english translation of gödel’s proof of incompleteness

20
Gödel’s Proof of Incompleteness English Translation This is an English translation of Gödel’s Proof of Incompleteness and which is based on based on Meltzer’s English translation of the original German Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I”. Note: Headings in italics enclosed in square brackets are additional to the original text, these are included for convenience, e.g., [Recursion] Contents Part 1 Part 2 Description of the formal system P The axioms of the system P The rules of inference of the system P The Gödel numbering system Recursion Propositions IIV The Relations 146 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 Proposition V Proposition VI Part 3 Proposition VII Proposition VIII Proposition IX Proposition X Part 4 Proposition XI

Upload: james-meyer

Post on 25-Jul-2016

231 views

Category:

Documents


1 download

DESCRIPTION

This is an updated English Translation of Godel's proof of Incompleteness, with full cross-references.

TRANSCRIPT

  • (1)

    1

    2

    3

    4

    5

    6

    78

    9

    101111a1213

    1415

    (2)

    (3)(4)

    (5)

    (6)(6.1

    (7)(8)

    (8.1

    (9)(10)

    (11)

    (12)

    (13)

    (14)

    (15)(16)

    16

    1718

    18a

    19

    20

    2122

    23

    24

    25

    26

    27

    28

    29

    30313233

    34

    34a34b35

    363738

    39

    40

    41

    4243444545a

    46

    47

    4848a

    (17)

    (18)

    (19)

    (20)

    (21)(22)

    4950

    5152

    5354

    55

    56

    5758

    596061

    62

    (23)

    (24)

    6364656667

    68

    1.

    2.

    3.

    4.

    5.

    6.

    7.

    8.

    9.

    10.

    11.

    12.

    13.

    14.

    15.

    16.

    17.

    18.

    19.

    20.

    21.

    22.

    23.

    24.

    25.

    26.

    27.

    28.

    29.

    30.

    31.

    32.

    33.

    34.

    35.

    36.

    37.

    38.

    39.

    40.

    41.

    42.

    43.

    44.

    45.

    46.

    GdelsProofofIncompletenessEnglishTranslation

    ThisisanEnglishtranslationofGdelsProofofIncompletenessandwhichisbasedonbasedonMeltzersEnglishtranslationoftheoriginalGerman

    berformalunentscheidbareStzederPrincipiaMathematicaundverwandterSystemeI.

    Note:Headingsinitalicsenclosedinsquarebracketsareadditionaltotheoriginaltext,theseareincludedforconvenience,e.g.,[Recursion]

    Contents

    Part1

    Part2DescriptionoftheformalsystemPTheaxiomsofthesystemPTherulesofinferenceofthesystemPTheGdelnumberingsystemRecursion

    PropositionsIIVTheRelations146

    1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 2021 22 23 24 25 26 27 28 29 3031 32 33 34 35 36 37 38 39 4041 42 43 44 45 46

    PropositionVPropositionVI

    Part3PropositionVIIPropositionVIIIPropositionIXPropositionX

    Part4PropositionXI

    ONFORMALLYUNDECIDABLEPROPOSITIONSOFPRINCIPIAMATHEMATICAANDRELATEDSYSTEMS1

    byKurtGdel,Vienna

    1Thedevelopmentofmathematicsinthedirectionofgreaterexactnesshasasiswellknownledtolargetractsofitbecomingformalized,sothatproofscanbecarriedoutaccordingtoafewmechanicalrules.Themostcomprehensiveformalsystemsyetsetupare,ontheonehand,thesystemofPrincipiaMathematica(PM) and,ontheother,theaxiomsystemforsettheoryofZermeloFraenkel(laterextendedbyJ.v.Neumann). Thesetwosystemsaresoextensivethatallmethodsofproofusedinmathematicstodayhavebeenformalizedinthem,i.e.reducedtoafewaxiomsandrulesofinference.Itmaythereforebesurmisedthattheseaxiomsandrulesofinferencearealsosufficienttodecideallmathematicalquestionswhichcaninanywayatallbeexpressedformallyinthesystemsconcerned.Itisshownbelowthatthisisnotthecase,andthatinboththesystemsmentionedthereareinfactrelativelysimpleproblemsinthetheoryofordinarywholenumbers whichcannotbedecidedfromtheaxioms.Thissituationisnotdueinsomewaytothespecialnatureofthesystemssetup,butholdsforaveryextensiveclassofformalsystems,including,inparticular,allthosearisingfromtheadditionofafinitenumberofaxiomstothetwosystemsmentioned, providedthattherebynofalsepropositionsofthekinddescribedinfootnote4becomeprovable.

    Beforegoingintodetails,weshallfirstindicatethemainlinesoftheproof,naturallywithoutlayingclaimtoexactness.TheformulaeofaformalsystemwerestrictourselvesheretothesystemPMare,lookedatfromoutside,finiteseriesofbasicsigns(variables,logicalconstantsandbracketsorseparationpoints),anditiseasytostatepreciselyjustwhichseriesofbasicsignsaremeaningfulformulaeandwhicharenot. Proofs,fromtheformalstandpoint,arelikewisenothingbutfiniteseriesofformulae(withcertainspecifiablecharacteristics).Formetamathematicalpurposesitisnaturallyimmaterialwhatobjectsaretakenasbasicsigns,andweproposetousenaturalnumbers forthem.Accordingly,then,aformulaisafiniteseriesofnaturalnumbers, andaparticularproofschemaisafiniteseriesoffiniteseriesofnaturalnumbers.Metamathematicalconceptsandpropositionstherebybecomeconceptsandpropositionsconcerningnaturalnumbers,orseriesofthem, andthereforeatleastpartiallyexpressibleinthesymbolsofthesystemPMitself.Inparticular,itcanbeshownthattheconcepts,"formula","proofschema","provableformula"aredefinableinthesystemPM,i.e.onecangive aformulaF(v)ofPMforexamplewithonefreevariablev(ofthetypeofaseriesofnumbers),suchthatF(v)interpretedastocontentstates:visaprovableformula.WenowobtainanundecidablepropositionofthesystemPM,i.e.apropositionA,forwhichneitherAnornotAareprovable,inthefollowingmanner:

    AformulaofPMwithjustonefreevariable,andthatofthetypeofthenaturalnumbers(classofclasses),weshalldesignateaclasssign.Wethinkoftheclasssignsasbeingsomehowarrangedinaseries, anddenotethen onebyR(n)andwenotethattheconcept"classsign"aswellastheorderingrelationRaredefinableinthesystemPM.Letbeanyclasssignby[n]wedesignatethatformulawhichisderivedonreplacingthefreevariableintheclasssignbythesignforthenaturalnumbern.Thethreetermrelationx=[yz]alsoprovestobedefinableinPM.WenowdefineaclassKofnaturalnumbers,asfollows:

    nK~(Bew[R(n)n])

    (whereBewxmeans:xisaprovableformula).SincetheconceptswhichappearinthedefinitionsarealldefinableinPM,sotooistheconceptKwhichisconstitutedfromthem,i.e.thereisaclasssignS, suchthattheformula[Sn]interpretedastoitscontentstatesthatthenaturalnumbernbelongstoK.S,beingaclasssign,isidenticalwithsomedeterminateR(q),i.e.

    S=R(q)

    holdsforsomedeterminatenaturalnumberq.Wenowshowthattheproposition[R(q)q] isundecidableinPM.Forsupposingtheproposition[R(q)q]wereprovable,itwouldalsobecorrectbutthatmeans,ashasbeensaid,thatqwouldbelongtoK,i.e.accordingto(1),~(Bew[R(q)q])wouldholdgood,incontradictiontoourinitialassumption.If,onthecontrary,thenegationof[R(q)q]wereprovable,then~(nK),i.e.Bew[R(q)q]wouldholdgood.[R(q)q]wouldthusbeprovableatthesametimeasitsnegation,whichagainisimpossible.

    TheanalogybetweenthisresultandRichardsantinomyleapstotheeyethereisalsoacloserelationshipwiththe"liar"antinomy, sincetheundecidableproposition[R(q)q]statespreciselythatqbelongstoK,i.e.accordingto(1),that[R(q)q]isnotprovable.Wearethereforeconfrontedwithapropositionwhichassertsitsownunprovability. Themethodofproofjustexhibitedcanclearlybeappliedtoeveryformalsystemhavingthefollowingfeatures:firstly,interpretedastocontent,itdisposesofsufficientmeansofexpressiontodefinetheconceptsoccurringintheaboveargument(inparticulartheconcept"provableformula")secondly,everyprovableformulainitisalsocorrectasregardscontent.Theexactstatementoftheaboveproof,whichnowfollows,willhaveamongothersthetaskofsubstitutingforthesecondoftheseassumptionsapurelyformalandmuchweakerone.

    Fromtheremarkthat[R(q)q]assertsitsownunprovability,itfollowsatoncethat[R(q)q]iscorrect,since[R(q)q]iscertainlyunprovable(becauseundecidable).Sothepropositionwhichisundecidableinthesystem PMyetturnsouttobedecidedbymetamathematicalconsiderations.Thecloseanalysisofthisremarkablecircumstanceleadstosurprisingresultsconcerningproofsofconsistencyofformalsystems,whicharedealtwithinmoredetailinSection4(PropositionXI).

    Cf.thesummaryoftheresultsofthiswork,publishedinAnzeigerderAkad.d.Wiss.inWien(math.naturw.Kl.)1930,No.19.A.WhiteheadandB.Russell,PrincipiaMathematica,2ndedition,Cambridge1925.Inparticular,wealsoreckonamongtheaxiomsofPMtheaxiomofinfinity(intheform:thereexistdenumerablymanyindividuals),andtheaxiomsofreducibilityandofchoice(foralltypes).Cf.A.Fraenkel,'ZehnVorlesungenberdieGrundlegungderMengenlehre',Wissensch.u.Hyp.,Vol.XXXIJ.v.Neumann,'DieAxiomatisierungderMengenlehre',Math.Zeitschr.27,1928,Journ.f.reineu.angew.Math.154(1925),160(1929).Wemaynotethatinordertocompletetheformalization,theaxiomsandrulesofinferenceofthelogicalcalculusmustbeaddedtotheaxiomsofsettheorygivenintheabovementionedpapers.TheremarksthatfollowalsoapplytotheformalsystemspresentedinrecentyearsbyD.Hilbertandhiscolleagues(sofarasthesehaveyetbeenpublished).Cf.D.Hilbert,Math.Ann.88,Abh.ausd.math.Sem.derUniv.HamburgI(1922),VI(1928)P.Bernays,Math.Ann.90J.v.Neumann,Math.Zeitsehr.26(1927)W.Ackermann,Math.Ann.93.I.e.,moreprecisely,thereareundecidablepropositionsinwhich,besidesthelogicalconstants~(not),(or),(x)(forall)and=(identicalwith),therearenootherconceptsbeyond+(addition)and.(multiplication),bothreferredtonaturalnumbers,andwheretheprefixes(x)canalsoreferonlytonaturalnumbers.Inthisconnection,onlysuchaxiomsinPMarecountedasdistinctasdonotarisefromeachotherpurelybychangeoftype.Hereandinwhatfollows,weshallalwaysunderstandtheterm"formulaofPM"tomeanaformulawrittenwithoutabbreviations(i.e.withoutuseofdefinitions).Definitionsserveonlytoabridgethewrittentextandarethereforeinprinciplesuperfluous.I.e.wemapthebasicsignsinonetoonefashiononthenaturalnumbers(asisactuallydoneon).I.e.acoveringofasectionofthenumberseriesbynaturalnumbers.(Numberscannotinfactbeputintoaspatialorder.)Inotherwords,theabovedescribedprocedureprovidesanisomorphicimageofthesystemPMinthedomainofarithmetic,andallmetamathematicalargumentscanequallywellbeconductedinthisisomorphicimage.Thisoccursinthefollowingoutlineproof,i.e."formula","proposition","variable",etc.arealwaystobeunderstoodasthecorrespondingobjectsoftheisomorphicimage.Itwouldbeverysimple(thoughratherlaborious)actuallytowriteoutthisformula.Perhapsaccordingtotheincreasingsumsoftheirtermsand,forequalsums,inalphabeticalorder.Thebarsignindicatesnegation.[Replacedwith~.]AgainthereisnottheslightestdifficultyinactuallywritingouttheformulaS.Notethat"[R(q)q]"(orwhatcomestothesamething"[Sq]")ismerelyametamathematicaldescriptionoftheundecidableproposition.ButassoonasonehasascertainedtheformulaS,onecannaturallyalsodeterminethenumberq,andtherebyeffectivelywriteouttheundecidablepropositionitself.Everyepistemologicalantinomycanlikewisebeusedforasimilarundecidabilityproof.Inspiteofappearances,thereisnothingcircularaboutsuchaproposition,sinceitbeginsbyassertingtheunprovabilityofawhollydeterminateformula(namelytheq inthealphabeticalarrangementwithadefinitesubstitution),andonlysubsequently(andinsomewaybyaccident)doesitemergethatthisformulaispreciselythatbywhichthepropositionwasitselfexpressed.

