estadística, definiciones

17
Definición 2.1 El conjunto de todos los resultados posibles de un experimento (estadístico, económico, etc.) se llama espacio muestral y se suele representar por el símbolo S. Los elementos del espacio muestral son también llamados resultados elementales, o puntos muestrales. Algunos textos utilizan los símbolos  o  para denotar un espacio muestral. Φ ε  Definición 2.2 Un evento es un subconjunto de un espacio muestral. Definición El evento A está contenido en el evento B, o B contiene a A, si cada punto muestral de A es también un punto muestral de B. Siempre que esto es cierto se escribirá AB,oBA. Definición Dos eventos A y B son iguales, A=B, si AB y BA. Es decir, dos eventos son iguales si contienen exactamente los mismos puntos muestrales. Definición El conjunto que no contiene elementos es llamado el conjunto vacio y denotado por . El evento correspondiente para , es llamado imposible. Definición 2.3 El complemento de un evento A con respecto a S es el subconjunto de todos los elementos de S que no está en A. Es decir, el conjunto que contiene todos los puntos muestrales que no están el evento A será llamado el complemento de y denotado A C ,  se puede leer como no A, una notación alternativa para el complemento es A ' o A, Definición 2.4 La intersección de dos eventos A y B, denotada mediante los símbolos AB o AB , es el evento que contiene a todos los elementos que son comunes a A y a B. La definición de intersección puede ser extendida para el caso de eventos infinitos. De esta forma: A 1 A 2 ∩⋯∩ A n también denotado como i=1 n A i Definición 2.5 Dos eventos A y B son mutuamente excluyentes o disjuntos si  AB = Ø; es decir, si A y B no tienen elementos en común. Definición 2.6 La unión de dos eventos A y B, que se denota mediante AB, es el evento que contiene todos los elementos que pertenecen a A o a B o a ambos. La definición de unión puede ser extendida para el caso de eventos infinitos. De esta forma: A 1 A 2 ∪⋯∪ A n también denotado como i=1 n A i Definición La diferencia A\B contiene todos los puntos muestrales que pertenecen a A pero no a B. Es claro que, S\a es lo mismo que  A C , algunas formulas pueden ser simplificadas introduciendo la operación diferencia de dos eventos: A\B =  AB C . DE 17 

Upload: jorge-romero

Post on 07-Jun-2015

49.416 views

Category:

Documents


0 download

DESCRIPTION

Este documento contiene definiciones y formulas de Estadística

TRANSCRIPT

Page 1: Estadística, definiciones

Definición 2.1 El conjunto de todos los resultados posibles de un experimento (estadístico, económico, etc.) se llama espacio muestral y   se   suele   representar   por   el   símbolo  S.  Los   elementos   del   espacio   muestral   son   también   llamados   resultados elementales,  o  puntos  muestrales.  Algunos   textos  utilizan   los  símbolos    o    para  denotar  un  espacio muestral.Φ ε  

Definición 2.2 Un evento es un subconjunto de un espacio muestral.

Definición  El evento A está contenido en el evento B, o B contiene a A, si cada punto muestral de A es también un punto muestral de B. Siempre que esto es cierto se escribirá A⊂B ,o B⊃A.

Definición Dos eventos A y B son iguales, A=B, si A⊂B y B⊂A. Es decir, dos eventos son iguales si contienen exactamente los mismos puntos muestrales.

Definición El conjunto que no contiene elementos es llamado el conjunto vacio y denotado por ∅ . El evento correspondiente para ∅ , es llamado imposible.

Definición 2.3 El complemento de un evento A con respecto a S es el subconjunto de todos los elementos de S que no está en A. Es decir, el conjunto que contiene todos los puntos muestrales que no están el evento A será llamado el complemento de A y denotado AC,  se puede leer como no A, una notación alternativa para el complemento es A' o A ,

Definición 2.4 La intersección de dos eventos A y B, denotada mediante los símbolos AB o A∩B , es el evento que contiene a todos los elementos que son comunes a A y a B. La definición de intersección puede ser extendida para el caso de eventos infinitos. De esta forma:

A1∩A2∩⋯∩An también denotado como ∩i=1

nA i

Definición 2.5 Dos eventos A y B son mutuamente excluyentes o disjuntos si   A∩B = Ø; es decir, si A y B no tienen elementos en común.

