to Arroyo et al. (2010)]Kanno et al. (2006): Japan Lin & Lee (2008): Taiwan M V t l (2006) N Z l dMcVerry et al. (2006): New ZealandYoungs et al. (1997): Worldwide Zhao et al. (2006) modified by Zhao (2010): Japan

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEs

Zhao et al. (2006) modified by Zhao (2010): Japan

GMPEs ATTRIBUTES - SYNTHESISMODELMODEL RECORDS (H)RECORDS (H) EVENTSEVENTS MwMw DIST.DIST. H (km)H (km) SITEsSITEs

BC Hydro Interface 1378 Interface 46 Interface 6 5 8 4 Interface 5 551 Interface < 30 ContinuousBC Hydro (2011)

Interface 1378Intraslab 3946

Interface 46Intraslab 76

Interface 6.5 - 8.4Intraslab 5 - 7.9

Interface 5 - 551Intraslab 34 – 991

Interface < 30Intraslab > 30

Continuous(Vs30)

Arroyo et al (2010)

Interface 418

Interface 40

Interface5.0 - 8.0

Interface 20 - 400

Interface10 – 29

3 (NZ classes)

Atkinson & Boore (2003)

Interface 349Intraslab + crustal761

Interface 49Intraslab+ crustal 30

Interface 5.5 - 8.3Intraslab 5 - 7.9

Interface 5 – 420Intraslab34 – 575 (r300)

Interface < 50Intraslab 50 – 100

4 (Vs30; NEHRP B toE)

Garcia et al Intraslab Intraslab Intraslab Intraslab Intraslab N/A (Sites Garcia et al. (2005)

Intraslab267

Intraslab16

Intraslab5.2 - 7.4

Intraslab40 – 400

Intraslab 35 - 138 (m75)

N/A (Sites NEHRP B)

Kanno et al. (2006)

Interf. + cr. 3769Intraslab 8150

Interf. + cr. 83Intraslab 111

Interf.+ cr. 5.2 - 8.2Intraslab 5.5 – 8

Interface 1 - 400Intraslab 30 – 500

Shallow < 30Deep 30 - 180 Cont. (Vs30)

I f 4 30Lin & Lee (2008)

Interface 873Intraslab 3950

Interface 17Intraslab 37

Interface 5.3 - 8.1Intraslab 4.1 – 6.7

Interface 20 - 40Intraslab 40 - 600

Interface 4 - 30Intraslab 43 - 161

2 (Vs30; NEHRP B,Cor D,E)

M V t 535 I t f 6Interf. 15 – 24

3 (NZ McVerry et al. (2006)

535Subduct. + crustal

Interface 6Intraslab 19 5.08 – 7.09 6 - 400 Intrasl. 26 - 50

50 - 149

3 (NZ classes)

Youngs et al. (1997)

Interface 181Intraslab 53

Interface 57Intraslab 26

Interface 5 - 8.2Intraslab 5 - 7 8

Interface 8.5 - 551Intraslab 45 – 774

10 – 229 (not distinguished) 2 (Rock/Soil)

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEs

(1997) Intraslab 53 Intraslab 26 Intraslab 5 - 7.8 Intraslab 45 774 distinguished)

Zhao et al. (2006)

Interface 1508Intraslab 1725Crustal 1285

289 (notdistinguished)

5.0 - 8.3 (notdistinguished)

0 - 300 (notdistinguished)

Interf. 10 - 50Intraslab15–162 (c125)

5 (HR + 4Jap. Rail. Ass., Tg)

BC Hydro (2011): WorldwideBC Hydro (2011): WorldwideGMPEs ATTRIBUTES

DATABASE: Japan, Taiwan, Cascadia, Mexico, Peru, Chile, Alaska and Solomon Islands

N. of RECORDINGS / EVENTS: Interface =1378 / 46; Intraslab = 3946 / 76

MAGNITUDE RANGE Mw (min-max): Interface =6.5 - 8.4; Intraslab = 5 - 7.9

DISTANCE RANGE km (min-max): Interface = 5 - 551; Intraslab = 34 – 991

Di t i R f I t f E t hil it i Rh f I t l b E tDistance is Rrup for Interface Events, while it is Rhypo for Intraslab Events

FOCAL DEPTHS (km): For classification Interface = H < 30; Intraslab = H > 30 but CMT mechanism used to recognize interface events with H > 30 (max Hinterface = 53)

SITE EFFECTS: Non-linear site response; continuous site classification (Vs30)

PERIOD RANGE: PGA, 105 periods from 0.01 to 10 sec.