    2

    [DescriptionoftheformalsystemP]

    Weproceednowtotherigorousdevelopmentoftheproofsketchedabove,andbeginbygivinganexactdescriptionoftheformalsystemP,forwhichweseektodemonstratetheexistenceofundecidablepropositions.PisessentiallythesystemobtainedbysuperimposingonthePeanoaxiomsthelogicofPM (numbersasindividuals,relationofsuccessorasundefinedbasicconcept).

    ThebasicsignsofthesystemParethefollowing:

    I. Constants:"~"(not),""(or),""(forall),"0"(nought),"f"(thesuccessorof),"(",")"(brackets).

    II. Variablesoffirsttype(forindividuals,i.e.naturalnumbersincluding0):"x ","y ","z ",Variablesofsecondtype(forclassesofindividuals):"x ","y ","z ",Variablesofthirdtype(forclassesofclassesofindividuals):"x ","y ","z ",

    andsoonforeverynaturalnumberastype.

    Note:Variablesfortwotermedandmanytermedfunctions(relations)aresuperfluousasbasicsigns,sincerelationscanbedefinedasclassesoforderedpairsandorderedpairsagainasclassesofclasses,e.g.theorderedpaira,bby((a),(a,b)),where(x,y)meanstheclasswhoseonlyelementsarexandy,and(x)theclasswhoseonlyelementisx.

    Byasignoffirsttypeweunderstandacombinationofsignsoftheform:

    a,fa,ffa,fffaetc.

    whereaiseither0oravariableoffirsttype.Intheformercasewecallsuchasignanumbersign.Forn>1weunderstandbyasignofn typethesameasvariableofn type.

    Combinationsofsignsoftheforma(b),wherebisasignofn andaasignof(n+1) type,wecallelementaryformulae.Theclassofformulaewedefineasthesmallestclass containingallelementaryformulaeand,also,alongwithanyaandbthefollowing:~(a),(a)(b),x(a)(wherexisanygivenvariable). Weterm(a)(b)thedisjunctionofaandb,~(a)thenegationand(a)(b)ageneralizationofa.Aformulainwhichthereisnofreevariableiscalledapropositionalformula(freevariablebeingdefinedintheusualway).Aformulawithjustnfreeindividualvariables(andotherwisenofreevariables)wecallannplacerelationsignandforn=1alsoaclasssign.

    BySubsta(v|b)(whereastandsforaformula,vavariableandbasignofthesametypeasv)weunderstandtheformuladerivedfroma,whenwereplacevinit,whereveritisfree,byb. Wesaythataformulaaisatypeliftofanotheroneb,ifaderivesfromb,whenweincreasebythesameamountthetypeofallvariablesappearinginb.

    [AxiomsoftheformalsystemP]

    Thefollowingformulae(IV)arecalledaxioms(theyaresetoutwiththehelpofthecustomarilydefinedabbreviations:.,,,(x),= andsubjecttotheusualconventionsaboutomissionofbrackets):

    I.1. ~(fx =0)2. fx =fy x =y3. x (0).x (x (x )x (fx ))x (x (x ))

    II.Everyformuladerivedfromthefollowingschematabysubstitutionofanyformulaeforp,qandr.

    1. ppp2. ppq3. pqqp4. (pq)(rprq)

    III.Everyformuladerivedfromthetwoschemata

    1.v(a)Substa(v|c)2. v(ba)bv(a)

    bymakingthefollowingsubstitutionsfora,v,b,c(andcarryingoutinItheoperationdenotedby"Subst"):foraanygivenformula,forvanyvariable,forbanyformulainwhichvdoesnotappearfree,forcasignofthesametypeasv,providedthatccontainsnovariablewhichisboundinaataplacewherevisfree.

    IV.Everyformuladerivedfromtheschema

    1. (u)(v(u(v)a))

    onsubstitutingforvoruanyvariablesoftypesnorn+1respectively,andforaaformulawhichdoesnotcontainufree.Thisaxiomrepresentstheaxiomofreducibility(theaxiomofcomprehensionofsettheory).

    V.Everyformuladerivedfromthefollowingbytypelift(andthisformulaitself):

    1. x (x (x )y (x ))x =y

    Thisaxiomstatesthataclassiscompletelydeterminedbyitselements.

    [RulesofinferenceoftheformalsystemP]

    Aformulaciscalledanimmediateconsequenceofaandb,ifaistheformula(~(b))(c),andanimmediateconsequenceofa,ifcistheformulav(a),wherevdenotesanygivenvariable.Theclassofprovableformulaeisdefinedasthesmallestclassofformulaewhichcontainstheaxiomsandisclosedwithrespecttotherelation"immediateconsequenceof".

    [TheGdelnumberingsystem]

    ThebasicsignsofthesystemParenoworderedinonetoonecorrespondencewithnaturalnumbers,asfollows:

    0"1"f"3"~"5""7""9"("11")"13

    Furthermore,variablesoftypenaregivennumbersoftheformp (wherepisaprimenumber>13).Hence,toeveryfiniteseriesofbasicsigns(andsoalsotoeveryformula)therecorresponds,onetoone,afiniteseriesofnaturalnumbers.Thesefiniteseriesofnaturalnumberswenowmap(againinonetoonecorrespondence)ontonaturalnumbers,bylettingthenumber2 ,3 p correspondtotheseriesn ,n ,n ,wherep denotesthek primenumberinorderofmagnitude.Anaturalnumberistherebyassignedinonetoonecorrespondence,notonlytoeverybasicsign,butalsotoeveryfiniteseriesofsuchsigns.Wedenoteby(a)thenumbercorrespondingtothebasicsignorseriesofbasicsignsa.SupposenowoneisgivenaclassorrelationR(a ,a ,a )ofbasicsignsorseriesofsuch.Weassigntoitthatclass(orrelation)R'(x ,x ,x )ofnaturalnumbers,whichholdsforx ,x ,x whenandonlywhenthereexista ,a ,a suchthatx =(a )(i=1,2,n)andR(a ,a ,a )holds.Werepresentbythesamewordsinitalicsthoseclassesandrelationsofnaturalnumberswhichhavebeenassignedinthisfashiontosuchpreviouslydefinedmetamathematicalconceptsas"variable","formula","propositionalformula","axiom","provableformula",etc.ThepropositionthatthereareundecidableproblemsinthesystemPwouldthereforeread,forexample,asfollows:Thereexistpropositionalformulaeasuchthatneitheranorthenegationofaareprovableformulae.

    [Recursion]

    WenowintroduceaparentheticconsiderationhavingnoimmediateconnectionwiththeformalsystemP,andfirstputforwardthefollowingdefinition:Anumbertheoreticfunction (x ,x ,x )issaidtoberecursivelydefinedbythenumbertheoreticfunctions(x ,x ,x )and(x ,x ,x ),ifforallx ,x ,k thefollowinghold:

    (0,x ,x )=(x ,x )(k+1,x ,x )=(k,(k,x ,x ),x ,x ).

    Anumbertheoreticfunctioniscalledrecursive,ifthereexistsafiniteseriesofnumbertheoreticfunctions , , whichendsinandhasthepropertythateveryfunction oftheseriesiseitherrecursivelydefinedbytwooftheearlierones,orisderivedfromanyoftheearlieronesbysubstitution, or,finally,isaconstantorthesuccessorfunctionx+1.Thelengthoftheshortestseriesof ,whichbelongstoarecursivefunction,istermeditsdegree.ArelationR(x ,x ,x )amongnaturalnumbersiscalledrecursive, ifthereexistsarecursivefunction(x ,x ,x )suchthatforallx ,x ,x

    R(x ,x ,x )[(x ,x ,x )=0] .

    [PropositionsIIV]

    Thefollowingpropositionshold:

    I.Everyfunction(orrelation)derivedfromrecursivefunctions(orrelations)bythesubstitutionofrecursivefunctionsinplaceofvariablesisrecursivesoalsoiseveryfunctionderivedfromrecursivefunctionsbyrecursivedefinitionaccordingtoschema(2).

    II.IfRandSarerecursiverelations,thensoalsoare~R,RS(andthereforealsoR&S).

    III.Ifthefunctions()and()arerecursive,soalsoistherelation:()=().

    IV.Ifthefunction()andtherelationR(x,)arerecursive,soalsothenaretherelationsS,T

    S(,)~(x)[x()&R(x,)]T(,)~(x)[x()R(x,)]

    andlikewisethefunction

    (,)=x[x()&R(x,)]

    wherexF(x)means:thesmallestnumberxforwhichF(x)holdsand0ifthereisnosuchnumber.

    PropositionIfollowsimmediatelyfromthedefinitionof"recursive".PropositionsIIandIIIarebasedonthereadilyascertainablefactthatthenumbertheoreticfunctionscorrespondingtothelogicalconcepts~,,=

    (x),(x,y),(x,y)namely

    (0)=1(x)=0forx0(0,x)=(x,0)=0(x,y)=1,ifx,ybothO

    (x,y)=0,ifx=y(x,y)=1,ifxy

    arerecursive.TheproofofPropositionIVisbrieflyasfollows:Accordingtotheassumptionthereexistsarecursive(x,)suchthat

    R(x,)[(x,)=0].

    Wenowdefine,accordingtotherecursionschema(2),afunction(x,)inthefollowingmanner:

    (0,)=0(n+1,)=(n+1).a+(n,).(a)

    where

    a=[((0,))].[(n+1,)].[(n,)].

    (n+1,)isthereforeeither=n+1(ifa=1)or=(n,)(ifa=0). Thefirstcaseclearlyarisesifandonlyifalltheconstituentfactorsofaare1,i.e.if

    ~R(O,)&R(n+1,)&[(n,)=0].

    Fromthisitfollowsthatthefunction(n,)(consideredasafunctionofn)remains0uptothesmallestvalueofnforwhichR(n,)holds,andfromthenonisequaltothisvalue(ifR(0,)isalreadythecase,thecorresponding(x,)isconstantand=0).Therefore:

    (,)=C((),)S(,)R[(,)),)]

    TherelationTcanbereducedbynegationtoacaseanalogoustoS,sothatPropositionIVisproved.

    [TheRelations146]

    Thefunctionsx+y,x.y,x ,andalsotherelationsx1

    xisaprimenumber.

    0Prx0(n+1)Prxy[yx&Prim(y)&x/y&y>nPrx]

    nPrxisthen (inorderofmagnitude)primenumbercontainedinx.

    0!1(n+1)!(n+1).n!

    Pr(0)0Pr(n+1)y[y{Pr(n)}!+1&Prim(y)&y>Pr(n)]

    Pr(n)isthen primenumber(inorderofmagnitude).

    nGlxy[yx&x/(nPrx) &~x/(nPrx) ]

    nGlxisthen termoftheseriesofnumbersassignedtothenumberx(forn>0andnnotgreaterthanthelengthofthisseries).

    l(x)y[yx&yPrx>0&(y+1)Prx=0]

    l(x)isthelengthoftheseriesofnumbersassignedtox.

    x*yz[z[Pr{l(x)+l(y)}] &(n)[nl(x)nGlz=nGlx] &(n)[00).

    E(x)R(11)*x*R(13)

    E(x)correspondstotheoperationof"bracketing"[11and13areassignedtothebasicsigns"("and")"].

    nVarx(z)[131 &(v){vx&nVarv&x=R(v)}]

    xisasignofn type.

    Elf(x)(y,z,n)[y,z,nx &Typ (y)&Typ (z)&x=z*E(y)]

    xisanelementaryformula.

    Op(x,y,z)x=Neg(y)x=yDisz (v)[vx&Var(v)&x=vGeny]

    FR(x)(n){0

  • (1)

    1

    2

    3

    4

    5

    6

    78

    9

    101111a1213

    1415

    (2)

    (3)(4)

    (5)

    (6)(6.1

    (7)(8)

    (8.1

    (9)(10)

    (11)

    (12)

    (13)

    (14)

    (15)(16)

    16

    1718

    18a

    19

    20

    2122

    23

    24

    25

    26

    27

    28

    29

    30313233

    34

    34a34b35

    363738

    39

    40

    41

    4243444545a

    46

    47

    4848a

    (17)

    (18)

    (19)

    (20)

    (21)(22)

    4950

    5152

    5354

    55

    56

    5758

    596061

    62

    (23)

    (24)

    6364656667

    68

    1.

    2.

    3.

    4.

    5.

    6.

    7.

    8.

    9.

    10.

    11.

    12.

    13.

    14.

    15.

    16.

    17.

    18.

    19.

    20.

    21.

    22.

    23.

    24.

    25.

    26.

    27.

    28.

    29.

    30.

    31.

    32.

    33.

    34.

    35.

    36.

    37.

    38.

    39.

    40.

    41.

    42.

    43.

    44.

    45.

    46.

    GdelsProofofIncompletenessEnglishTranslation

    ThisisanEnglishtranslationofGdelsProofofIncompletenessandwhichisbasedonbasedonMeltzersEnglishtranslationoftheoriginalGerman

    berformalunentscheidbareStzederPrincipiaMathematicaundverwandterSystemeI.