Definición 2.6 La unión de dos eventos A y B, que se denota mediante A∪B , es el evento que contiene todos los elementos que pertenecen a A o a B o a ambos. La definición de unión puede ser extendida para el caso de eventos infinitos. De esta forma:

A1∪A2∪⋯∪An también denotado como ∪i=1

nA i

Definición La diferencia A\B contiene todos los puntos muestrales que pertenecen a A pero no a B. Es claro que, S\a es lo mismo que  AC, algunas formulas pueden ser simplificadas introduciendo la operación diferencia de dos eventos:

A\B =  A∩BC.

1 DE 17 

Page 2: Estadística, definiciones

Teorema Las operaciones definidas sobre eventos obedecen las siguientes leyes,

Idempotencia A∪A=A , A∩A=A.

Doble complemento Ac

c=A ,

Absorción A∪B=B , si A∩B=A si A⊂B.

en particular A∪∅=A , A∪S=S , A∩∅=∅ , A∩S=A.

estosignifica que ∅⊂A⊂S.

Conmutativa A∪B=B∪A , A∩B=B∩A.

Asociativa A∪B∪C =A∪B∪C , A∩B∩C=A∩B∩C.

Distributiva A∩B∪C = A∩B∪ A∩C , A∪B∩C=A∪B ∩A∪C .

Leyes de Morgan A1∪⋯∪ Anc=A1

c∩⋯∩An

c ; A1∩⋯∩An c=A1

c∪⋯An

c .

Definición El producto cartesiano. Si A y B son conjuntos, entonces el producto cartesiano A x B esta definido como el conjunto de todos los pares ordenados (a,b) donde a∈A y b∈B.

Teorema 2.1 (regla   de   la   multiplicación   o   principio   fundamental   del   conteo).   Si A1 y A2 son   conjuntos   finitos,   que 

consisten   respectivamente   de k1 y k 2 elementos,   entonces   el   producto   cartesiano A1 x A2 está   formado   de

k1⋅k 2 elementos. Esto es posible si una operación se puede llevar a cabo en k1 formas, y si para cada una de éstas 

se puede realizar una segunda operación en k 2 formas.

Teorema 2.2 Regla de la multiplicación generalizada. Se puede definir el producto cartesiano para más de dos conjuntos. De esa manera, si A1 , ... , An son conjuntos, entonces el producto Cartesiano A1 x A2 x⋯x An es el conjunto de todas las 

n­tuplas a1, a

2, ... , a

n con a

i∈A

i, i=1,2 ,... , n . Entonces   si   A1 , ... , An son   conjuntos   finitos,   con k i

elementos pertenecientes a Ai i=1,2,3 , ... ,n , entonces  A1 x A2 x⋯x An contiene k i⋯kn elementos.

Corolario El número de pares ordenados (x,y) con x≠y que pueden ser formados de n elementos distintos en un conjunto de tamaño n es n(n­1).

Definición 2.7 Una permutación es un arreglo u ordenación de elementos de un conjunto.

Teorema 2.3 El número de permutaciones de n objetos distintos es n! formas, n!=n n−1 n−2⋯3⋅2⋅1 .

Teorema 2.4 El número de permutaciones de n objetos distintos tomados de r a la vez es

Prn=

n!

n−r !.

Teorema 2.5 El número de permutaciones de n objetos distintos arreglados en un círculo es n−1!.

2 DE 17 

Page 3: Estadística, definiciones

Teorema 2.6 El número de permutaciones distintas de  n  cosas de las que n1 son de una clase, n2 de una segunda clase, ..., 

n k  de una k­ésima clase es n!

n1!n

2!n

3!⋯n

k!.

Teorema 2.7 El número de formas de partir un conjunto de  n  objetos en  r  celdas con n1 elementos en a primera celda, n2

elementos en la segunda, y así sucesivamente, es 

nn1,n

2, ... , n

r= n!

n1!n

2!⋯n

r!.

donde n1n2⋯nr=n .