H. COMPONENTS: Geometric mean but GMRotI for Taiwanese data

REGRESSION INFO: Random-effects (Abrahamson & Youngs [1992])

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEs

SOURCE MECHANISM: Interface and Intraslab

Kanno et al. (2006): JapanKanno et al. (2006): JapanGMPEs ATTRIBUTES

DATABASE: Japan, plus near-source foreign data from California and Turkey

N. of RECORDINGS / EVENTS: Interface + crustal =3769 / 83; Intraslab = 8150 / 111

MAGNITUDE RANGE M ( i ) I t f t l 5 2 8 2 I t l b 5 5 8 0MAGNITUDE RANGE Mw (min-max): Interface + crustal =5.2 - 8.2; Intraslab = 5.5 – 8.0

DISTANCE RANGE km (min-max): Interface + crustal = 1 - 400; Intraslab = 30 – 500

Distance is RhypoDistance is Rhypo

FOCAL DEPTHS (km): Shallow events 0 < H < 30; Deep events 30 < H < 180

SITE EFFECTS: site response; continuous site classification (Vs30)SITE EFFECTS: site response; continuous site classification (Vs30)

PERIOD RANGE: PGA, PGV, 36 periods from 0.05 to 5 sec.

H. COMPONENTS: Resolved componentp

REGRESSION INFO: Maximum likelihood two-stage [Joyner & Boore, 1993]

SOURCE MECHANISM: Not included (although coefficients vary for H < 30 km)

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEs

SCALING for KANNO et al. (2006)

H < 30 km H > 30 kmH < 30 km H > 30 km

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEsModified from Gunberg & Green (2011)

Effect of Rrup and Mw on spectral shape (no site and regional correction)

SCALING for KANNO et al. (2006) – cnt’dEffect of Focal Depth, Mw and Site conditions on spectral scaling

Standard Deviation

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEsModified from Gunberg & Green (2011)

Youngs et al. (1997): Worldwide Youngs et al. (1997): Worldwide GMPEs ATTRIBUTES

DATABASE Al k C di Chil J d S l I l dDATABASE: Alaska, Cascadia, Chile, Japan, and Solomon Islands

N. of RECORDINGS / EVENTS: Interface =181 / 57; Intraslab = 53 / 26

MAGNITUDE RANGE Mw (min max): Interface =5 0 8 2; Intraslab = 5 0 7 8MAGNITUDE RANGE Mw (min-max): Interface =5.0 - 8.2; Intraslab = 5.0 - 7.8

DISTANCE RANGE km (min-max): Interface = 8.5 - 551; Intraslab = 45 – 744Distance is Rrup generally, while it is Rhypo in few casesp g y, yp

FOCAL DEPTHS (km): not distinguished = 10 - 229

SITE EFFECTS: linear site response; 2 individual classes. Although regresses for 3 l ( k h ll il d d il) l t ffi i t f i k classes (rock, shallow soil and deep soil) only reports coefficients for generic rock

and soil consistent with those proposed by Boore et al. [1993] – A/B and C).

PERIOD RANGE: PGA, 11 periods from 0.075 to 5 sec.

COMPONENTS: Geometric mean

REGRESSION INFO: Random-effects (Abrahamson & Youngs [1992])

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEs

SOURCE MECHANISM: Normal (Intraslab) and Thrust (Interface)

SCALING for YOUNGS et al. (1997)

Effect of Rrup and Mw on spectral shape

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEsModified from Gunberg & Green (2011)

SCALING for YOUNGS et al. (1997) – cnt’d

Standard Deviation

Effect of Focal Depth, Mw and Site conditionsMw and Site conditions

on spectral scaling

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEs

Modified from Gunberg & Green (2011)

GMPEs SCALING COMPARISON – PGA vs DistanceINTERFACE, Mw 8 and 9, Hypo = 25 km, , yp

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEs

GMPEs SCALING COMPARISON – 0.3 sec vs DistanceINTERFACE, Mw 8 and 9, Hypo = 25 km, , yp