    Note:Headingsinitalicsenclosedinsquarebracketsareadditionaltotheoriginaltext,theseareincludedforconvenience,e.g.,[Recursion]

    Contents

    Part1

    Part2DescriptionoftheformalsystemPTheaxiomsofthesystemPTherulesofinferenceofthesystemPTheGdelnumberingsystemRecursion

    PropositionsIIVTheRelations146

    1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 2021 22 23 24 25 26 27 28 29 3031 32 33 34 35 36 37 38 39 4041 42 43 44 45 46

    PropositionVPropositionVI

    Part3PropositionVIIPropositionVIIIPropositionIXPropositionX

    Part4PropositionXI

    ONFORMALLYUNDECIDABLEPROPOSITIONSOFPRINCIPIAMATHEMATICAANDRELATEDSYSTEMS1

    byKurtGdel,Vienna

    1Thedevelopmentofmathematicsinthedirectionofgreaterexactnesshasasiswellknownledtolargetractsofitbecomingformalized,sothatproofscanbecarriedoutaccordingtoafewmechanicalrules.Themostcomprehensiveformalsystemsyetsetupare,ontheonehand,thesystemofPrincipiaMathematica(PM) and,ontheother,theaxiomsystemforsettheoryofZermeloFraenkel(laterextendedbyJ.v.Neumann). Thesetwosystemsaresoextensivethatallmethodsofproofusedinmathematicstodayhavebeenformalizedinthem,i.e.reducedtoafewaxiomsandrulesofinference.Itmaythereforebesurmisedthattheseaxiomsandrulesofinferencearealsosufficienttodecideallmathematicalquestionswhichcaninanywayatallbeexpressedformallyinthesystemsconcerned.Itisshownbelowthatthisisnotthecase,andthatinboththesystemsmentionedthereareinfactrelativelysimpleproblemsinthetheoryofordinarywholenumbers whichcannotbedecidedfromtheaxioms.Thissituationisnotdueinsomewaytothespecialnatureofthesystemssetup,butholdsforaveryextensiveclassofformalsystems,including,inparticular,allthosearisingfromtheadditionofafinitenumberofaxiomstothetwosystemsmentioned, providedthattherebynofalsepropositionsofthekinddescribedinfootnote4becomeprovable.

    Beforegoingintodetails,weshallfirstindicatethemainlinesoftheproof,naturallywithoutlayingclaimtoexactness.TheformulaeofaformalsystemwerestrictourselvesheretothesystemPMare,lookedatfromoutside,finiteseriesofbasicsigns(variables,logicalconstantsandbracketsorseparationpoints),anditiseasytostatepreciselyjustwhichseriesofbasicsignsaremeaningfulformulaeandwhicharenot. Proofs,fromtheformalstandpoint,arelikewisenothingbutfiniteseriesofformulae(withcertainspecifiablecharacteristics).Formetamathematicalpurposesitisnaturallyimmaterialwhatobjectsaretakenasbasicsigns,andweproposetousenaturalnumbers forthem.Accordingly,then,aformulaisafiniteseriesofnaturalnumbers, andaparticularproofschemaisafiniteseriesoffiniteseriesofnaturalnumbers.Metamathematicalconceptsandpropositionstherebybecomeconceptsandpropositionsconcerningnaturalnumbers,orseriesofthem, andthereforeatleastpartiallyexpressibleinthesymbolsofthesystemPMitself.Inparticular,itcanbeshownthattheconcepts,"formula","proofschema","provableformula"aredefinableinthesystemPM,i.e.onecangive aformulaF(v)ofPMforexamplewithonefreevariablev(ofthetypeofaseriesofnumbers),suchthatF(v)interpretedastocontentstates:visaprovableformula.WenowobtainanundecidablepropositionofthesystemPM,i.e.apropositionA,forwhichneitherAnornotAareprovable,inthefollowingmanner:

    AformulaofPMwithjustonefreevariable,andthatofthetypeofthenaturalnumbers(classofclasses),weshalldesignateaclasssign.Wethinkoftheclasssignsasbeingsomehowarrangedinaseries, anddenotethen onebyR(n)andwenotethattheconcept"classsign"aswellastheorderingrelationRaredefinableinthesystemPM.Letbeanyclasssignby[n]wedesignatethatformulawhichisderivedonreplacingthefreevariableintheclasssignbythesignforthenaturalnumbern.Thethreetermrelationx=[yz]alsoprovestobedefinableinPM.WenowdefineaclassKofnaturalnumbers,asfollows:

    nK~(Bew[R(n)n])

    (whereBewxmeans:xisaprovableformula).SincetheconceptswhichappearinthedefinitionsarealldefinableinPM,sotooistheconceptKwhichisconstitutedfromthem,i.e.thereisaclasssignS, suchthattheformula[Sn]interpretedastoitscontentstatesthatthenaturalnumbernbelongstoK.S,beingaclasssign,isidenticalwithsomedeterminateR(q),i.e.

    S=R(q)

    holdsforsomedeterminatenaturalnumberq.Wenowshowthattheproposition[R(q)q] isundecidableinPM.Forsupposingtheproposition[R(q)q]wereprovable,itwouldalsobecorrectbutthatmeans,ashasbeensaid,thatqwouldbelongtoK,i.e.accordingto(1),~(Bew[R(q)q])wouldholdgood,incontradictiontoourinitialassumption.If,onthecontrary,thenegationof[R(q)q]wereprovable,then~(nK),i.e.Bew[R(q)q]wouldholdgood.[R(q)q]wouldthusbeprovableatthesametimeasitsnegation,whichagainisimpossible.

    TheanalogybetweenthisresultandRichardsantinomyleapstotheeyethereisalsoacloserelationshipwiththe"liar"antinomy, sincetheundecidableproposition[R(q)q]statespreciselythatqbelongstoK,i.e.accordingto(1),that[R(q)q]isnotprovable.Wearethereforeconfrontedwithapropositionwhichassertsitsownunprovability. Themethodofproofjustexhibitedcanclearlybeappliedtoeveryformalsystemhavingthefollowingfeatures:firstly,interpretedastocontent,itdisposesofsufficientmeansofexpressiontodefinetheconceptsoccurringintheaboveargument(inparticulartheconcept"provableformula")secondly,everyprovableformulainitisalsocorrectasregardscontent.Theexactstatementoftheaboveproof,whichnowfollows,willhaveamongothersthetaskofsubstitutingforthesecondoftheseassumptionsapurelyformalandmuchweakerone.

    Fromtheremarkthat[R(q)q]assertsitsownunprovability,itfollowsatoncethat[R(q)q]iscorrect,since[R(q)q]iscertainlyunprovable(becauseundecidable).Sothepropositionwhichisundecidableinthesystem PMyetturnsouttobedecidedbymetamathematicalconsiderations.Thecloseanalysisofthisremarkablecircumstanceleadstosurprisingresultsconcerningproofsofconsistencyofformalsystems,whicharedealtwithinmoredetailinSection4(PropositionXI).

    Cf.thesummaryoftheresultsofthiswork,publishedinAnzeigerderAkad.d.Wiss.inWien(math.naturw.Kl.)1930,No.19.A.WhiteheadandB.Russell,PrincipiaMathematica,2ndedition,Cambridge1925.Inparticular,wealsoreckonamongtheaxiomsofPMtheaxiomofinfinity(intheform:thereexistdenumerablymanyindividuals),andtheaxiomsofreducibilityandofchoice(foralltypes).Cf.A.Fraenkel,'ZehnVorlesungenberdieGrundlegungderMengenlehre',Wissensch.u.Hyp.,Vol.XXXIJ.v.Neumann,'DieAxiomatisierungderMengenlehre',Math.Zeitschr.27,1928,Journ.f.reineu.angew.Math.154(1925),160(1929).Wemaynotethatinordertocompletetheformalization,theaxiomsandrulesofinferenceofthelogicalcalculusmustbeaddedtotheaxiomsofsettheorygivenintheabovementionedpapers.TheremarksthatfollowalsoapplytotheformalsystemspresentedinrecentyearsbyD.Hilbertandhiscolleagues(sofarasthesehaveyetbeenpublished).Cf.D.Hilbert,Math.Ann.88,Abh.ausd.math.Sem.derUniv.HamburgI(1922),VI(1928)P.Bernays,Math.Ann.90J.v.Neumann,Math.Zeitsehr.26(1927)W.Ackermann,Math.Ann.93.I.e.,moreprecisely,thereareundecidablepropositionsinwhich,besidesthelogicalconstants~(not),(or),(x)(forall)and=(identicalwith),therearenootherconceptsbeyond+(addition)and.(multiplication),bothreferredtonaturalnumbers,andwheretheprefixes(x)canalsoreferonlytonaturalnumbers.Inthisconnection,onlysuchaxiomsinPMarecountedasdistinctasdonotarisefromeachotherpurelybychangeoftype.Hereandinwhatfollows,weshallalwaysunderstandtheterm"formulaofPM"tomeanaformulawrittenwithoutabbreviations(i.e.withoutuseofdefinitions).Definitionsserveonlytoabridgethewrittentextandarethereforeinprinciplesuperfluous.I.e.wemapthebasicsignsinonetoonefashiononthenaturalnumbers(asisactuallydoneon).I.e.acoveringofasectionofthenumberseriesbynaturalnumbers.(Numberscannotinfactbeputintoaspatialorder.)Inotherwords,theabovedescribedprocedureprovidesanisomorphicimageofthesystemPMinthedomainofarithmetic,andallmetamathematicalargumentscanequallywellbeconductedinthisisomorphicimage.Thisoccursinthefollowingoutlineproof,i.e."formula","proposition","variable",etc.arealwaystobeunderstoodasthecorrespondingobjectsoftheisomorphicimage.Itwouldbeverysimple(thoughratherlaborious)actuallytowriteoutthisformula.Perhapsaccordingtotheincreasingsumsoftheirtermsand,forequalsums,inalphabeticalorder.Thebarsignindicatesnegation.[Replacedwith~.]AgainthereisnottheslightestdifficultyinactuallywritingouttheformulaS.Notethat"[R(q)q]"(orwhatcomestothesamething"[Sq]")ismerelyametamathematicaldescriptionoftheundecidableproposition.ButassoonasonehasascertainedtheformulaS,onecannaturallyalsodeterminethenumberq,andtherebyeffectivelywriteouttheundecidablepropositionitself.Everyepistemologicalantinomycanlikewisebeusedforasimilarundecidabilityproof.Inspiteofappearances,thereisnothingcircularaboutsuchaproposition,sinceitbeginsbyassertingtheunprovabilityofawhollydeterminateformula(namelytheq inthealphabeticalarrangementwithadefinitesubstitution),andonlysubsequently(andinsomewaybyaccident)doesitemergethatthisformulaispreciselythatbywhichthepropositionwasitselfexpressed.

    2

    [DescriptionoftheformalsystemP]

    Weproceednowtotherigorousdevelopmentoftheproofsketchedabove,andbeginbygivinganexactdescriptionoftheformalsystemP,forwhichweseektodemonstratetheexistenceofundecidablepropositions.PisessentiallythesystemobtainedbysuperimposingonthePeanoaxiomsthelogicofPM (numbersasindividuals,relationofsuccessorasundefinedbasicconcept).

    ThebasicsignsofthesystemParethefollowing:

    I. Constants:"~"(not),""(or),""(forall),"0"(nought),"f"(thesuccessorof),"(",")"(brackets).

    II. Variablesoffirsttype(forindividuals,i.e.naturalnumbersincluding0):"x ","y ","z ",Variablesofsecondtype(forclassesofindividuals):"x ","y ","z ",Variablesofthirdtype(forclassesofclassesofindividuals):"x ","y ","z ",

    andsoonforeverynaturalnumberastype.

    Note:Variablesfortwotermedandmanytermedfunctions(relations)aresuperfluousasbasicsigns,sincerelationscanbedefinedasclassesoforderedpairsandorderedpairsagainasclassesofclasses,e.g.theorderedpaira,bby((a),(a,b)),where(x,y)meanstheclasswhoseonlyelementsarexandy,and(x)theclasswhoseonlyelementisx.

    Byasignoffirsttypeweunderstandacombinationofsignsoftheform:

    a,fa,ffa,fffaetc.

    whereaiseither0oravariableoffirsttype.Intheformercasewecallsuchasignanumbersign.Forn>1weunderstandbyasignofn typethesameasvariableofn type.

    Combinationsofsignsoftheforma(b),wherebisasignofn andaasignof(n+1) type,wecallelementaryformulae.Theclassofformulaewedefineasthesmallestclass containingallelementaryformulaeand,also,alongwithanyaandbthefollowing:~(a),(a)(b),x(a)(wherexisanygivenvariable). Weterm(a)(b)thedisjunctionofaandb,~(a)thenegationand(a)(b)ageneralizationofa.Aformulainwhichthereisnofreevariableiscalledapropositionalformula(freevariablebeingdefinedintheusualway).Aformulawithjustnfreeindividualvariables(andotherwisenofreevariables)wecallannplacerelationsignandforn=1alsoaclasssign.

    BySubsta(v|b)(whereastandsforaformula,vavariableandbasignofthesametypeasv)weunderstandtheformuladerivedfroma,whenwereplacevinit,whereveritisfree,byb. Wesaythataformulaaisatypeliftofanotheroneb,ifaderivesfromb,whenweincreasebythesameamountthetypeofallvariablesappearinginb.