Teorema 2.8 El número de combinaciones (formas de seleccionar objetos sin importar el orden) de n objetos distintos tomados de r 

a la vez es nr = n!

n−r ! r!.

Definición 2.8 La probabilidad de un evento A es la suma de los pesos1 de todos los puntos muestrales en A. Se observa que,

0P A1, P ∅=0, y P S=1.

Teorema 2.9 Si  un  experimento  puede   tener   como   resultado  cualquiera  de  N  diferentes   resultados   igualmente  probables,  y   si exactamente n de estos resultados corresponden al evento A, entonces la probabilidad del evento A es

P A=nN

Teorema 2.10 Si A y B son cualesquiera dos eventos , entonces

P A∪B=P AP B−P A∩B

Corolario 1 Si A y B son mutuamente excluyentes, entonces                                                                             P A∪B=P AP B

Corolario 2 Si  A1 , A2 , ... , An  son mutuamente excluyentes, entonces

P A1∪A2∪⋯∪An=P A1 P A2⋯P An

Corolario 3 Si  A1 , A2 , ... , An es una partición de un espacio muestral S, entonces

1 El peso (o probabilidad) es un número real en el intervalo [0,1], que evalúa la ocurrencia probabilística de un evento.

3 DE 17 

Page 4: Estadística, definiciones

P A1∪A2∪⋯∪An=P A1P A2 ⋯P An

=P S

=1

Teorema 2.11 Para tres eventos A, B y C, P A∪B∪C=P APBPC −P A∩B−P A∩C −P B∩C P A∩B∩C .

Teorema 2.12 Si A y A' son eventos complementarios, entonces P AP A' =1.

Definición 2.9 La probabilidad condicional de B, dado A, que se denota con PB∣A , se define como

PB∣A=P A∩B

P Asi P A0   

Definición 2.10 Dos eventos A y B son independientes si y sólo si

PB∣A=P B y P A∣B=P A

De otra forma, A y B son dependientes.

Teorema 2.13 Si en un experimento pueden ocurrir los eventos A y B, entonces 

P A∩B=P A PB∣ A

Teorema 2.14 Dos eventos A y B son independientes si y sólo si

P A∩B=P A PBTeorema 2.15 Si, en un experimento, pueden ocurrir los eventos A1 , A2 , ... , Ak , entonces

P A1∩A2∩A3∩⋯∩Ak =P A1P A2∣ A1P A3∣ A1∩A2⋯P Ak∣ A1∩A2∩A3∩⋯∩Ak−1

Si los eventos A1 , A2 , ... , Ak son independientes, entonces

P A1∩A2∩A3∩⋯∩Ak =P A1P A2P A3⋯P Ak

Teorema 2.16 Si   los   eventos B1 , B2 , ... , Bk constituyen   una   partición   del   espacio   muestral  S  tal   que PB i≠0 para 

i=1,2 , ... , k , entonces para cualquier evento A de S,

P A=∑i=1

k

PBi∩A=∑

i=1

k

P BiP A∣B

i

Teorema 2.17 (Regla de Bayes) Si los eventos B1 , B2 , ... , Bk constituyen una partición del espacio muestral S donde PB i≠0para i = 1,2,3,...,k, entonces para cualquier evento A en S tal que P A≠0 ,

PBr∣A=

P Br∩A

∑i= 1

k

P Bi∩A

=P Br P A∣Br

∑i=1

k

P Bi P A∣B

i

 para r = 1,2, ...,k.

Definición 3.1 Una variable aleatoria es una función que asocia un número real con cada elemento del espacio muestral.

4 DE 17 

Page 5: Estadística, definiciones

Definición 3.2 Si un espacio muestral contiene un número finito de posibilidades o una serie interminable con tantos elementos como números enteros existen, se llama espacio muestral discreto.

Definición 3.3 Si un espacio muestral contiene un número infinito de posibilidades igual al número de puntos en un segmento de línea, se llama espacio muestral continuo.

Definición  Una variable aleatoria se llama  variable aleatoria discreta  si se puede contar su conjunto de resultados posibles. Cuando   una   variable   aleatoria   puede   tomar   valores   en   una   escala   continua,   se   le   denomina  variable   aleatoria continua.