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEs

GMPEs SCALING COMPARISON – 1.0 sec vs DistanceINTERFACE, Mw 8 and 9, Hypo = 25 km, , yp

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEs

GMPEs SCALING COMPARISON – 3.0 sec vs DistanceINTERFACE, Mw 8 and 9, Hypo = 25 km, , yp

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEs

GMPEs SCALING COMPARISON – 5.0 sec vs DistanceINTERFACE, Mw 8 and 9, Hypo = 25 km, , yp

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEs

GMPEs SCALING COMPARISON – 10 sec vs DistanceINTERFACE, Mw 8 and 9, Hypo = 25 km, , yp

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEs

GMPEs SCALING COMPARISON – SPECTRAL SHAPE

INTERFACE, Mw 8, Hypo = 25 km

INTERFACE, Mw 9, Hypo = 25 km

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEs

GMPEs SCALING COMPARISON – PGA and 0.3 sec vs DistanceINTRASLAB, Mw 7, Hypo = 50 km

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEs

GMPEs SCALING COMPARISON – 1.0 and 3.0 sec vs DistanceINTRASLAB, Mw 7, Hypo = 50 km

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEs

GMPEs SCALING COMPARISON – 5.0 and 10 sec vs DistanceINTRASLAB, Mw 7, Hypo = 50 km

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEs

GMPEs SCALING COMPARISON – SPECTRAL SHAPE

INTRASLAB, Mw 7, Hypo = 50 km

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEs

PEER-GEM GLOBAL GMPEs PROJECT:

SUMMARY and CONCLUSIONSPEER GEM GLOBAL GMPEs PROJECT:One of the Global ComponentsGlobal Components within the GEM Hazard modelGEM Hazard model.

GMPEs PRE-SELECTION of AVAILABLE GMPEs:GMPEs PRE-SELECTION of AVAILABLE GMPEs:Nine models for subductionNine models for subduction (interface and intraslab) were selectedselected through a systematic and consensussystematic and consensus--base screening approachbase screening approach. Oth GMPE h b l t d l f th t t i iOther GMPEs have been pre-selected also for other tectonic regimes.

GMPEs PERFORMANCE EVALUATION: BC Hydro (2011): Worldwide Arroyo et al. (2010): Interface model for

Is ongoingongoing. Preliminary results shownoticeable scatterscatter for high magnitudesat long periods.

Mexico [complementary to Garcia et al. (2005)]Atkinson & Boore (2003): Worldwide Garcia et al. (2005): Intraslab model for Mexico [complementary to Arroyo et al. (2010)]

( )FINAL PRODUCT of the PROJECT:To select a subselect a sub--setset of those models b th d f A t 2012 f f

Kanno et al. (2006): Japan Lin & Lee (2008): Taiwan McVerry et al. (2006): New ZealandYoungs et al. (1997): Worldwide Zh l (2006) difi d b Zh (2010)

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEs

by the end of August 2012 for for GEM PSHA and risk applicationsGEM PSHA and risk applications.

Zhao et al. (2006) modified by Zhao (2010): Japan

Th k f tt ti !Th k f tt ti !Thank you for your attention!Thank you for your attention!If you want to know more, visit:

http://peer.berkeley.edu/globalgmpe/and http://www.globalquakemodel.org/

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEs

Arroyo et al. (2010): Interface model for MexicoArroyo et al. (2010): Interface model for Mexico[complementary to Garcia et al. (2005)][complementary to Garcia et al. (2005)]

GMPEs ATTRIBUTES

DATABASE: Forearc regions of Mexico

N. of RECORDINGS / EVENTS: Interface =418 / 40

MAGNITUDE RANGE Mw (min-max): Interface =5.0 - 8.0

DISTANCE RANGE km (min-max): Interface = 20 - 400

Distance is Rrup generally, while it is Rhypo for events with Mw < 6

FOCAL DEPTHS (km): Interface = 10 - 29

SITE EFFECTS: 3 classes following New Zealand Site Classification (surface geology, geotechnical properties, Vs30, predominant period and depth to bedrock).