    [AxiomsoftheformalsystemP]

    Thefollowingformulae(IV)arecalledaxioms(theyaresetoutwiththehelpofthecustomarilydefinedabbreviations:.,,,(x),= andsubjecttotheusualconventionsaboutomissionofbrackets):

    I.1. ~(fx =0)2. fx =fy x =y3. x (0).x (x (x )x (fx ))x (x (x ))

    II.Everyformuladerivedfromthefollowingschematabysubstitutionofanyformulaeforp,qandr.

    1. ppp2. ppq3. pqqp4. (pq)(rprq)

    III.Everyformuladerivedfromthetwoschemata

    1.v(a)Substa(v|c)2. v(ba)bv(a)

    bymakingthefollowingsubstitutionsfora,v,b,c(andcarryingoutinItheoperationdenotedby"Subst"):foraanygivenformula,forvanyvariable,forbanyformulainwhichvdoesnotappearfree,forcasignofthesametypeasv,providedthatccontainsnovariablewhichisboundinaataplacewherevisfree.

    IV.Everyformuladerivedfromtheschema

    1. (u)(v(u(v)a))

    onsubstitutingforvoruanyvariablesoftypesnorn+1respectively,andforaaformulawhichdoesnotcontainufree.Thisaxiomrepresentstheaxiomofreducibility(theaxiomofcomprehensionofsettheory).

    V.Everyformuladerivedfromthefollowingbytypelift(andthisformulaitself):

    1. x (x (x )y (x ))x =y

    Thisaxiomstatesthataclassiscompletelydeterminedbyitselements.

    [RulesofinferenceoftheformalsystemP]

    Aformulaciscalledanimmediateconsequenceofaandb,ifaistheformula(~(b))(c),andanimmediateconsequenceofa,ifcistheformulav(a),wherevdenotesanygivenvariable.Theclassofprovableformulaeisdefinedasthesmallestclassofformulaewhichcontainstheaxiomsandisclosedwithrespecttotherelation"immediateconsequenceof".

    [TheGdelnumberingsystem]

    ThebasicsignsofthesystemParenoworderedinonetoonecorrespondencewithnaturalnumbers,asfollows:

    0"1"f"3"~"5""7""9"("11")"13

    Furthermore,variablesoftypenaregivennumbersoftheformp (wherepisaprimenumber>13).Hence,toeveryfiniteseriesofbasicsigns(andsoalsotoeveryformula)therecorresponds,onetoone,afiniteseriesofnaturalnumbers.Thesefiniteseriesofnaturalnumberswenowmap(againinonetoonecorrespondence)ontonaturalnumbers,bylettingthenumber2 ,3 p correspondtotheseriesn ,n ,n ,wherep denotesthek primenumberinorderofmagnitude.Anaturalnumberistherebyassignedinonetoonecorrespondence,notonlytoeverybasicsign,butalsotoeveryfiniteseriesofsuchsigns.Wedenoteby(a)thenumbercorrespondingtothebasicsignorseriesofbasicsignsa.SupposenowoneisgivenaclassorrelationR(a ,a ,a )ofbasicsignsorseriesofsuch.Weassigntoitthatclass(orrelation)R'(x ,x ,x )ofnaturalnumbers,whichholdsforx ,x ,x whenandonlywhenthereexista ,a ,a suchthatx =(a )(i=1,2,n)andR(a ,a ,a )holds.Werepresentbythesamewordsinitalicsthoseclassesandrelationsofnaturalnumberswhichhavebeenassignedinthisfashiontosuchpreviouslydefinedmetamathematicalconceptsas"variable","formula","propositionalformula","axiom","provableformula",etc.ThepropositionthatthereareundecidableproblemsinthesystemPwouldthereforeread,forexample,asfollows:Thereexistpropositionalformulaeasuchthatneitheranorthenegationofaareprovableformulae.

    [Recursion]

    WenowintroduceaparentheticconsiderationhavingnoimmediateconnectionwiththeformalsystemP,andfirstputforwardthefollowingdefinition:Anumbertheoreticfunction (x ,x ,x )issaidtoberecursivelydefinedbythenumbertheoreticfunctions(x ,x ,x )and(x ,x ,x ),ifforallx ,x ,k thefollowinghold:

    (0,x ,x )=(x ,x )(k+1,x ,x )=(k,(k,x ,x ),x ,x ).

    Anumbertheoreticfunctioniscalledrecursive,ifthereexistsafiniteseriesofnumbertheoreticfunctions , , whichendsinandhasthepropertythateveryfunction oftheseriesiseitherrecursivelydefinedbytwooftheearlierones,orisderivedfromanyoftheearlieronesbysubstitution, or,finally,isaconstantorthesuccessorfunctionx+1.Thelengthoftheshortestseriesof ,whichbelongstoarecursivefunction,istermeditsdegree.ArelationR(x ,x ,x )amongnaturalnumbersiscalledrecursive, ifthereexistsarecursivefunction(x ,x ,x )suchthatforallx ,x ,x

    R(x ,x ,x )[(x ,x ,x )=0] .

    [PropositionsIIV]

    Thefollowingpropositionshold:

    I.Everyfunction(orrelation)derivedfromrecursivefunctions(orrelations)bythesubstitutionofrecursivefunctionsinplaceofvariablesisrecursivesoalsoiseveryfunctionderivedfromrecursivefunctionsbyrecursivedefinitionaccordingtoschema(2).

    II.IfRandSarerecursiverelations,thensoalsoare~R,RS(andthereforealsoR&S).

    III.Ifthefunctions()and()arerecursive,soalsoistherelation:()=().

    IV.Ifthefunction()andtherelationR(x,)arerecursive,soalsothenaretherelationsS,T

    S(,)~(x)[x()&R(x,)]T(,)~(x)[x()R(x,)]

    andlikewisethefunction

    (,)=x[x()&R(x,)]

    wherexF(x)means:thesmallestnumberxforwhichF(x)holdsand0ifthereisnosuchnumber.

    PropositionIfollowsimmediatelyfromthedefinitionof"recursive".PropositionsIIandIIIarebasedonthereadilyascertainablefactthatthenumbertheoreticfunctionscorrespondingtothelogicalconcepts~,,=

    (x),(x,y),(x,y)namely

    (0)=1(x)=0forx0(0,x)=(x,0)=0(x,y)=1,ifx,ybothO

    (x,y)=0,ifx=y(x,y)=1,ifxy

    arerecursive.TheproofofPropositionIVisbrieflyasfollows:Accordingtotheassumptionthereexistsarecursive(x,)suchthat

    R(x,)[(x,)=0].

    Wenowdefine,accordingtotherecursionschema(2),afunction(x,)inthefollowingmanner:

    (0,)=0(n+1,)=(n+1).a+(n,).(a)

    where

    a=[((0,))].[(n+1,)].[(n,)].

    (n+1,)isthereforeeither=n+1(ifa=1)or=(n,)(ifa=0). Thefirstcaseclearlyarisesifandonlyifalltheconstituentfactorsofaare1,i.e.if

    ~R(O,)&R(n+1,)&[(n,)=0].

    Fromthisitfollowsthatthefunction(n,)(consideredasafunctionofn)remains0uptothesmallestvalueofnforwhichR(n,)holds,andfromthenonisequaltothisvalue(ifR(0,)isalreadythecase,thecorresponding(x,)isconstantand=0).Therefore:

    (,)=C((),)S(,)R[(,)),)]

    TherelationTcanbereducedbynegationtoacaseanalogoustoS,sothatPropositionIVisproved.

    [TheRelations146]

    Thefunctionsx+y,x.y,x ,andalsotherelationsx1

    xisaprimenumber.

    0Prx0(n+1)Prxy[yx&Prim(y)&x/y&y>nPrx]

    nPrxisthen (inorderofmagnitude)primenumbercontainedinx.

    0!1(n+1)!(n+1).n!

    Pr(0)0Pr(n+1)y[y{Pr(n)}!+1&Prim(y)&y>Pr(n)]

    Pr(n)isthen primenumber(inorderofmagnitude).

    nGlxy[yx&x/(nPrx) &~x/(nPrx) ]

    nGlxisthen termoftheseriesofnumbersassignedtothenumberx(forn>0andnnotgreaterthanthelengthofthisseries).

    l(x)y[yx&yPrx>0&(y+1)Prx=0]

    l(x)isthelengthoftheseriesofnumbersassignedtox.

    x*yz[z[Pr{l(x)+l(y)}] &(n)[nl(x)nGlz=nGlx] &(n)[00).

    E(x)R(11)*x*R(13)

    E(x)correspondstotheoperationof"bracketing"[11and13areassignedtothebasicsigns"("and")"].

    nVarx(z)[131 &(v){vx&nVarv&x=R(v)}]

    xisasignofn type.

    Elf(x)(y,z,n)[y,z,nx &Typ (y)&Typ (z)&x=z*E(y)]

    xisanelementaryformula.

    Op(x,y,z)x=Neg(y)x=yDisz (v)[vx&Var(v)&x=vGeny]

    FR(x)(n){0

  • (1)

    1

    2

    3

    4

    5

    6

    78

    9

    101111a1213

    1415

    (2)

    (3)(4)

    (5)

    (6)(6.1

    (7)(8)

    (8.1

    (9)(10)

    (11)

    (12)

    (13)

    (14)

    (15)(16)

    16

    1718

    18a

    19

    20

    2122

    23

    24

    25

    26

    27

    28

    29

    30313233

    34

    34a34b35

    363738

    39

    40

    41

    4243444545a

    46

    47

    4848a

    (17)

    (18)

    (19)

    (20)

    (21)(22)

    4950

    5152

    5354

    55

    56

    5758

    596061

    62

    (23)

    (24)

    6364656667

    68

    1.

    2.

    3.

    4.

    5.

    6.

    7.

    8.

    9.

    10.

    11.

    12.

    13.

    14.

    15.

    16.

    17.

    18.

    19.

    20.

    21.

    22.

    23.

    24.

    25.

    26.

    27.

    28.

    29.

    30.

    31.

    32.

    33.

    34.

    35.

    36.

    37.

    38.

    39.

    40.

    41.

    42.

    43.

    44.

    45.

    46.

    GdelsProofofIncompletenessEnglishTranslation

    ThisisanEnglishtranslationofGdelsProofofIncompletenessandwhichisbasedonbasedonMeltzersEnglishtranslationoftheoriginalGerman

    berformalunentscheidbareStzederPrincipiaMathematicaundverwandterSystemeI.

    Note:Headingsinitalicsenclosedinsquarebracketsareadditionaltotheoriginaltext,theseareincludedforconvenience,e.g.,[Recursion]

    Contents

    Part1

    Part2DescriptionoftheformalsystemPTheaxiomsofthesystemPTherulesofinferenceofthesystemPTheGdelnumberingsystemRecursion

    PropositionsIIVTheRelations146

    1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 2021 22 23 24 25 26 27 28 29 3031 32 33 34 35 36 37 38 39 4041 42 43 44 45 46

    PropositionVPropositionVI

    Part3PropositionVIIPropositionVIIIPropositionIXPropositionX

    Part4PropositionXI

    ONFORMALLYUNDECIDABLEPROPOSITIONSOFPRINCIPIAMATHEMATICAANDRELATEDSYSTEMS1

    byKurtGdel,Vienna

    1Thedevelopmentofmathematicsinthedirectionofgreaterexactnesshasasiswellknownledtolargetractsofitbecomingformalized,sothatproofscanbecarriedoutaccordingtoafewmechanicalrules.Themostcomprehensiveformalsystemsyetsetupare,ontheonehand,thesystemofPrincipiaMathematica(PM) and,ontheother,theaxiomsystemforsettheoryofZermeloFraenkel(laterextendedbyJ.v.Neumann). Thesetwosystemsaresoextensivethatallmethodsofproofusedinmathematicstodayhavebeenformalizedinthem,i.e.reducedtoafewaxiomsandrulesofinference.Itmaythereforebesurmisedthattheseaxiomsandrulesofinferencearealsosufficienttodecideallmathematicalquestionswhichcaninanywayatallbeexpressedformallyinthesystemsconcerned.Itisshownbelowthatthisisnotthecase,andthatinboththesystemsmentionedthereareinfactrelativelysimpleproblemsinthetheoryofordinarywholenumbers whichcannotbedecidedfromtheaxioms.Thissituationisnotdueinsomewaytothespecialnatureofthesystemssetup,butholdsforaveryextensiveclassofformalsystems,including,inparticular,allthosearisingfromtheadditionofafinitenumberofaxiomstothetwosystemsmentioned, providedthattherebynofalsepropositionsofthekinddescribedinfootnote4becomeprovable.