Definición 3.4 El  conjunto  de pares ordenados x , f x es  una  función de probabilidad,   función masa de probabilidad  o distribución de probabilidad de la variable aleatoria discreta X si , para cada resultado posible x,

1)   f x≥0.

2)   ∑x

f x =1.

3)   PX=x= f x .

Definición 3.5 La distribución acumulada F x de una variable aleatoria discreta X con distribución de probabilidad f x es

F x=PX≤x=∑t≤ x

f t para −∞x∞

Definición 3.6 La función f x es una función de densidad de probabilidad para la variable aleatoria continua X, definida en el conjunto de números reales R, si

1) f x≥0, para toda x∈ ℝ

2) ∫−∞

f x dx=1.

3) PaXb=∫a

b

f x dx.

Definición 3.7 La distribución acumulada F x de una variable aleatoria continua X con función de densidad f x es

F x=PX≤x=∫−∞

x

f t dt para −∞x∞ .

Definición 3.8 La función f x , y es una  distribución de probabilidad conjunta  o  función de masa de probabilidad  de las variables aleatorias discretas X y Y si

1) f x , y≥0 para todo x , y.

2) ∑x

∑y

f x , y=1.

3) PX=x ,Y=y= f x , y .

5 DE 17 

Page 6: Estadística, definiciones

Para cualquier región A en el plano xy, P [ X ,Y ∈A ]=∑A ∑ f x , y .

Definición 3.9 La función f x , y  es una función de densidad conjunta de las variables aleatorias continuas X y Y si

1) f x , y≥0 para toda x , y .

2) ∫−∞

∫−∞

f x , ydxdy=1.

3) P [ X ,Y ∈A ]=∫A∫ f x , y dxdy  

para cualquier región A en el plano xy.

Definición 3.10 Las distribuciones marginales de X sola y Y sola son

g x=∑y

f x , y y hy=∑x

f x , y

para el  caso discreto, y

g x=∫−∞

f x , ydy y h y=∫−∞

f x , ydx

para el caso continuo.

Definición 3.11 Sean X y Y dos variables aleatorias, discretas o continuas. La distribución condicional de la variable aleatoria Y, dado que X=x, es 

f y∣x= f x , y

g x, gx0.

De manera similar, la distribución condicional de la variable aleatoria X, dado que Y = y, es

f x∣y= f x , y

h x, hy0.

Definición 3.12 Sean  X  y  Y  dos   variables   aleatorias,   discretas   o   continuas,   con   distribución   de   probabilidad   conjunta  f(x,y)  y distribuciones marginales g(x) y h(y), respectivamente. Se dice que las variables aleatorias X y Y son estadísticamente independientes si y sólo si

f x , y=g xh y

para toda (x,y) dentro de sus rangos.

Definición 4.1 Sea X una variable aleatoria con distribución de probabilidad f(x). La media o valor esperado de X es

=E X =∑x

x f x

si X es discreta, y

=E X =∫−∞

x f xdx

6 DE 17 

Page 7: Estadística, definiciones

si X es continua.

Teorema 4.1 Sea X una variable aleatoria con distribución de probabilidad f(x). La media o valor esperado de la variable aleatoria g(x) es 

gX

=E [ gX ]=∑ gx f x

si X es discreta, y

gX

=E [ gX ]=∫−∞

g x f xdx

si X es continua.

Definición 4.2 Sean  X  y  Y  variables aleatorias con distribución de probabilidad conjunta  f(x,y).  La media o valor esperado de  la variable aleatoria g(X,Y) es

gX ,Y

=E [g X ,Y ]=∑x

∑y

g x , y f x , y

si X y Y son discretas, y

gX ,Y

=E [g X ,Y ]=∫−∞

∫−∞

gx , y f x , ydxdy

si X y Y son continuas.

Definición 4.3 Sea X una variable aleatoria con distribución de probabilidad f(x) y media μ . La varianza  de X es

2=E [ X−

2 ]=∑x

x−2 f x

si X es discreta, y

2=E [ X−

2 ]=∫−∞

x−2 f xdx

Si X es continua. La raíz cuadrada positiva de la varianza,  , se llama σ desviación estándar de X.