PERIOD RANGE: PGA, 29 periods from 0.04 to 5 sec. , p

H. COMPONENTS: Geometric mean

REGRESSION INFO: Ordinary one-stage regression (uses some Bayesian analysis)

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEs

SOURCE MECHANISM: Interface

Atkinson & Boore (2003): Worldwide Atkinson & Boore (2003): Worldwide GMPEs ATTRIBUTES

DATABASE Al k C di Chil J M i d P ’ ( l i t f )DATABASE: Alaska, Cascadia, Chile, Japan, Mexico and Peru’ (only interface).

N. of RECORDINGS / EVENTS: Interface =349 / 49; Intraslab = 761 / 30 (includes both subduction and crustal records)

MAGNITUDE RANGE Mw (min-max): Interface =5.5 - 8.3; Intraslab = 5 - 7.9

DISTANCE RANGE km (min-max): Interface = 5 - 420; Intraslab = 34 – 575 (Only data f t t 300 k d f fi l i )from events up to 300 km used for final regression).

Distance is Rrup.

FOCAL DEPTHS (km): For classification Interface = H < 50 shallow dipping planes;FOCAL DEPTHS (km): For classification Interface = H < 50 – shallow dipping planes;Intraslab = 50 < H < 100 – normal and thrust events with steeply dipping planes.

SITE EFFECTS: Site response; 4 discrete classes (Vs30, NEHRP B to E)

PERIOD RANGE: PGA, 7 periods from 0.04 to 3 sec.

H. COMPONENTS: Randomly chosen component

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEs

REGRESSION INFO: Random-effects (Abrahamson & Youngs [1992])

SOURCE MECHANISM: Interface and Intraslab

SCALING for ATKINSON &

BOORE (2003)Effect of Mw on

Distance scaling for InterfaceDistance scaling for Interfaceand Intraslab models

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEsModified from Gunberg & Green (2011)

Standard Deviation

Garcia et al. (2005): Intraslab model for MexicoGarcia et al. (2005): Intraslab model for Mexico[complementary to Arroyo et al. (2010)][complementary to Arroyo et al. (2010)]

GMPEs ATTRIBUTES

DATABASE: Central Mexico

N. of RECORDINGS / EVENTS: Intraslab = 267 / 16

MAGNITUDE RANGE Mw (min-max): Intraslab = 5.2 - 7.4

DISTANCE RANGE km (min-max): Intraslab = 40 – 400

Di t i R f t ith M 6 6 hil it i Rh th iDistance is Rrup for events with Mw > 6.6, while it is Rhypo otherwise

FOCAL DEPTHS (km): Intraslab = 35 ≤ H ≤ 138 km, most records (13 earthquakes, 249 records) from 35 ≤ H ≤ 75 km.)

SITE EFFECTS: Not included (all data from NEHRP B sites)

PERIOD RANGE: PGA, PGV, 15 periods from 0.04 to 5 sec.

COMPONENTS: Geometric mean (calls it “quadratic mean”)

REGRESSION INFO: Maximum likelihood one-stage

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEs

SOURCE MECHANISM: Intraslab

Lin & Lee (2008): TaiwanLin & Lee (2008): TaiwanGMPEs ATTRIBUTES:

DATABASE: NE Taiwan plus 10 foreign recordings from Mexico western USA and New DATABASE: NE Taiwan plus 10 foreign recordings from Mexico, western USA and New Zealand

N. of RECORDINGS / EVENTS: Interface =873 / 17; Intraslab = 3950 / 37

MAGNITUDE RANGE Mw (min-max): Interface =5.3 - 8.1; Intraslab = 4.1 – 6.7

Develop separate ML-Mw conversion for deep or shallow events.

DISTANCE RANGE km (min-max): Interface = 20 - 40; Intraslab = 40 – 600

Distance is Rhypo

FOCAL DEPTHS (km): Interface = 3.94 - 30; Intraslab = 43.39 – 161

SITE EFFECTS: 2 discrete classes (Vs30, NEHRP B,C or D,E)

PERIOD RANGE: PGA 27 periods from 0 01 to 5 sec PERIOD RANGE: PGA, 27 periods from 0.01 to 5 sec.

