environmental fluid mechanics iii model applications · 2 20.04.2010 institute for hydromechanics...

26
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association INSTITUTE FOR HYDROMECHANICS www.kit.edu Environmental Fluid Mechanics III Model Applications Dong-Guan Seol Integral Plume Modeling

Upload: vuongminh

Post on 29-Jul-2018

221 views

Category:

Documents


1 download

TRANSCRIPT

KIT – University of the State of Baden-Wuerttemberg and

National Research Center of the Helmholtz Association

INSTITUTE FOR HYDROMECHANICS

www.kit.edu

Environmental Fluid Mechanics III Model Applications

Dong-Guan Seol

Integral Plume Modeling

Institute for Hydromechanics 2 20.04.2010

Agenda

Definition of jets and plumes

Challenges in modeling

Density stratification

Integral plume model

Numerical solution of the integral plume model

Problem definition

D.-G. Seol

Institute for Hydromechanics 3 20.04.2010

Definition of jets and plumes

Jets: source of energy - momentum

D.-G. Seol

Institute for Hydromechanics 4 20.04.2010

Plumes: source of energy - buoyancy

D.-G. Seol

CO2 injection:

Norway Sleipner Oil drilling rig

Oil well blowout:

IXTOC I Oil well

Institute for Hydromechanics 5 20.04.2010

Challenges in modeling

Cross-flow

Density-stratification

Buoyant Jet

in Crossflow

D.-G. Seol

Institute for Hydromechanics 6 20.04.2010

Challenges in modeling (continued)

Density-stratification

D.-G. Seol

Institute for Hydromechanics 7 20.04.2010

Density stratification

Temperature, salinity, particular material

D.-G. Seol

• Buoyancy force

• Buoyancy frequency

• Reduced gravity

Institute for Hydromechanics 8 20.04.2010

Integral plume model

D.-G. Seol

Basic assumptions

• Buossinesq approximation

• Self-similarity of the mean vertical velocity (w) and buoyancy force (g’)

• Entrainment hypothesis

Institute for Hydromechanics 9 20.04.2010

Integral plume model

D.-G. Seol

Buossinesq approximation:

: Plume density

: Ambient density

: Reference density

Institute for Hydromechanics 10 20.04.2010

Integral plume model

D.-G. Seol

Self-similarity: Gaussian profile

Institute for Hydromechanics 11 20.04.2010

Integral plume model

D.-G. Seol

Entrainment hypothesis

Entrainment velocity:

Institute for Hydromechanics 12 20.04.2010

Integral plume model

D.-G. Seol

Governing equations

• Mass conservation

• Momentum conservation

• Buoyancy conservation

Institute for Hydromechanics 13 20.04.2010

Integral plume model

D.-G. Seol

Mass conservation

• [Mass flux exiting control volume]

=[Mass entering control volume]+[Mass entraining from side]

Introducing Buossinesq approximation

Institute for Hydromechanics 14 20.04.2010

Integral plume model

D.-G. Seol

Momentum conservation conservation

• [Momentum flux exiting control volume]

=[Momentum entering control volume] + [Momentum entraining from side]

+ [Upward buoyancy]

[Upward buoyancy] =[weight of displaced water]-[actual weight of plume segment]

Institute for Hydromechanics 15 20.04.2010

Integral plume model

D.-G. Seol

Momentum conservation conservation (continued)

• [Momentum flux exiting control volume]

=[Momentum entering control volume] + [Momentum entraining from side]

+ [Upward buoyancy]

Introducing Buossinesq approximation

Institute for Hydromechanics 16 20.04.2010

Integral plume model

D.-G. Seol

Buoyancy conservation

[Buoyancy flux exiting control volume]

=[Buoyancy flux entering control volume]

+[Influx of buoyancy entraining from side]

(from the mass conservation)

Institute for Hydromechanics 17 20.04.2010

Integral plume model

D.-G. Seol

Buoyancy conservation (continued)

Multiply both sides with g/ r and introduce buoyancy frequency N2

Institute for Hydromechanics 18 20.04.2010

Integral plume model

D.-G. Seol

Governing equations

• Mass conservation

• Momentum conservation

• Buoyancy conservation

For simplicity, let us put

Institute for Hydromechanics 19 20.04.2010

Numerical solution

D.-G. Seol

Model setup

where

Initial conditions for pure plume (only buoyancy) at the plume bottom (z=0)

Assume linear stratification,

Institute for Hydromechanics 20 20.04.2010 U. Mohrlok, D.-G. Seol

Numerical solution

Matlab imprementation

clear all, close all, clc,

% define constants global alpha N;

alpha = 0.125; %entrainment coefficietn N =1.; % Buoyancy frequency

dz= 0.1; % integration interval Z = 5.2; % Total height of integration

z=[0:dz:Z]; % height increment

% specify initial value W0=0;

