europa lander: mission concept and scientific goals

Download Europa Lander: mission concept and scientific goals

Post on 02-Feb-2016

21 views

Category:

Documents

0 download

Embed Size (px)

DESCRIPTION

Europa Lander: mission concept and scientific goals. - PowerPoint PPT Presentation

TRANSCRIPT

  • Europa Lander: mission concept and scientific goalsL. Zelenyi, O. Korablev, M. Martynov, E. Akim, A. Basilevsky, N. Eismont, A. Fedorova, V. Galchenko, M. Gerasimov, O. Kozlov, L. Ksanfomality, I. Lomakin, G. Managadze, M. Podzolko, G. Popov, A. Simonov, A. Sukhanov, E. Vorobyova, Yu. Agafonov, O. Prieto-Ballesteros, M. Blanc, J.P. Lebreton, R. Pappalardo and the Europa Lander Team

    IKI, NPOL, Keldysh Inst., Vernadsky Inst., Winogradsky Inst., Skobeltsyn Inst. MSU, NII PME, Soil faculty MSU, Centro Astrobiologica INTA, ESA ESTEC, Ecole Polytechnique, JPL.1M-SSS12 October 2010

  • Jupiters Galilean satellites

    Io: tidal volcanism Europa, Ganimede and Callisto: a mantle of liquid water Europa: rock-water interface ICE SHELL >10 km Europa is the archetype of icy world habitability

  • From Figueredo et al., 2003

  • WHAT WE KNOW NOW FOR SURE ?WATER ICE IS DOMINATING(Pilcher et al. 1972, Clark and McCord, 1980, Clark 1981

    OTHER IDENTIFIED MOLECULESSO2 (Lane et al.,1981; Noll et al.,1995; Lane & Domingue,1997; Domingue & Lane,1998).

    CO2 (Smythe et al., 1998, Carlson 2001).

    H2O2 (Carlson et al 1999a)AMORPHOUS H2O (Hansen & McCord, 2001)

    O2 (Hall et al., 1995, 1998; Spencer & Calvin, 2002)Na, K (Johnson et al., 2002)

    SALT HYDRATES (McCord et al. 1998, 1999: Kargel et. al. 2000,Dalton et al. 2005)

    HYDRATES OF SULFURIC ACID (Carlson et al. 1999b, 2002)

  • HYPOTHETICAL COMPOSITIONS OF THE EUROPA OCEAN

    Na-Mg-Ca-SO4-Cl-H2O SYSTEM (neutral pH) (Kargel et al., 2000)

    2. Na- K-Cl-SO4-CO3-H2O SYSTEM (alkaline pH)(Marion, 2001)

    3. Na-H-Mg-SO4-H2O SYSTEM (acid pH)(Marion, 2002) MOST IMPORTANT FACTORS CONTROLLING POSSIBLE EUROPA BIOSYSTEMS

    LIFE IN SULFATE SYSTEMS HIGH SALINITY HIGH PRESSURE ,

  • 2/8/08NASA & ESA share mission leadershipTwo independently launched and operated flight systems with complementary payloads

    EJSM-Laplace Jupiter Europa Orbiter Mission2/8/08*~1011 Instruments on each flight system, including Radio ScienceJupiter Europa Orbiter (JEO): NASA-led mission elementJupiter Ganymede Orbiter (JGO): ESA-led mission elementMission TimelineNominal Launch: 2020Jovian system tour phase: 23 yearsMoon orbital phase: 612 monthsEnd of Prime Missions: 2029K. Clark et al. JPLM. Blanc, Ecole Polytechnique

  • 2/8/08JEO Baseline Mission OverviewNASA-led portion of EJSM (Flagship)Extensively studied in 20072008Objectives: Jupiter System, Europa Launch vehicle: Atlas V 551Power source: 5 MMRTG or 5 ASRGMission timeline:Launch: 2018 to 2022, nominally 2020Uses 6-year Venus-Earth-Earth gravity assist trajectoryJovian system tour phase: 30 monthsMultiple satellite flybys: 4 Io, 6 Ganymede, 6 Europa, and 9 Callisto Europa orbital phase: 9 monthsEnd of prime mission: 2029Spacecraft final disposition: Europa surface impact11 Instruments, including radio scienceRadiation dose: 2.9 Mrad (behind 2.5 mm of Al)Handled using a combination of rad-hard parts and tailored component shielding2/8/08 *

  • 2/8/08JEO: Paving the Way for a Future LanderBest Targets for Science - Recent material exchange with subsurface (i.e. young in age) and rich in chemistryHigh resolution imaging, radar, IR spectroscopy, thermal imaging

    2/8/08 *Safe for landing - Meter scale topography, heterogeneity, depth and porosity of regolithHigh resolution imaging, laser altimetry, radar, thermal inertiaFine scale processes: mass wasting, sputter erosion, sublimation, impact gardening, frost deposition

  • A LANDER FOR EUROPAL. Gurvitz: PRIDE direct radio link

  • What to search for on the surface ?Assess internal structure, measure the thickness of the ice crustAssess the conditions on the surface

    Measure the composition of the ice and admixtures in situ

    Search for LIFEBiomarkersChiralityCells, fossils

  • HERITAGE:LANDERS FOR

    MARS

    VENUS

    MOON ROVERS FOR

    MOON

    SAMPLE RETURN

    MOON

    PHOBOS SAMPLE RETURN (2011)

    . . .