COMPONENTS: Geometric mean

REGRESSION INFO: Weighted one-stage

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEs

REGRESSION INFO: Weighted one-stage

SOURCE MECHANISM: Interface and Intraslab

SCALING for LIN and LEE (2008)

Effect of Focal Depth on spectral shape for Interface and Intraslab models

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEsModified from Gunberg & Green (2011)

SCALING for LIN and LEE (2008) – cnt’d

Effect of Mw, Rhypo and Site conditions

on spectral shape forIntraslab modelIntraslab model

Standard Deviation

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEsModified from Gunberg & Green (2011)

McVerry et al. (2006): New Zealand McVerry et al. (2006): New Zealand GMPEs ATTRIBUTES

DATABASE: New Zealand + 66 near source foreign recordsDATABASE: New Zealand + 66 near-source foreign records

N. of RECORDINGS / EVENTS: 535 recordings (subduction + crustal); Interface = 6; Intraslab = 19 events

MAGNITUDE RANGE Mw (min-max): 5.08 – 7.09

DISTANCE RANGE km (min-max): 6 - 400Distance is Rrup for 10 events and Rc (Distance to rupture centroid) for the rest.

FOCAL DEPTHS (km): Interface = 15 -24; Intraslab = 26 – 50 (shallow) / 50 – 149 (deep)

SITE EFFECTS: 3 classes following New Zealand Site Classification (surface geology, geotechnical properties, Vs30, predominant period and depth to bedrock).

PERIOD RANGE: PGA, 11 periods from 0.07 to 5 sec. PERIOD RANGE: PGA, 11 periods from 0.07 to 5 sec.

COMPONENTS: Maximum component or geometric mean

REGRESSION INFO: Random-effects (Abrahamson & Youngs [1992])

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEs

SOURCE MECHANISM: Crustal (Reverse or Strike / Normal), Interface and Intraslab (deep or shallow)

SCALING for McVERRY et al. (2006)

Effect of Mw, Rrup and Site conditions

on spectral shape forShallow Intraslab model

Standard Deviation

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEsModified from Gunberg & Green (2011)

Standard Deviation

SCALING for McVERRY et al. (2006) – cnt’d

Effect of Volcanic Pathand Focal Depth on spectral shape

for Deep Intraslab andInterface modelsInterface models

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEsModified from Gunberg & Green (2011)

SCALING for YOUNGS et al. (1997) – cnt’d

Effect of Rrup, Mwand Focal Depth on spectral shapefor Intraslab modelfor Intraslab model

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEs

Modified from Gunberg & Green (2011)

Zhao et al. (2006) modified by Zhao (2010): Japan Zhao et al. (2006) modified by Zhao (2010): Japan GMPEs ATTRIBUTES

DATABASE: Japan plus 208 foreign crustal near-source records

N. of RECORDINGS / EVENTS: Interface =1508; Intraslab = 1725; crustal = 1285recording. 289 events not broken-down for tectonic regime.recording. 289 events not broken down for tectonic regime.

MAGNITUDE RANGE Mw (min-max): 5.0 - 8.3 not distinguished

DISTANCE RANGE km (min-max): 0 – 300 not distinguishedDistance is Rrup

FOCAL DEPTHS (km): Interface = 10 -50; Intraslab = 15 – 162 (uses cap at H = 125)SITE EFFECTS: 5 individual classes (Hard rock + 4 of Japanese Railroad AssociationSITE EFFECTS: 5 individual classes (Hard rock + 4 of Japanese Railroad Association

(Predominant Period, Tg – statistical corresponding Vs30 range in Japan)

PERIOD RANGE: PGA, 20 periods from 0.05 to 5 sec.

COMPONENTS: Geometric mean

REGRESSION INFO: Random effects

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEs

SOURCE MECHANISM: Crustal (Reverse or Strike / Normal), Interface and Intraslab

SCALING for ZHAO et al. (2006)

Effect of Mw and Site conditions

Standard Deviationon spectral shape for

Interface and Intraslab models

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEsModified from Gunberg & Green (2011)

Volcanic GMPEs Modeling ApproachCHALLENGE: Adjust GMPEs for low-Q and high attenuation rates in volcanic & CHALLENGE: Adjust GMPEs for low Q and high attenuation rates in volcanic & mantle-wedge zones

SOLUTIONS IN AVAILABLE GMPEs:– McVerry et al. (2006) proposed addition of an anelastic attenuation term for the volcanic path length Rvol implemented for crustal and shallow slab events with paths through Taupo volcanic zone in New Zealand.lnSAvolc(T,M,R)=lnSAstandard(T,M,R)