    Beforegoingintodetails,weshallfirstindicatethemainlinesoftheproof,naturallywithoutlayingclaimtoexactness.TheformulaeofaformalsystemwerestrictourselvesheretothesystemPMare,lookedatfromoutside,finiteseriesofbasicsigns(variables,logicalconstantsandbracketsorseparationpoints),anditiseasytostatepreciselyjustwhichseriesofbasicsignsaremeaningfulformulaeandwhicharenot. Proofs,fromtheformalstandpoint,arelikewisenothingbutfiniteseriesofformulae(withcertainspecifiablecharacteristics).Formetamathematicalpurposesitisnaturallyimmaterialwhatobjectsaretakenasbasicsigns,andweproposetousenaturalnumbers forthem.Accordingly,then,aformulaisafiniteseriesofnaturalnumbers, andaparticularproofschemaisafiniteseriesoffiniteseriesofnaturalnumbers.Metamathematicalconceptsandpropositionstherebybecomeconceptsandpropositionsconcerningnaturalnumbers,orseriesofthem, andthereforeatleastpartiallyexpressibleinthesymbolsofthesystemPMitself.Inparticular,itcanbeshownthattheconcepts,"formula","proofschema","provableformula"aredefinableinthesystemPM,i.e.onecangive aformulaF(v)ofPMforexamplewithonefreevariablev(ofthetypeofaseriesofnumbers),suchthatF(v)interpretedastocontentstates:visaprovableformula.WenowobtainanundecidablepropositionofthesystemPM,i.e.apropositionA,forwhichneitherAnornotAareprovable,inthefollowingmanner:

    AformulaofPMwithjustonefreevariable,andthatofthetypeofthenaturalnumbers(classofclasses),weshalldesignateaclasssign.Wethinkoftheclasssignsasbeingsomehowarrangedinaseries, anddenotethen onebyR(n)andwenotethattheconcept"classsign"aswellastheorderingrelationRaredefinableinthesystemPM.Letbeanyclasssignby[n]wedesignatethatformulawhichisderivedonreplacingthefreevariableintheclasssignbythesignforthenaturalnumbern.Thethreetermrelationx=[yz]alsoprovestobedefinableinPM.WenowdefineaclassKofnaturalnumbers,asfollows:

    nK~(Bew[R(n)n])

    (whereBewxmeans:xisaprovableformula).SincetheconceptswhichappearinthedefinitionsarealldefinableinPM,sotooistheconceptKwhichisconstitutedfromthem,i.e.thereisaclasssignS, suchthattheformula[Sn]interpretedastoitscontentstatesthatthenaturalnumbernbelongstoK.S,beingaclasssign,isidenticalwithsomedeterminateR(q),i.e.

    S=R(q)

    holdsforsomedeterminatenaturalnumberq.Wenowshowthattheproposition[R(q)q] isundecidableinPM.Forsupposingtheproposition[R(q)q]wereprovable,itwouldalsobecorrectbutthatmeans,ashasbeensaid,thatqwouldbelongtoK,i.e.accordingto(1),~(Bew[R(q)q])wouldholdgood,incontradictiontoourinitialassumption.If,onthecontrary,thenegationof[R(q)q]wereprovable,then~(nK),i.e.Bew[R(q)q]wouldholdgood.[R(q)q]wouldthusbeprovableatthesametimeasitsnegation,whichagainisimpossible.

    TheanalogybetweenthisresultandRichardsantinomyleapstotheeyethereisalsoacloserelationshipwiththe"liar"antinomy, sincetheundecidableproposition[R(q)q]statespreciselythatqbelongstoK,i.e.accordingto(1),that[R(q)q]isnotprovable.Wearethereforeconfrontedwithapropositionwhichassertsitsownunprovability. Themethodofproofjustexhibitedcanclearlybeappliedtoeveryformalsystemhavingthefollowingfeatures:firstly,interpretedastocontent,itdisposesofsufficientmeansofexpressiontodefinetheconceptsoccurringintheaboveargument(inparticulartheconcept"provableformula")secondly,everyprovableformulainitisalsocorrectasregardscontent.Theexactstatementoftheaboveproof,whichnowfollows,willhaveamongothersthetaskofsubstitutingforthesecondoftheseassumptionsapurelyformalandmuchweakerone.

    Fromtheremarkthat[R(q)q]assertsitsownunprovability,itfollowsatoncethat[R(q)q]iscorrect,since[R(q)q]iscertainlyunprovable(becauseundecidable).Sothepropositionwhichisundecidableinthesystem PMyetturnsouttobedecidedbymetamathematicalconsiderations.Thecloseanalysisofthisremarkablecircumstanceleadstosurprisingresultsconcerningproofsofconsistencyofformalsystems,whicharedealtwithinmoredetailinSection4(PropositionXI).

    Cf.thesummaryoftheresultsofthiswork,publishedinAnzeigerderAkad.d.Wiss.inWien(math.naturw.Kl.)1930,No.19.A.WhiteheadandB.Russell,PrincipiaMathematica,2ndedition,Cambridge1925.Inparticular,wealsoreckonamongtheaxiomsofPMtheaxiomofinfinity(intheform:thereexistdenumerablymanyindividuals),andtheaxiomsofreducibilityandofchoice(foralltypes).Cf.A.Fraenkel,'ZehnVorlesungenberdieGrundlegungderMengenlehre',Wissensch.u.Hyp.,Vol.XXXIJ.v.Neumann,'DieAxiomatisierungderMengenlehre',Math.Zeitschr.27,1928,Journ.f.reineu.angew.Math.154(1925),160(1929).Wemaynotethatinordertocompletetheformalization,theaxiomsandrulesofinferenceofthelogicalcalculusmustbeaddedtotheaxiomsofsettheorygivenintheabovementionedpapers.TheremarksthatfollowalsoapplytotheformalsystemspresentedinrecentyearsbyD.Hilbertandhiscolleagues(sofarasthesehaveyetbeenpublished).Cf.D.Hilbert,Math.Ann.88,Abh.ausd.math.Sem.derUniv.HamburgI(1922),VI(1928)P.Bernays,Math.Ann.90J.v.Neumann,Math.Zeitsehr.26(1927)W.Ackermann,Math.Ann.93.I.e.,moreprecisely,thereareundecidablepropositionsinwhich,besidesthelogicalconstants~(not),(or),(x)(forall)and=(identicalwith),therearenootherconceptsbeyond+(addition)and.(multiplication),bothreferredtonaturalnumbers,andwheretheprefixes(x)canalsoreferonlytonaturalnumbers.Inthisconnection,onlysuchaxiomsinPMarecountedasdistinctasdonotarisefromeachotherpurelybychangeoftype.Hereandinwhatfollows,weshallalwaysunderstandtheterm"formulaofPM"tomeanaformulawrittenwithoutabbreviations(i.e.withoutuseofdefinitions).Definitionsserveonlytoabridgethewrittentextandarethereforeinprinciplesuperfluous.I.e.wemapthebasicsignsinonetoonefashiononthenaturalnumbers(asisactuallydoneon).I.e.acoveringofasectionofthenumberseriesbynaturalnumbers.(Numberscannotinfactbeputintoaspatialorder.)Inotherwords,theabovedescribedprocedureprovidesanisomorphicimageofthesystemPMinthedomainofarithmetic,andallmetamathematicalargumentscanequallywellbeconductedinthisisomorphicimage.Thisoccursinthefollowingoutlineproof,i.e."formula","proposition","variable",etc.arealwaystobeunderstoodasthecorrespondingobjectsoftheisomorphicimage.Itwouldbeverysimple(thoughratherlaborious)actuallytowriteoutthisformula.Perhapsaccordingtotheincreasingsumsoftheirtermsand,forequalsums,inalphabeticalorder.Thebarsignindicatesnegation.[Replacedwith~.]AgainthereisnottheslightestdifficultyinactuallywritingouttheformulaS.Notethat"[R(q)q]"(orwhatcomestothesamething"[Sq]")ismerelyametamathematicaldescriptionoftheundecidableproposition.ButassoonasonehasascertainedtheformulaS,onecannaturallyalsodeterminethenumberq,andtherebyeffectivelywriteouttheundecidablepropositionitself.Everyepistemologicalantinomycanlikewisebeusedforasimilarundecidabilityproof.Inspiteofappearances,thereisnothingcircularaboutsuchaproposition,sinceitbeginsbyassertingtheunprovabilityofawhollydeterminateformula(namelytheq inthealphabeticalarrangementwithadefinitesubstitution),andonlysubsequently(andinsomewaybyaccident)doesitemergethatthisformulaispreciselythatbywhichthepropositionwasitselfexpressed.

    2

    [DescriptionoftheformalsystemP]

    Weproceednowtotherigorousdevelopmentoftheproofsketchedabove,andbeginbygivinganexactdescriptionoftheformalsystemP,forwhichweseektodemonstratetheexistenceofundecidablepropositions.PisessentiallythesystemobtainedbysuperimposingonthePeanoaxiomsthelogicofPM (numbersasindividuals,relationofsuccessorasundefinedbasicconcept).

    ThebasicsignsofthesystemParethefollowing:

    I. Constants:"~"(not),""(or),""(forall),"0"(nought),"f"(thesuccessorof),"(",")"(brackets).

    II. Variablesoffirsttype(forindividuals,i.e.naturalnumbersincluding0):"x ","y ","z ",Variablesofsecondtype(forclassesofindividuals):"x ","y ","z ",Variablesofthirdtype(forclassesofclassesofindividuals):"x ","y ","z ",

    andsoonforeverynaturalnumberastype.

    Note:Variablesfortwotermedandmanytermedfunctions(relations)aresuperfluousasbasicsigns,sincerelationscanbedefinedasclassesoforderedpairsandorderedpairsagainasclassesofclasses,e.g.theorderedpaira,bby((a),(a,b)),where(x,y)meanstheclasswhoseonlyelementsarexandy,and(x)theclasswhoseonlyelementisx.

    Byasignoffirsttypeweunderstandacombinationofsignsoftheform:

    a,fa,ffa,fffaetc.

    whereaiseither0oravariableoffirsttype.Intheformercasewecallsuchasignanumbersign.Forn>1weunderstandbyasignofn typethesameasvariableofn type.

    Combinationsofsignsoftheforma(b),wherebisasignofn andaasignof(n+1) type,wecallelementaryformulae.Theclassofformulaewedefineasthesmallestclass containingallelementaryformulaeand,also,alongwithanyaandbthefollowing:~(a),(a)(b),x(a)(wherexisanygivenvariable). Weterm(a)(b)thedisjunctionofaandb,~(a)thenegationand(a)(b)ageneralizationofa.Aformulainwhichthereisnofreevariableiscalledapropositionalformula(freevariablebeingdefinedintheusualway).Aformulawithjustnfreeindividualvariables(andotherwisenofreevariables)wecallannplacerelationsignandforn=1alsoaclasssign.

    BySubsta(v|b)(whereastandsforaformula,vavariableandbasignofthesametypeasv)weunderstandtheformuladerivedfroma,whenwereplacevinit,whereveritisfree,byb. Wesaythataformulaaisatypeliftofanotheroneb,ifaderivesfromb,whenweincreasebythesameamountthetypeofallvariablesappearinginb.

    [AxiomsoftheformalsystemP]

    Thefollowingformulae(IV)arecalledaxioms(theyaresetoutwiththehelpofthecustomarilydefinedabbreviations:.,,,(x),= andsubjecttotheusualconventionsaboutomissionofbrackets):

    I.1. ~(fx =0)2. fx =fy x =y3. x (0).x (x (x )x (fx ))x (x (x ))

    II.Everyformuladerivedfromthefollowingschematabysubstitutionofanyformulaeforp,qandr.

    1. ppp2. ppq3. pqqp4. (pq)(rprq)

    III.Everyformuladerivedfromthetwoschemata

    1.v(a)Substa(v|c)2. v(ba)bv(a)

    bymakingthefollowingsubstitutionsfora,v,b,c(andcarryingoutinItheoperationdenotedby"Subst"):foraanygivenformula,forvanyvariable,forbanyformulainwhichvdoesnotappearfree,forcasignofthesametypeasv,providedthatccontainsnovariablewhichisboundinaataplacewherevisfree.

    IV.Everyformuladerivedfromtheschema

    1. (u)(v(u(v)a))

    onsubstitutingforvoruanyvariablesoftypesnorn+1respectively,andforaaformulawhichdoesnotcontainufree.Thisaxiomrepresentstheaxiomofreducibility(theaxiomofcomprehensionofsettheory).

    V.Everyformuladerivedfromthefollowingbytypelift(andthisformulaitself):

    1. x (x (x )y (x ))x =y

    Thisaxiomstatesthataclassiscompletelydeterminedbyitselements.

    [RulesofinferenceoftheformalsystemP]

    Aformulaciscalledanimmediateconsequenceofaandb,ifaistheformula(~(b))(c),andanimmediateconsequenceofa,ifcistheformulav(a),wherevdenotesanygivenvariable.Theclassofprovableformulaeisdefinedasthesmallestclassofformulaewhichcontainstheaxiomsandisclosedwithrespecttotherelation"immediateconsequenceof".