    :: Main stages of mission*Proton/Breeze-M launch (target date 2020, as in the project of Federal Space Programme)Electric propulsion transport module (separation in the vicinity of Jupiter)Using Earth, Jupiter and Galilean satellites gravity assist maneuversMultiple fly-bys of Ganimede, Callisto and Europa;Final circular orbit around Europa with a height of 100 km;Separation of the Landing module and landing. Europa orbiter and supports telecommunication. Optional TM relay via NASA JEO or directly to Earth via VLBI.

    ::

    . . .

    :: * Manoeuvres 100 m/s Corrections during tour 50 m/s Rendezvous with Europe 145 m/s Insertion into Europe orbit (h = 100 km) 705 m/sTotal 1000 m/sInitial orbit:- Pericenter radius 900 thousand km; - Apocenter radius 20 million km. - Period ~200 daysT = 23 MonthInsertion into Europe orbit

    MoonHeight, kmV, km/sPeriod, daysrp, RJG1Ganymede15006.6571.411.8G2Ganymede1206.4828.611.1G3Ganymede1006.4621.510.7G4Ganymede1006.424.910.9C1Callisto4006.233.412.7C2Callisto19096.1837.713.3G5Ganymede1005.0421.512.5G6Ganymede11904.9219.512.4C3Callisto30955.0223.914.1G7Ganymede9583.6614.313.2G8Ganymede1003.6713.913.6C4Callisto11593.4715.114.4G9Ganymede26952.6410.713.5G10Ganymede13122.657.211.3G11Ganymede25942.635.69.0E1Europe60692.365.38.9E2Europe87732.295.18.8G12Ganymede11391.765.711.0G13Ganymede2001.765.39.3E3Europe14511.625.39.3E4Europe15001.424.79.3EOIEurope-0.57 - -

    ::

    . . .

    :: *Landing onto Europe surfaceLanding orbit (20100 km)Main parameters of landing moduleTrust 3000 N - Specific impulse 220 s - Initial mass 1210 kg - Mass on surface 550 kg - Propellant mass 660 kgTotal value of characteristic velocity ~1600 m/sEstimation of stability of a polar circular orbit (h=100 km):~2 Month without correction maneuvers ; 1 Year 200 m/s.

    ::

    . . .

    :: Spacecraft:: Overview*

    NameMass, kgOrbital module395Landing module550Propulsion system385Electric Propulsion system860Intermediate structure70S/C without propellant2260EPS propellant1435Propulsion system propellant2005Landing module propellant660S/C with propellant6360

    ::

    . . .

    :: Landing module*Scientific instruments unitService system unitRTG

    Propulsion system167 kgControl system41Radio system7,2Antennas2,2Power system44Thermal system20Harness20Structure119,5Landing unit12Scientific instruments70Margin47,1Total Landing module dry mass550 kg

    ::

  • On the surface of Europa the radiation dose might be 20% of the dose on the orbit around Europa

  • Landing site and radiation doseIdeal landing site:A place where the subsurface (the ocean) has communicated with the surfaceRelatively young/unaltered by radiation processing, impact bombardment, etc. Relatively flat and/or smoothThe smaller is the size of landing ellipse the more sites are available for landingRadiation dose is substantially different for different sites

    GeologyCastalia Macula: View from northwestConamara Chaos

  • Europa Lander Science: Some Conclusions from the ELW 2009Search for life on Europa, or signatures of life (metabolism) is the main appeal of the Europa Lander mission

    Putative biota on Europa should be very rarified; sample preparation and concentration is requiredSample acquisition is critical: even shallow subsurface access is challenging, though absolutely needed for life detection experiments

    Biology-driven experiments should provide valuable information regardless of the biology results (space exploration need not and cannot be hypothesis testing)

    Establishing geophysical and chemical context of the environment is criticalLander is to provide ground truth for remote measurements and enhance the detection limits

  • Measurements at the surface of Europa and access to the subsurfaceGeophysics:Ranging measurementsSensors (seismometer, tiltometer) Means of the access to the subsurface-penetratorThermal drill Melting probesChemical analysis Melting probeGCMSRaman-LIBSMass spectroscopy of secondary ionsSearch for lifeMicroscopyRaman spectroscopyATR spectroscopyLIBS, laser mass spectroscopyReasonable mass of Lander payload suite should not exceed 15-20 kgRadiation tolerance and protection of instruments

  • Means of access to the subsurfaceNo penetratorsNo large melting probeDrill ~ 50 cm or more (~20 kg: ExoMars)Small melting probe (~4 kg Biele et al. 2010): one instrument inside? Problem of ice sublimation

  • POTENTIAL BIOMARKERS

    Geochemical, mineralogical (silicates, carbonates, phosphorites, clorides)

    Isotopic abundances

    Organic matter

    Biochemical metabolites

    Gaseous metabolites

    Chirality

    Cells (anabiotic?)

    Fossils SELECTION OF METHODS:

    Multi functionality,

    Determination of multiple markers

    Redundancy in biomarker detection

    Testing on terrestrial analogs

    IR spectroscopyGCMS, MALDI, Raman

  • 25 kg + 4 melting probe + 5 manipulator +20 drill + 3 service/cables = 57 kg

    Instrument ConditionsCompositionHabitabilityPrototypeMass(estimated)SeismometerOPTIMISM/Mars 96495g +electronicsGravimeterGRAS/Phobos 11250gTiltometerHuygens (300g)MagnetometerMMO Bepi Colombo770gTV cameras setCIVA/Rosetta; Phobos 11 1200gOptical microscopeBeagle-2; Phobos 11300gIR spectroscopyNo direct prototype;