V0=0.00001; % non-zero for non-trivial solution F0=1;

Nz = length(z); % number of integration steps

% initialize the numerical integration nz=1; W=W0;

V=V0; F=F0;

while (nz < Nz)

zi=z(nz);

% non-dimensionalize the variables using F0 and N zp=zi/(F0^0.25/N^(3/4));

Wp=W/(F0^0.5/N^(5/2)); Vp=V^0.25/(F0^(3/4)/N^(5/4));

Fp=F/F0;

plot(Wp,zp,'.g‘‚Vp,zp,'.r‘,Fp,zp,'.b');

axis([-1 3 0 6]) legend('volume flux','momentum flux','buoyancy flux',4);

ylabel('Height z'); xlabel('Plume parameter');

[Wn,Vn,Fn]=func_rk4(W,V,F,dz);

nz = nz + 1;

W = Wn; V = Vn; F = Fn;

end

Institute for Hydromechanics 21 20.04.2010 U. Mohrlok, D.-G. Seol

Matlab imprementation (functions)

function [Wn,Vn,Fn]=func_rk4(W,V,F,dz)

k1=dz*myfunc1(W,V,F); l1=dz*myfunc2(W,V,F);

m1=dz*myfunc3(W,V,F);

k2=dz*myfunc1(W+k1/2,V+l1/2,F+m1/2);

l2=dz*myfunc2(W+k1/2,V+l1/2,F+m1/2); m2=dz*myfunc3(W+k1/2,V+l1/2,F+m1/2);

k3=dz*myfunc1(W+k2/2,V+l2/2,F+m2/2); l3=dz*myfunc2(W+k2/2,V+l2/2,F+m2/2);

m3=dz*myfunc3(W+k1/2,V+l1/2,F+m2/2);

k4=dz*myfunc1(W+k3,V+l3,F+m3); l4=dz*myfunc2(W+k3,V+l3,F+m3); m4=dz*myfunc3(W+k3,V+l3,F+m3);

Wn = W + (k1 + 2*k2 + 2*k3 + k4)/6;

Vn = V + (l1 + 2*l2 + 2*l3 + l4)/6; Fn = F + (m1 + 2*m2 + 2*m3 + m4)/6;

return

Runge-Kutta 4th order method: A numerical technique used to solve ordinary differential

equation of the form

where

Institute for Hydromechanics 22 20.04.2010 U. Mohrlok, D.-G. Seol

Matlab imprementation (functions)

function [dWdz] = myfunc1(W,V,F)

global alpha N;

dWdz=2*alpha*V^0.25;

return

function [dVdz] = myfunc2(W,V,F)

global alpha N;

dVdz=2*F*W;

return

function [dFdz] = myfunc3(W,V,F)

global alpha N;

dFdz=-N^2*W;

return

Mass conservation

Momentum conservation

Buoyancy conservation

Institute for Hydromechanics 23 20.04.2010 U. Mohrlok, D.-G. Seol

Results

Momentum

overshooting

Institute for Hydromechanics 24 20.04.2010 U. Mohrlok, D.-G. Seol

Problem definition By using a blower and some preheating, one can adjust both the upward

velocity and buoyancy of fumes exiting from the top of a

smokestack. Specifically, two scenarios are being considered, on with

more velocity and one one with more buoyancy, as follows:

Scenario 1: Average exit vertical velocity = 12 m/s

Average exit buoyancy = 0.01 m/s2

Scenario 2: Average exit vertical velocity = 1 m/s

Average exit buoyancy = 0.12 m/s2

In each case, the exit diameter is 1.5 m and the entrainment coefficient

is taken as 0.115. Assume linear stratification (N=1 s-1).

• Which of the two scenarios gives the highest vertical velocity at the

center of the plume 20 m above the smokestack?

• Briggs (1969) proposed following formula for the rise of the plume:

Compare the model results with above formula for different stratification

conditions (N=[0:0.1:1] 1/s). Assume pure plume of scenario 2.

Institute for Hydromechanics 25 20.04.2010

House-keeping: Access to IfH computers

D.-G. Seol

Institute for Hydromechanics 26 20.04.2010

References

Briggs, G. A. (1965). “A plume rise model compared with observations.”

J. Air Poll. Control Assoc., 15(9), 433-438.

Lee, J. H. W., and Chu, V. H. (2003). Turbulent jets and plumes.

Springer.

Morton, B. R., Taylor, G., and Turner, J. S. (1956). “Turbulent

Gravitational Convection from Maintained and Instantaneous Sources.”

Proceedings of the Royal Society of London. Series A, Mathematical

and Physical Sciences, 234(1196), 1-23.

D.-G. Seol