    [TheGdelnumberingsystem]

    ThebasicsignsofthesystemParenoworderedinonetoonecorrespondencewithnaturalnumbers,asfollows:

    0"1"f"3"~"5""7""9"("11")"13

    Furthermore,variablesoftypenaregivennumbersoftheformp (wherepisaprimenumber>13).Hence,toeveryfiniteseriesofbasicsigns(andsoalsotoeveryformula)therecorresponds,onetoone,afiniteseriesofnaturalnumbers.Thesefiniteseriesofnaturalnumberswenowmap(againinonetoonecorrespondence)ontonaturalnumbers,bylettingthenumber2 ,3 p correspondtotheseriesn ,n ,n ,wherep denotesthek primenumberinorderofmagnitude.Anaturalnumberistherebyassignedinonetoonecorrespondence,notonlytoeverybasicsign,butalsotoeveryfiniteseriesofsuchsigns.Wedenoteby(a)thenumbercorrespondingtothebasicsignorseriesofbasicsignsa.SupposenowoneisgivenaclassorrelationR(a ,a ,a )ofbasicsignsorseriesofsuch.Weassigntoitthatclass(orrelation)R'(x ,x ,x )ofnaturalnumbers,whichholdsforx ,x ,x whenandonlywhenthereexista ,a ,a suchthatx =(a )(i=1,2,n)andR(a ,a ,a )holds.Werepresentbythesamewordsinitalicsthoseclassesandrelationsofnaturalnumberswhichhavebeenassignedinthisfashiontosuchpreviouslydefinedmetamathematicalconceptsas"variable","formula","propositionalformula","axiom","provableformula",etc.ThepropositionthatthereareundecidableproblemsinthesystemPwouldthereforeread,forexample,asfollows:Thereexistpropositionalformulaeasuchthatneitheranorthenegationofaareprovableformulae.

    [Recursion]

    WenowintroduceaparentheticconsiderationhavingnoimmediateconnectionwiththeformalsystemP,andfirstputforwardthefollowingdefinition:Anumbertheoreticfunction (x ,x ,x )issaidtoberecursivelydefinedbythenumbertheoreticfunctions(x ,x ,x )and(x ,x ,x ),ifforallx ,x ,k thefollowinghold:

    (0,x ,x )=(x ,x )(k+1,x ,x )=(k,(k,x ,x ),x ,x ).

    Anumbertheoreticfunctioniscalledrecursive,ifthereexistsafiniteseriesofnumbertheoreticfunctions , , whichendsinandhasthepropertythateveryfunction oftheseriesiseitherrecursivelydefinedbytwooftheearlierones,orisderivedfromanyoftheearlieronesbysubstitution, or,finally,isaconstantorthesuccessorfunctionx+1.Thelengthoftheshortestseriesof ,whichbelongstoarecursivefunction,istermeditsdegree.ArelationR(x ,x ,x )amongnaturalnumbersiscalledrecursive, ifthereexistsarecursivefunction(x ,x ,x )suchthatforallx ,x ,x

    R(x ,x ,x )[(x ,x ,x )=0] .

    [PropositionsIIV]

    Thefollowingpropositionshold:

    I.Everyfunction(orrelation)derivedfromrecursivefunctions(orrelations)bythesubstitutionofrecursivefunctionsinplaceofvariablesisrecursivesoalsoiseveryfunctionderivedfromrecursivefunctionsbyrecursivedefinitionaccordingtoschema(2).

    II.IfRandSarerecursiverelations,thensoalsoare~R,RS(andthereforealsoR&S).

    III.Ifthefunctions()and()arerecursive,soalsoistherelation:()=().

    IV.Ifthefunction()andtherelationR(x,)arerecursive,soalsothenaretherelationsS,T

    S(,)~(x)[x()&R(x,)]T(,)~(x)[x()R(x,)]

    andlikewisethefunction

    (,)=x[x()&R(x,)]

    wherexF(x)means:thesmallestnumberxforwhichF(x)holdsand0ifthereisnosuchnumber.

    PropositionIfollowsimmediatelyfromthedefinitionof"recursive".PropositionsIIandIIIarebasedonthereadilyascertainablefactthatthenumbertheoreticfunctionscorrespondingtothelogicalconcepts~,,=

    (x),(x,y),(x,y)namely

    (0)=1(x)=0forx0(0,x)=(x,0)=0(x,y)=1,ifx,ybothO

    (x,y)=0,ifx=y(x,y)=1,ifxy

    arerecursive.TheproofofPropositionIVisbrieflyasfollows:Accordingtotheassumptionthereexistsarecursive(x,)suchthat

    R(x,)[(x,)=0].

    Wenowdefine,accordingtotherecursionschema(2),afunction(x,)inthefollowingmanner:

    (0,)=0(n+1,)=(n+1).a+(n,).(a)

    where

    a=[((0,))].[(n+1,)].[(n,)].

    (n+1,)isthereforeeither=n+1(ifa=1)or=(n,)(ifa=0). Thefirstcaseclearlyarisesifandonlyifalltheconstituentfactorsofaare1,i.e.if

    ~R(O,)&R(n+1,)&[(n,)=0].

    Fromthisitfollowsthatthefunction(n,)(consideredasafunctionofn)remains0uptothesmallestvalueofnforwhichR(n,)holds,andfromthenonisequaltothisvalue(ifR(0,)isalreadythecase,thecorresponding(x,)isconstantand=0).Therefore:

    (,)=C((),)S(,)R[(,)),)]

    TherelationTcanbereducedbynegationtoacaseanalogoustoS,sothatPropositionIVisproved.

    [TheRelations146]

    Thefunctionsx+y,x.y,x ,andalsotherelationsx1

    xisaprimenumber.

    0Prx0(n+1)Prxy[yx&Prim(y)&x/y&y>nPrx]

    nPrxisthen (inorderofmagnitude)primenumbercontainedinx.

    0!1(n+1)!(n+1).n!

    Pr(0)0Pr(n+1)y[y{Pr(n)}!+1&Prim(y)&y>Pr(n)]

    Pr(n)isthen primenumber(inorderofmagnitude).

    nGlxy[yx&x/(nPrx) &~x/(nPrx) ]

    nGlxisthen termoftheseriesofnumbersassignedtothenumberx(forn>0andnnotgreaterthanthelengthofthisseries).

    l(x)y[yx&yPrx>0&(y+1)Prx=0]

    l(x)isthelengthoftheseriesofnumbersassignedtox.

    x*yz[z[Pr{l(x)+l(y)}] &(n)[nl(x)nGlz=nGlx] &(n)[00).

    E(x)R(11)*x*R(13)

    E(x)correspondstotheoperationof"bracketing"[11and13areassignedtothebasicsigns"("and")"].

    nVarx(z)[131 &(v){vx&nVarv&x=R(v)}]

    xisasignofn type.

    Elf(x)(y,z,n)[y,z,nx &Typ (y)&Typ (z)&x=z*E(y)]

    xisanelementaryformula.

    Op(x,y,z)x=Neg(y)x=yDisz (v)[vx&Var(v)&x=vGeny]

    FR(x)(n){0

  • (1)

    1

    2

    3

    4

    5

    6

    78

    9

    101111a1213

    1415

    (2)

    (3)(4)

    (5)

    (6)(6.1

    (7)(8)

    (8.1

    (9)(10)

    (11)

    (12)

    (13)

    (14)

    (15)(16)

    16

    1718

    18a

    19

    20

    2122

    23

    24

    25

    26

    27

    28

    29

    30313233

    34

    34a34b35

    363738

    39

    40

    41

    4243444545a

    46

    47

    4848a

    (17)

    (18)

    (19)

    (20)

    (21)(22)

    4950

    5152

    5354

    55

    56

    5758

    596061

    62

    (23)

    (24)

    6364656667

    68

    1.

    2.

    3.

    4.

    5.

    6.

    7.

    8.

    9.

    10.

    11.

    12.

    13.

    14.

    15.

    16.

    17.

    18.

    19.

    20.

    21.

    22.

    23.

    24.

    25.

    26.

    27.

    28.

    29.

    30.

    31.

    32.

    33.

    34.

    35.

    36.

    37.

    38.

    39.

    40.

    41.

    42.

    43.

    44.

    45.

    46.

    GdelsProofofIncompletenessEnglishTranslation

    ThisisanEnglishtranslationofGdelsProofofIncompletenessandwhichisbasedonbasedonMeltzersEnglishtranslationoftheoriginalGerman

    berformalunentscheidbareStzederPrincipiaMathematicaundverwandterSystemeI.

    Note:Headingsinitalicsenclosedinsquarebracketsareadditionaltotheoriginaltext,theseareincludedforconvenience,e.g.,[Recursion]

    Contents

    Part1

    Part2DescriptionoftheformalsystemPTheaxiomsofthesystemPTherulesofinferenceofthesystemPTheGdelnumberingsystemRecursion

    PropositionsIIVTheRelations146

    1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 2021 22 23 24 25 26 27 28 29 3031 32 33 34 35 36 37 38 39 4041 42 43 44 45 46

    PropositionVPropositionVI

    Part3PropositionVIIPropositionVIIIPropositionIXPropositionX

    Part4PropositionXI

    ONFORMALLYUNDECIDABLEPROPOSITIONSOFPRINCIPIAMATHEMATICAANDRELATEDSYSTEMS1

    byKurtGdel,Vienna

    1Thedevelopmentofmathematicsinthedirectionofgreaterexactnesshasasiswellknownledtolargetractsofitbecomingformalized,sothatproofscanbecarriedoutaccordingtoafewmechanicalrules.Themostcomprehensiveformalsystemsyetsetupare,ontheonehand,thesystemofPrincipiaMathematica(PM) and,ontheother,theaxiomsystemforsettheoryofZermeloFraenkel(laterextendedbyJ.v.Neumann). Thesetwosystemsaresoextensivethatallmethodsofproofusedinmathematicstodayhavebeenformalizedinthem,i.e.reducedtoafewaxiomsandrulesofinference.Itmaythereforebesurmisedthattheseaxiomsandrulesofinferencearealsosufficienttodecideallmathematicalquestionswhichcaninanywayatallbeexpressedformallyinthesystemsconcerned.Itisshownbelowthatthisisnotthecase,andthatinboththesystemsmentionedthereareinfactrelativelysimpleproblemsinthetheoryofordinarywholenumbers whichcannotbedecidedfromtheaxioms.Thissituationisnotdueinsomewaytothespecialnatureofthesystemssetup,butholdsforaveryextensiveclassofformalsystems,including,inparticular,allthosearisingfromtheadditionofafinitenumberofaxiomstothetwosystemsmentioned, providedthattherebynofalsepropositionsofthekinddescribedinfootnote4becomeprovable.

    Beforegoingintodetails,weshallfirstindicatethemainlinesoftheproof,naturallywithoutlayingclaimtoexactness.TheformulaeofaformalsystemwerestrictourselvesheretothesystemPMare,lookedatfromoutside,finiteseriesofbasicsigns(variables,logicalconstantsandbracketsorseparationpoints),anditiseasytostatepreciselyjustwhichseriesofbasicsignsaremeaningfulformulaeandwhicharenot. Proofs,fromtheformalstandpoint,arelikewisenothingbutfiniteseriesofformulae(withcertainspecifiablecharacteristics).Formetamathematicalpurposesitisnaturallyimmaterialwhatobjectsaretakenasbasicsigns,andweproposetousenaturalnumbers forthem.Accordingly,then,aformulaisafiniteseriesofnaturalnumbers, andaparticularproofschemaisafiniteseriesoffiniteseriesofnaturalnumbers.Metamathematicalconceptsandpropositionstherebybecomeconceptsandpropositionsconcerningnaturalnumbers,orseriesofthem, andthereforeatleastpartiallyexpressibleinthesymbolsofthesystemPMitself.Inparticular,itcanbeshownthattheconcepts,"formula","proofschema","provableformula"aredefinableinthesystemPM,i.e.onecangive aformulaF(v)ofPMforexamplewithonefreevariablev(ofthetypeofaseriesofnumbers),suchthatF(v)interpretedastocontentstates:visaprovableformula.WenowobtainanundecidablepropositionofthesystemPM,i.e.apropositionA,forwhichneitherAnornotAareprovable,inthefollowingmanner:

    AformulaofPMwithjustonefreevariable,andthatofthetypeofthenaturalnumbers(classofclasses),weshalldesignateaclasssign.Wethinkoftheclasssignsasbeingsomehowarrangedinaseries, anddenotethen onebyR(n)andwenotethattheconcept"classsign"aswellastheorderingrelationRaredefinableinthesystemPM.Letbeanyclasssignby[n]wedesignatethatformulawhichisderivedonreplacingthefreevariableintheclasssignbythesignforthenaturalnumbern.Thethreetermrelationx=[yz]alsoprovestobedefinableinPM.WenowdefineaclassKofnaturalnumbers,asfollows:

    nK~(Bew[R(n)n])

    (whereBewxmeans:xisaprovableformula).SincetheconceptswhichappearinthedefinitionsarealldefinableinPM,sotooistheconceptKwhichisconstitutedfromthem,i.e.thereisaclasssignS, suchthattheformula[Sn]interpretedastoitscontentstatesthatthenaturalnumbernbelongstoK.S,beingaclasssign,isidenticalwithsomedeterminateR(q),i.e.