+ Cvol(T)Rvol

– Zhao (2010) added attenuation terms in the functional forms and plots but did not providecoefficients for active volcanic fronts in Japancoefficients for active volcanic fronts in Japan

– BC-Hydro (2011) includes back-arc attenuation (separate distance attenuation is included for back-arc

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEs

( psites with separate slopes for interface andintraslab earthquakes). Kindly provided by John Zhao, BSSA April 2010

ln(Sa) = θ1 +θ 4 * ΔC1 + (θ2 +θ14 * Fevent +θ 3 * (M − 7.8)) * ln R + C4 * exp[(M − 6) *θ 9 ]( )+

FUNCTIONAL FORMS – BC Hydro (2011)

θ 6 * R +θ10 * Fevent + fMag (M ) + fdepth (Zh ) + fFABA (R) +

fsite (PGA1000 ,VS30)

R =RuptureDistance for Interface Events

Hypocentral Distance for Intraslab Events

⎧ ⎨ ⎩

Fevent =0 Interface Events

1 Intraslab Events

⎧ ⎨ ⎩

FFABA =0 Forearc or Unknown Sites

1 Backarc Sites

⎧ ⎨ ⎩ Hypocentral Distance for Intraslab Events⎩ 1 Intraslab Events⎩ 1 Backarc Sites⎩

fMag (M) =θ4 * (M − (C1 + ΔC1)) + θ13 * (10 − M)2 for M ≤ C1 + ΔC1

θ5 * (M − (C1 + ΔC1)) + θ13 * (10 − M)2 for M > C1 + ΔC1

⎧ ⎨ ⎩

f depth (Zh ) = θ11 * (Zh − 60) * Fevent

fFABA (R) =[θ7 + θ8 * Ln(

max[R,85]40

)]* FFABA for Fevent = 1

[θ15 + θ16 * Ln(max[R,100]

40)]* FFABA for Fevent = 0

⎨ ⎪

⎩ ⎪

40⎩

fsite (PGA1000 ,Vs30m) =

θ12 * Ln(Vs

*

Vlin

) − b * Ln(PGA1000 + c) +

b * Ln(PGA1000 + c * (Vs

*

Vlin

)n )for VS30 < Vlin

⎪ ⎪ ⎪ ⎪

Where PGA1000 = Median PGA valuefor VS,30 = 1,000 m/sec

θ12 * Ln(Vs

*

Vlin

) + b * n * Ln(Vs

*

Vlin

) for VS30 ≥ Vlin⎩

⎪ ⎪ ⎪ ⎪

Vs* =

1000.0 for VS30 > 1000

VS30 for VS30 ≤ 1000

⎧ ⎨ ⎩

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEs

FUNCTIONAL FORMS – Arroyo et al. (2010)

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEs

FUNCTIONAL FORMS – Atkinson and Boore (2003)

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEs

FUNCTIONAL FORMS – Garcia et al. (2005)

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEs

FUNCTIONAL FORMS – Kanno et al. (2006)

Ground-motion model is for D ≤ 30km:

and for D > 30km:

Use Vs,30 to characterise site effects using correction formula: ,G = log(obs/pre) = p log Vs,30 + q. Derive p and q by regression analysis on residuals averaged at intervals of every 100m/s in Vs,30. Note that the equation without site correction predicts ground motions at sites with Vs,30 ≈ 300m/s.

Introduce correction to model anomalous ground motions in NE Japan from intermediate and deep earthquakes occurring in the Pacific plate due to unique Q structure beneath the island arc. Correction is: log(obs/pre) = (αRtr + β)(D ¡ 30) where Rtr is shortest distance from site to Kuril and Izu-Bonin

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEs

g( p ) ( β)( ¡ )trenches. α and β are derived by regression on subset fulfilling criteria: hypocentre in Pacific plate, station E of 137 E and station has Vs,30 measurement.

FUNCTIONAL FORMS – Lin and Lee (2008)

Ground-motion model is:

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEs

FUNCTIONAL FORMS – McVerry et al. (2006)

Ground-motion model for subduction earthquakes is:

and

where

Final model given byFinal model given by

2011 COSMOS Technical Session ‐ Evaluation of available Subduction GMPEs by PEER‐GEM Global GMPEs

where SAA/B,C,D is in g, rV OL is length in km of source-to-site path in volcanic zone