Teorema 4.2 La varianza de una variable aleatoria X es

2=E [ X2 ]−

2.

Teorema 4.3 Sea X una variable aleatoria con distribución de probabilidad f(x). La varianza de la variable aleatoria g(X), es

g X

2=E [ g X −g X

2]=∑x

[ g x−g x ]2 f x

si X es discreta, y

gx 2

=E { [ g X −g X ]2}=∫

−∞

[ g x−g x ]2 f xdx

7  DE 1 7  

Page 8: Estadística, definiciones

si X es continua.

Definición 4.4 Sean X y Y variables aleatorias con distribución de probabilidad conjunta f(x,y). La covarianza de X y Y es

XY =E [ X−X Y−Y ]=∑x

∑y

x−X y−Y f x , y

si X y Y son discretas, y 

XY

=E [ X−X Y−

Y]=∫

−∞

∫−∞

x−X y−

Y f x , ydxdy

Si X y Y son continuas.

8 DE 17 

Page 9: Estadística, definiciones

Teorema 4.4 La covarianza de dos variables aleatorias X y Y con media X y Y , respectivamente, está dada por

XY=E [ XY ]−

X

Y

Definición 4.5 Sean  X  y  Y  variables   aleatorias   con   varianza XY y   desviaciones   estándar X y Y , respectivamente.   El coeficiente de correlación X y Y es

XY=XY

X Y

Teorema 4.5 Si a y b son constantes, entonces E aXb=aE X b.

Corolario 1 Al hacer a = 0 , vemos que  E(b)= b.

Corolario 2 Al hacer b = 0, vemos que E(aX)= aE(X).

Teorema 4.6 El valor esperado de la suma o diferencia de dos o más funciones de una variable aleatoria X es la suma o diferencia de los valores esperados de las funciones. Es decir,

E [ gX ±h X ]=E [g X ]±E [h X ]

Teorema 4.7 El valor esperado de la suma o diferencia de dos o más funciones de  las variables aleatorias  X  y  Y  es  la suma o diferencia de los valores esperados de las funciones. Es decir,

E [ gX , Y ±h X ,Y ]=E [ gX ,Y ]±E [ h X ,Y ]

Corolario 3 Al hacer g X ,Y =g X y h X ,Y =hY , vemos que

E [ g X ±h Y ]=E [ g X ]±E [ hY ]

Corolario 4 Al hacer g X ,Y =X y h X ,Y =Y , vemos que

E X ±Y =E X ±E Y

Teorema 4.8 Sean X y Y dos variables aleatorias independientes. Entonces 

E XY =E X E Y

Teorema 4.9 Si a y b son constantes, entonces aX b

2=a2

X

2=a2

2 .

Corolario 1 Al hacer a = 1 vemos que Xb

2=

X

2=

2 .

Corolario 2 Al hacer b = 0, se observa que aX

2=a2

X

2=a2

2 .

Teorema 4.10 Si X y Y son variables aleatorias con distribución de probabilidad conjunta f x , y , entonces

9 DE 17 

Page 10: Estadística, definiciones

aX bY2

=a2X

2b2

Y22 abXY

10 DE 17 

Page 11: Estadística, definiciones

Corolario 1 Si X y Y son variables aleatorias independientes, entonces 

aX bY2

=a2X

2b2

Y2

Corolario 2 Si X y Y son variables aleatorias independientes, entonces 

aX −bY2

=a2X

2b2

Y2

Corolario 3 Si X 1 , X 2 , ... , X n son variables aleatorias independientes, entonces

a1 X1a2 X 2⋯an Xn

2 =a12X1

2 a22X 2

2 ⋯an2Xn

2

Teorema 4.11 (Teorema   de   Chebyshev)   La   probabilidad   de   que   cualquier   variable   aleatoria  X  tome   un   valor   dentro   de  K 

desviaciones estándar de la media es al menos 1 – 1

k 2. Es decir,

P – kXk ≥1− 1k2

Definición 5.1 Distribución   uniforme   discreta    Si   la   variable   aleatoria  X  toma   los   valores x1 , x2 , ... , x k , con   idénticas probabilidades, entonces la distribución uniforme discreta ésta dada por

f x ;k =1k

x=x1 , x2 , ... , xk

Teorema 5.1 La media y la varianza de la distribución uniforme discreta f x ;k son