    S=R(q)

    holdsforsomedeterminatenaturalnumberq.Wenowshowthattheproposition[R(q)q] isundecidableinPM.Forsupposingtheproposition[R(q)q]wereprovable,itwouldalsobecorrectbutthatmeans,ashasbeensaid,thatqwouldbelongtoK,i.e.accordingto(1),~(Bew[R(q)q])wouldholdgood,incontradictiontoourinitialassumption.If,onthecontrary,thenegationof[R(q)q]wereprovable,then~(nK),i.e.Bew[R(q)q]wouldholdgood.[R(q)q]wouldthusbeprovableatthesametimeasitsnegation,whichagainisimpossible.

    TheanalogybetweenthisresultandRichardsantinomyleapstotheeyethereisalsoacloserelationshipwiththe"liar"antinomy, sincetheundecidableproposition[R(q)q]statespreciselythatqbelongstoK,i.e.accordingto(1),that[R(q)q]isnotprovable.Wearethereforeconfrontedwithapropositionwhichassertsitsownunprovability. Themethodofproofjustexhibitedcanclearlybeappliedtoeveryformalsystemhavingthefollowingfeatures:firstly,interpretedastocontent,itdisposesofsufficientmeansofexpressiontodefinetheconceptsoccurringintheaboveargument(inparticulartheconcept"provableformula")secondly,everyprovableformulainitisalsocorrectasregardscontent.Theexactstatementoftheaboveproof,whichnowfollows,willhaveamongothersthetaskofsubstitutingforthesecondoftheseassumptionsapurelyformalandmuchweakerone.

    Fromtheremarkthat[R(q)q]assertsitsownunprovability,itfollowsatoncethat[R(q)q]iscorrect,since[R(q)q]iscertainlyunprovable(becauseundecidable).Sothepropositionwhichisundecidableinthesystem PMyetturnsouttobedecidedbymetamathematicalconsiderations.Thecloseanalysisofthisremarkablecircumstanceleadstosurprisingresultsconcerningproofsofconsistencyofformalsystems,whicharedealtwithinmoredetailinSection4(PropositionXI).

    Cf.thesummaryoftheresultsofthiswork,publishedinAnzeigerderAkad.d.Wiss.inWien(math.naturw.Kl.)1930,No.19.A.WhiteheadandB.Russell,PrincipiaMathematica,2ndedition,Cambridge1925.Inparticular,wealsoreckonamongtheaxiomsofPMtheaxiomofinfinity(intheform:thereexistdenumerablymanyindividuals),andtheaxiomsofreducibilityandofchoice(foralltypes).Cf.A.Fraenkel,'ZehnVorlesungenberdieGrundlegungderMengenlehre',Wissensch.u.Hyp.,Vol.XXXIJ.v.Neumann,'DieAxiomatisierungderMengenlehre',Math.Zeitschr.27,1928,Journ.f.reineu.angew.Math.154(1925),160(1929).Wemaynotethatinordertocompletetheformalization,theaxiomsandrulesofinferenceofthelogicalcalculusmustbeaddedtotheaxiomsofsettheorygivenintheabovementionedpapers.TheremarksthatfollowalsoapplytotheformalsystemspresentedinrecentyearsbyD.Hilbertandhiscolleagues(sofarasthesehaveyetbeenpublished).Cf.D.Hilbert,Math.Ann.88,Abh.ausd.math.Sem.derUniv.HamburgI(1922),VI(1928)P.Bernays,Math.Ann.90J.v.Neumann,Math.Zeitsehr.26(1927)W.Ackermann,Math.Ann.93.I.e.,moreprecisely,thereareundecidablepropositionsinwhich,besidesthelogicalconstants~(not),(or),(x)(forall)and=(identicalwith),therearenootherconceptsbeyond+(addition)and.(multiplication),bothreferredtonaturalnumbers,andwheretheprefixes(x)canalsoreferonlytonaturalnumbers.Inthisconnection,onlysuchaxiomsinPMarecountedasdistinctasdonotarisefromeachotherpurelybychangeoftype.Hereandinwhatfollows,weshallalwaysunderstandtheterm"formulaofPM"tomeanaformulawrittenwithoutabbreviations(i.e.withoutuseofdefinitions).Definitionsserveonlytoabridgethewrittentextandarethereforeinprinciplesuperfluous.I.e.wemapthebasicsignsinonetoonefashiononthenaturalnumbers(asisactuallydoneon).I.e.acoveringofasectionofthenumberseriesbynaturalnumbers.(Numberscannotinfactbeputintoaspatialorder.)Inotherwords,theabovedescribedprocedureprovidesanisomorphicimageofthesystemPMinthedomainofarithmetic,andallmetamathematicalargumentscanequallywellbeconductedinthisisomorphicimage.Thisoccursinthefollowingoutlineproof,i.e."formula","proposition","variable",etc.arealwaystobeunderstoodasthecorrespondingobjectsoftheisomorphicimage.Itwouldbeverysimple(thoughratherlaborious)actuallytowriteoutthisformula.Perhapsaccordingtotheincreasingsumsoftheirtermsand,forequalsums,inalphabeticalorder.Thebarsignindicatesnegation.[Replacedwith~.]AgainthereisnottheslightestdifficultyinactuallywritingouttheformulaS.Notethat"[R(q)q]"(orwhatcomestothesamething"[Sq]")ismerelyametamathematicaldescriptionoftheundecidableproposition.ButassoonasonehasascertainedtheformulaS,onecannaturallyalsodeterminethenumberq,andtherebyeffectivelywriteouttheundecidablepropositionitself.Everyepistemologicalantinomycanlikewisebeusedforasimilarundecidabilityproof.Inspiteofappearances,thereisnothingcircularaboutsuchaproposition,sinceitbeginsbyassertingtheunprovabilityofawhollydeterminateformula(namelytheq inthealphabeticalarrangementwithadefinitesubstitution),andonlysubsequently(andinsomewaybyaccident)doesitemergethatthisformulaispreciselythatbywhichthepropositionwasitselfexpressed.

    2

    [DescriptionoftheformalsystemP]

    Weproceednowtotherigorousdevelopmentoftheproofsketchedabove,andbeginbygivinganexactdescriptionoftheformalsystemP,forwhichweseektodemonstratetheexistenceofundecidablepropositions.PisessentiallythesystemobtainedbysuperimposingonthePeanoaxiomsthelogicofPM (numbersasindividuals,relationofsuccessorasundefinedbasicconcept).

    ThebasicsignsofthesystemParethefollowing:

    I. Constants:"~"(not),""(or),""(forall),"0"(nought),"f"(thesuccessorof),"(",")"(brackets).

    II. Variablesoffirsttype(forindividuals,i.e.naturalnumbersincluding0):"x ","y ","z ",Variablesofsecondtype(forclassesofindividuals):"x ","y ","z ",Variablesofthirdtype(forclassesofclassesofindividuals):"x ","y ","z ",

    andsoonforeverynaturalnumberastype.

    Note:Variablesfortwotermedandmanytermedfunctions(relations)aresuperfluousasbasicsigns,sincerelationscanbedefinedasclassesoforderedpairsandorderedpairsagainasclassesofclasses,e.g.theorderedpaira,bby((a),(a,b)),where(x,y)meanstheclasswhoseonlyelementsarexandy,and(x)theclasswhoseonlyelementisx.

    Byasignoffirsttypeweunderstandacombinationofsignsoftheform:

    a,fa,ffa,fffaetc.

    whereaiseither0oravariableoffirsttype.Intheformercasewecallsuchasignanumbersign.Forn>1weunderstandbyasignofn typethesameasvariableofn type.

    Combinationsofsignsoftheforma(b),wherebisasignofn andaasignof(n+1) type,wecallelementaryformulae.Theclassofformulaewedefineasthesmallestclass containingallelementaryformulaeand,also,alongwithanyaandbthefollowing:~(a),(a)(b),x(a)(wherexisanygivenvariable). Weterm(a)(b)thedisjunctionofaandb,~(a)thenegationand(a)(b)ageneralizationofa.Aformulainwhichthereisnofreevariableiscalledapropositionalformula(freevariablebeingdefinedintheusualway).Aformulawithjustnfreeindividualvariables(andotherwisenofreevariables)wecallannplacerelationsignandforn=1alsoaclasssign.

    BySubsta(v|b)(whereastandsforaformula,vavariableandbasignofthesametypeasv)weunderstandtheformuladerivedfroma,whenwereplacevinit,whereveritisfree,byb. Wesaythataformulaaisatypeliftofanotheroneb,ifaderivesfromb,whenweincreasebythesameamountthetypeofallvariablesappearinginb.

    [AxiomsoftheformalsystemP]

    Thefollowingformulae(IV)arecalledaxioms(theyaresetoutwiththehelpofthecustomarilydefinedabbreviations:.,,,(x),= andsubjecttotheusualconventionsaboutomissionofbrackets):

    I.1. ~(fx =0)2. fx =fy x =y3. x (0).x (x (x )x (fx ))x (x (x ))

    II.Everyformuladerivedfromthefollowingschematabysubstitutionofanyformulaeforp,qandr.

    1. ppp2. ppq3. pqqp4. (pq)(rprq)

    III.Everyformuladerivedfromthetwoschemata

    1.v(a)Substa(v|c)2. v(ba)bv(a)

    bymakingthefollowingsubstitutionsfora,v,b,c(andcarryingoutinItheoperationdenotedby"Subst"):foraanygivenformula,forvanyvariable,forbanyformulainwhichvdoesnotappearfree,forcasignofthesametypeasv,providedthatccontainsnovariablewhichisboundinaataplacewherevisfree.

    IV.Everyformuladerivedfromtheschema

    1. (u)(v(u(v)a))

    onsubstitutingforvoruanyvariablesoftypesnorn+1respectively,andforaaformulawhichdoesnotcontainufree.Thisaxiomrepresentstheaxiomofreducibility(theaxiomofcomprehensionofsettheory).

    V.Everyformuladerivedfromthefollowingbytypelift(andthisformulaitself):

    1. x (x (x )y (x ))x =y

    Thisaxiomstatesthataclassiscompletelydeterminedbyitselements.

    [RulesofinferenceoftheformalsystemP]

    Aformulaciscalledanimmediateconsequenceofaandb,ifaistheformula(~(b))(c),andanimmediateconsequenceofa,ifcistheformulav(a),wherevdenotesanygivenvariable.Theclassofprovableformulaeisdefinedasthesmallestclassofformulaewhichcontainstheaxiomsandisclosedwithrespecttotherelation"immediateconsequenceof".

    [TheGdelnumberingsystem]

    ThebasicsignsofthesystemParenoworderedinonetoonecorrespondencewithnaturalnumbers,asfollows:

    0"1"f"3"~"5""7""9"("11")"13

    Furthermore,variablesoftypenaregivennumbersoftheformp (wherepisaprimenumber>13).Hence,toeveryfiniteseriesofbasicsigns(andsoalsotoeveryformula)therecorresponds,onetoone,afiniteseriesofnaturalnumbers.Thesefiniteseriesofnaturalnumberswenowmap(againinonetoonecorrespondence)ontonaturalnumbers,bylettingthenumber2 ,3 p correspondtotheseriesn ,n ,n ,wherep denotesthek primenumberinorderofmagnitude.Anaturalnumberistherebyassignedinonetoonecorrespondence,notonlytoeverybasicsign,butalsotoeveryfiniteseriesofsuchsigns.Wedenoteby(a)thenumbercorrespondingtothebasicsignorseriesofbasicsignsa.SupposenowoneisgivenaclassorrelationR(a ,a ,a )ofbasicsignsorseriesofsuch.Weassigntoitthatclass(orrelation)R'(x ,x ,x )ofnaturalnumbers,whichholdsforx ,x ,x whenandonlywhenthereexista ,a ,a suchthatx =(a )(i=1,2,n)andR(a ,a ,a )holds.Werepresentbythesamewordsinitalicsthoseclassesandrelationsofnaturalnumberswhichhavebeenassignedinthisfashiontosuchpreviouslydefinedmetamathematicalconceptsas"variable","formula","propositionalformula","axiom","provableformula",etc.ThepropositionthatthereareundecidableproblemsinthesystemPwouldthereforeread,forexample,asfollows:Thereexistpropositionalformulaeasuchthatneitheranorthenegationofaareprovableformulae.

    [Recursion]

    WenowintroduceaparentheticconsiderationhavingnoimmediateconnectionwiththeformalsystemP,andfirstputforwardthefollowingdefinition:Anumbertheoreticfunction (x ,x ,x )issaidtoberecursivelydefinedbythenumbertheoreticfunctions(x ,x ,x )and(x ,x ,x ),ifforallx ,x ,k thefollowinghold:

    (0,x ,x )=(x ,x )(k+1,x ,x )=(k,(k,x ,x ),x ,x ).

    Anumbertheoreticfunctioniscalledrecursive,ifthereexistsafiniteseriesofnumbertheoreticfunctions , , whichendsinandhasthepropertythateveryfunction oftheseriesiseitherrecursivelydefinedbytwooftheearlierones,orisderivedfromanyoftheearlieronesbysubstitution, or,finally,isaconstantorthesuccessorfunctionx+1.Thelengthoftheshortestseriesof ,whichbelongstoarecursivefunction,istermeditsdegree.ArelationR(x ,x ,x )amongnaturalnumbersiscalledrecursive, ifthereexistsarecursivefunction(x ,x ,x )suchthatforallx ,x ,x

    R(x ,x ,x )[(x ,x ,x )=0] .