=∑i=1

k

x i

ky 2=

∑i=1

k

x i−2

k

Definición 5.2 Distribución binomial  Un experimento de Bernoulli puede tener como resultado un éxito con probabilidad p y un fracaso con probabilidad  q=1− p . Entonces la distribución de probabilidad de la variable aleatoria binomial X, el número de éxitos en n pruebas independientes, es 

b x ; n , p=n

x p x qn− x x=0,1 ,2 , ... , n

Teorema 5.2 La media y la varianza de la distribución binomial b(x;n,p) son 

=np y 2=npq

Definición 5.3 Distribución multinomial   Si una prueba dada puede conducir a los k resultados E1 , E2 ,... , Ek con probabilidades

p1 , p2 , ... , pk , entonces   la   distribución   de   probabilidad   de   las   variables   aleatorias X1 , X 2 , ... , X k , que representan el número de ocurrencias para E1 , E2 , ... , Ek en n pruebas independientes es

f x1 , x2 , ... , xk ; p1 , p2 , ... , pk ,n= nx1 , x2 , ... , xk p1

x 1 p2x2⋯ p k

xk

con 

11 DE 17 

Page 12: Estadística, definiciones

∑i=1

k

xi=n y ∑i=1

k

pi=1

Definición 5.3 Distribución hipergeométrica   La distribución de probabilidad de la variable aleatoria hipergeométrica X, el número de éxitos en una muestra aleatoria de tamaño n que se selecciona de N artículos de los que k se denominan éxito y N­k fracaso, es

h x ; N ,n , k= k

x N−kn−x

Nn

x=0,1,2... , n

Teorema 5.3 La media y la varianza de la distribución hipergeométrica h(x;N,n,k) son

=nkN

y 2=

N−nN−1

⋅n⋅ kN 1 – k

N Definición 5.4 Distribución   hipergeométrica   multivariada    Si  N  artículos   se   pueden   dividir   en  k  celdas A1 , A2 , ... , Ak con 

a1 ,a2 , ... ,a k elementos,   respectivamente,   entonces   la   distribución   de   probabilidad   de   las   variables   aleatorias X1 , X 2 , ... , X k , que representan el  número de elementos que se seleccionan  de A1 , A2 , ... , Ak en una muestra 

aleatoria de tamaño n, es

f x1, x

2, ... , x

k; a

1,a

2, ... ,a

k, N , n=

a1

x1 a2

x2⋯ak

xk

N

n con 

∑i=1

k

xi=n y ∑i=1

k

ai=N

Definición 5.5 Distribución  binomial  negativa   Si  pruebas   independientes   repetidas  pueden   tener   como resultado  un  éxito  con probabilidad  p  y  un   fracaso  con  probabilidad q=1−p , entonces   la  distribución de probabilidad  de  la  variable aleatoria X, el número de la prueba en la que ocurre el k­ésimo éxito, es

b∗ x ; k , p= x−1k−1 pk qx−k x=k ,k1,k2,...

Definición Distribución geométrica  Si pruebas independientes repetidas pueden tener como resultado un éxito con probabilidad p y un fracaso con probabilidad  q=1− p , entonces la distribución de probabilidad de la variable aleatoria X, el 

número de la prueba en el que ocurre el primer éxito, es

g x ; p= pqx−1 x=1,2,3,. ..

Teorema 5.4 La media y la varianza de una variable aleatoria que sigue la distribución geométrica son

=1p

2=1−p

p2

12 DE 17 

Page 13: Estadística, definiciones

13 DE 17 

Page 14: Estadística, definiciones

Definición 5.6 Distribución de Poisson   La distribución de probabilidad de  la variable aleatoria  de Poisson  X,  que representa el número de resultados que ocurren en un intervalo dado o región específica que se denota con t, es

p x ; t =e− t

t x

x!x=0,1 ,2 , ...

donde es el número promedio de resultados por unidad de tiempo o región.

Teorema 5.5 La media y la varianza de la distribución de Poisson px ; t  tiene el valor t

Teorema 5.6 Sea  X  una   variable   aleatoria   binomial   con   distribución   de   probabilidad b x ; n , p . Cuando

n ∞ , p 0 y =np permanece constante,

bx ; n , p p x ;  

Definición Distribución Uniforme  La función de densidad de la variable aleatoria uniforme continua X en el intervalo [A,B] es

f x ; A , B={1

B−AA≤x≤B

0 en cualquier otro caso}Teorema 6.1 La media y la varianza de la distribución uniforme son

=AB

2y

2=

B−A2

12

Definición Distribución normal  La función de densidad de la variable aleatoria normal X, con media y varianza 2 es

n x ; ,=1

2 e− 1

2[ x− ]

2

−∞x∞

Definición 6.1 La distribución de una variable aleatoria normal con media cero y varianza 1 se llama Distribución normal estándar

Teorema 6.2 Si X es una variable aleatoria binomial con media =np y varianza 2=npq , entonces la forma limitante de la 

distribución de

Z=X−np

npq

conforme n ∞ , es la distribución normal estándar n z ; 0,1 .

Definición 6.2 La función gamma se define como

=∫0

x−1 e−x dx para 0

seenuncianalgunas propiedades:

=−1 −1 1n=n−1! 1

2 =

14 DE 17 

Page 15: Estadística, definiciones

15 DE 17 

Page 16: Estadística, definiciones

Definición 6.3 Distribución Gamma   La variable aleatoria continua  X  tiene una distribución gamma, con parámetros  α  y  β, si su función de densidad está dada por

f x={1

x−1 e− x / x0

0, en cualquier otrocaso}

cuando 0 y 0 .

Definición 6.4 Distribución exponencial La variable aleatoria continua X tiene una distribución exponencial, con parámetro  β, si su función de densidad está dada por

f x={1

e−x / x0

0 cualquier otro caso}cuando 0.

Teorema 6.3 La media y la varianza de la distribución gamma son

= y 2=

2

Teorema 6.4 La media y la varianza de la distribución exponencial son

= y 2=

2

Definición 6.5 Distribución ji cuadrada  La variable aleatoria continua X tiene una distribución ji cuadrada, con v grados de libertad, si su función de densidad está dada por

f x={ 12v /2

v /2x

v2

−1e−x /2 x0

0 en cualquierotro caso}dondev es un enteropositivo.

Corolario La media y la varianza de la distribución ji cuadrada son

=v y 2 v

Definición 6.6 Distribución logarítmica normal   La variable aleatoria continua  X  tiene una distribución logarítmica normal si la variable aleatoria Y = ln(X) tiene una distribución normal con media μ y desviación estándar σ. La función de densidad de X que resulta es

f x={1

2 xe− ln x−

2/2

2 x≥0

0 x0}Corolario La media y varianza de la distribución logarítmica normal son

E X =e

2

2 y Var X =e2 2

⋅e2

−1

16 DE 17 

Page 17: Estadística, definiciones

Definición Distribución de Weibull  La variable aleatoria continua X tienen una distribución de Weibull, con parámetros α y β si su función de densidad está dada por

f x={ x−1e− x

x00 cualquier otrocaso}

donde 0 y 0

Teorema 6.4 La media y la varianza de la distribución Weibull son

=−1 /

1 1

2=

−2/ { 1 2 −[ 1 1

]2

}

POKER  Una baraja de poker consiste en 52 cartas arregladas en 4 palos de trece cartas cada uno. Hay trece valores nominales (2,3,4,5,6,7,8,9,10,sota,reina,rey,as) en cada palo. Los cuatro palos se llaman tréboles, espadas,corazones y diamantes. Los dos últimos son rojos y los primeros son negros. A las cartas que tienen el mismo valor nominal se les llama de la misma clase. Por definición poker significa seleccionar 5 cartas de la baraja.

17 DE 17