    [PropositionsIIV]

    Thefollowingpropositionshold:

    I.Everyfunction(orrelation)derivedfromrecursivefunctions(orrelations)bythesubstitutionofrecursivefunctionsinplaceofvariablesisrecursivesoalsoiseveryfunctionderivedfromrecursivefunctionsbyrecursivedefinitionaccordingtoschema(2).

    II.IfRandSarerecursiverelations,thensoalsoare~R,RS(andthereforealsoR&S).

    III.Ifthefunctions()and()arerecursive,soalsoistherelation:()=().

    IV.Ifthefunction()andtherelationR(x,)arerecursive,soalsothenaretherelationsS,T

    S(,)~(x)[x()&R(x,)]T(,)~(x)[x()R(x,)]

    andlikewisethefunction

    (,)=x[x()&R(x,)]

    wherexF(x)means:thesmallestnumberxforwhichF(x)holdsand0ifthereisnosuchnumber.

    PropositionIfollowsimmediatelyfromthedefinitionof"recursive".PropositionsIIandIIIarebasedonthereadilyascertainablefactthatthenumbertheoreticfunctionscorrespondingtothelogicalconcepts~,,=

    (x),(x,y),(x,y)namely

    (0)=1(x)=0forx0(0,x)=(x,0)=0(x,y)=1,ifx,ybothO

    (x,y)=0,ifx=y(x,y)=1,ifxy

    arerecursive.TheproofofPropositionIVisbrieflyasfollows:Accordingtotheassumptionthereexistsarecursive(x,)suchthat

    R(x,)[(x,)=0].

    Wenowdefine,accordingtotherecursionschema(2),afunction(x,)inthefollowingmanner:

    (0,)=0(n+1,)=(n+1).a+(n,).(a)

    where

    a=[((0,))].[(n+1,)].[(n,)].

    (n+1,)isthereforeeither=n+1(ifa=1)or=(n,)(ifa=0). Thefirstcaseclearlyarisesifandonlyifalltheconstituentfactorsofaare1,i.e.if

    ~R(O,)&R(n+1,)&[(n,)=0].

    Fromthisitfollowsthatthefunction(n,)(consideredasafunctionofn)remains0uptothesmallestvalueofnforwhichR(n,)holds,andfromthenonisequaltothisvalue(ifR(0,)isalreadythecase,thecorresponding(x,)isconstantand=0).Therefore:

    (,)=C((),)S(,)R[(,)),)]

    TherelationTcanbereducedbynegationtoacaseanalogoustoS,sothatPropositionIVisproved.

    [TheRelations146]

    Thefunctionsx+y,x.y,x ,andalsotherelationsx1

    xisaprimenumber.

    0Prx0(n+1)Prxy[yx&Prim(y)&x/y&y>nPrx]

    nPrxisthen (inorderofmagnitude)primenumbercontainedinx.

    0!1(n+1)!(n+1).n!

    Pr(0)0Pr(n+1)y[y{Pr(n)}!+1&Prim(y)&y>Pr(n)]

    Pr(n)isthen primenumber(inorderofmagnitude).

    nGlxy[yx&x/(nPrx) &~x/(nPrx) ]

    nGlxisthen termoftheseriesofnumbersassignedtothenumberx(forn>0andnnotgreaterthanthelengthofthisseries).

    l(x)y[yx&yPrx>0&(y+1)Prx=0]

    l(x)isthelengthoftheseriesofnumbersassignedtox.

    x*yz[z[Pr{l(x)+l(y)}] &(n)[nl(x)nGlz=nGlx] &(n)[00).

    E(x)R(11)*x*R(13)

    E(x)correspondstotheoperationof"bracketing"[11and13areassignedtothebasicsigns"("and")"].

    nVarx(z)[131 &(v){vx&nVarv&x=R(v)}]

    xisasignofn type.

    Elf(x)(y,z,n)[y,z,nx &Typ (y)&Typ (z)&x=z*E(y)]

    xisanelementaryformula.

    Op(x,y,z)x=Neg(y)x=yDisz (v)[vx&Var(v)&x=vGeny]

    FR(x)(n){0

  • (1)

    1

    2

    3

    4

    5

    6

    78

    9

    101111a1213

    1415

    (2)

    (3)(4)

    (5)

    (6)(6.1

    (7)(8)

    (8.1

    (9)(10)

    (11)

    (12)

    (13)

    (14)

    (15)(16)

    16

    1718

    18a

    19

    20

    2122

    23

    24

    25

    26

    27

    28

    29

    30313233

    34

    34a34b35

    363738

    39

    40

    41

    4243444545a

    46

    47

    4848a

    (17)

    (18)

    (19)

    (20)

    (21)(22)

    4950

    5152

    5354

    55

    56

    5758

    596061

    62

    (23)

    (24)

    6364656667

    68

    1.

    2.

    3.

    4.

    5.

    6.

    7.

    8.

    9.

    10.

    11.

    12.

    13.

    14.

    15.

    16.

    17.

    18.

    19.

    20.

    21.

    22.

    23.

    24.

    25.

    26.

    27.

    28.

    29.

    30.

    31.

    32.

    33.

    34.

    35.

    36.

    37.

    38.

    39.

    40.

    41.

    42.

    43.

    44.

    45.

    46.

    GdelsProofofIncompletenessEnglishTranslation

    ThisisanEnglishtranslationofGdelsProofofIncompletenessandwhichisbasedonbasedonMeltzersEnglishtranslationoftheoriginalGerman

    berformalunentscheidbareStzederPrincipiaMathematicaundverwandterSystemeI.

    Note:Headingsinitalicsenclosedinsquarebracketsareadditionaltotheoriginaltext,theseareincludedforconvenience,e.g.,[Recursion]

    Contents

    Part1

    Part2DescriptionoftheformalsystemPTheaxiomsofthesystemPTherulesofinferenceofthesystemPTheGdelnumberingsystemRecursion

    PropositionsIIVTheRelations146

    1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 2021 22 23 24 25 26 27 28 29 3031 32 33 34 35 36 37 38 39 4041 42 43 44 45 46

    PropositionVPropositionVI

    Part3PropositionVIIPropositionVIIIPropositionIXPropositionX

    Part4PropositionXI

    ONFORMALLYUNDECIDABLEPROPOSITIONSOFPRINCIPIAMATHEMATICAANDRELATEDSYSTEMS1

    byKurtGdel,Vienna

    1Thedevelopmentofmathematicsinthedirectionofgreaterexactnesshasasiswellknownledtolargetractsofitbecomingformalized,sothatproofscanbecarriedoutaccordingtoafewmechanicalrules.Themostcomprehensiveformalsystemsyetsetupare,ontheonehand,thesystemofPrincipiaMathematica(PM) and,ontheother,theaxiomsystemforsettheoryofZermeloFraenkel(laterextendedbyJ.v.Neumann). Thesetwosystemsaresoextensivethatallmethodsofproofusedinmathematicstodayhavebeenformalizedinthem,i.e.reducedtoafewaxiomsandrulesofinference.Itmaythereforebesurmisedthattheseaxiomsandrulesofinferencearealsosufficienttodecideallmathematicalquestionswhichcaninanywayatallbeexpressedformallyinthesystemsconcerned.Itisshownbelowthatthisisnotthecase,andthatinboththesystemsmentionedthereareinfactrelativelysimpleproblemsinthetheoryofordinarywholenumbers whichcannotbedecidedfromtheaxioms.Thissituationisnotdueinsomewaytothespecialnatureofthesystemssetup,butholdsforaveryextensiveclassofformalsystems,including,inparticular,allthosearisingfromtheadditionofafinitenumberofaxiomstothetwosystemsmentioned, providedthattherebynofalsepropositionsofthekinddescribedinfootnote4becomeprovable.

    Beforegoingintodetails,weshallfirstindicatethemainlinesoftheproof,naturallywithoutlayingclaimtoexactness.TheformulaeofaformalsystemwerestrictourselvesheretothesystemPMare,lookedatfromoutside,finiteseriesofbasicsigns(variables,logicalconstantsandbracketsorseparationpoints),anditiseasytostatepreciselyjustwhichseriesofbasicsignsaremeaningfulformulaeandwhicharenot. Proofs,fromtheformalstandpoint,arelikewisenothingbutfiniteseriesofformulae(withcertainspecifiablecharacteristics).Formetamathematicalpurposesitisnaturallyimmaterialwhatobjectsaretakenasbasicsigns,andweproposetousenaturalnumbers forthem.Accordingly,then,aformulaisafiniteseriesofnaturalnumbers, andaparticularproofschemaisafiniteseriesoffiniteseriesofnaturalnumbers.Metamathematicalconceptsandpropositionstherebybecomeconceptsandpropositionsconcerningnaturalnumbers,orseriesofthem, andthereforeatleastpartiallyexpressibleinthesymbolsofthesystemPMitself.Inparticular,itcanbeshownthattheconcepts,"formula","proofschema","provableformula"aredefinableinthesystemPM,i.e.onecangive aformulaF(v)ofPMforexamplewithonefreevariablev(ofthetypeofaseriesofnumbers),suchthatF(v)interpretedastocontentstates:visaprovableformula.WenowobtainanundecidablepropositionofthesystemPM,i.e.apropositionA,forwhichneitherAnornotAareprovable,inthefollowingmanner:

    AformulaofPMwithjustonefreevariable,andthatofthetypeofthenaturalnumbers(classofclasses),weshalldesignateaclasssign.Wethinkoftheclasssignsasbeingsomehowarrangedinaseries, anddenotethen onebyR(n)andwenotethattheconcept"classsign"aswellastheorderingrelationRaredefinableinthesystemPM.Letbeanyclasssignby[n]wedesignatethatformulawhichisderivedonreplacingthefreevariableintheclasssignbythesignforthenaturalnumbern.Thethreetermrelationx=[yz]alsoprovestobedefinableinPM.WenowdefineaclassKofnaturalnumbers,asfollows:

    nK~(Bew[R(n)n])

    (whereBewxmeans:xisaprovableformula).SincetheconceptswhichappearinthedefinitionsarealldefinableinPM,sotooistheconceptKwhichisconstitutedfromthem,i.e.thereisaclasssignS, suchthattheformula[Sn]interpretedastoitscontentstatesthatthenaturalnumbernbelongstoK.S,beingaclasssign,isidenticalwithsomedeterminateR(q),i.e.

    S=R(q)

    holdsforsomedeterminatenaturalnumberq.Wenowshowthattheproposition[R(q)q] isundecidableinPM.Forsupposingtheproposition[R(q)q]wereprovable,itwouldalsobecorrectbutthatmeans,ashasbeensaid,thatqwouldbelongtoK,i.e.accordingto(1),~(Bew[R(q)q])wouldholdgood,incontradictiontoourinitialassumption.If,onthecontrary,thenegationof[R(q)q]wereprovable,then~(nK),i.e.Bew[R(q)q]wouldholdgood.[R(q)q]wouldthusbeprovableatthesametimeasitsnegation,whichagainisimpossible.

    TheanalogybetweenthisresultandRichardsantinomyleapstotheeyethereisalsoacloserelationshipwiththe"liar"antinomy, sincetheundecidableproposition[R(q)q]statespreciselythatqbelongstoK,i.e.accordingto(1),that[R(q)q]isnotprovable.Wearethereforeconfrontedwithapropositionwhichassertsitsownunprovability. Themethodofproofjustexhibitedcanclearlybeappliedtoeveryformalsystemhavingthefollowingfeatures:firstly,interpretedastocontent,itdisposesofsufficientmeansofexpressiontodefinetheconceptsoccurringintheaboveargument(inparticulartheconcept"provableformula")secondly,everyprovableformulainitisalsocorrectasregardscontent.Theexactstatementoftheaboveproof,whichnowfollows,willhaveamongothersthetaskofsubstitutingforthesecondoftheseassumptionsapurelyformalandmuchweakerone.

    Fromtheremarkthat[R(q)q]assertsitsownunprovability,itfollowsatoncethat[R(q)q]iscorrect,since[R(q)q]iscertainlyunprovable(becauseundecidable).Sothepropositionwhichisundecidableinthesystem PMyetturnsouttobedecidedbymetamathematicalconsiderations.Thecloseanalysisofthisremarkablecircumstanceleadstosurprisingresultsconcerningproofsofconsistencyofformalsystems,whicharedealtwithinmoredetailinSection4(PropositionXI).

    Cf.thesummaryoftheresultsofthiswork,publishedinAnzeigerderAkad.d.Wiss.inWien(math.naturw.Kl.)1930,No.19.A.WhiteheadandB.Russell,PrincipiaMathematica,2ndedition,Cambridge1925.Inparticular,wealsoreckonamongtheaxiomsofPMtheaxiomofinfinity(intheform:thereexistdenumerablymanyindividuals),andtheaxiomsofreducibilityandofchoice(foralltypes).Cf.A.Fraenkel,'ZehnVorlesungenberdieGrundlegungderMengenlehre',Wissensch.u.Hyp.,Vol.XXXIJ.v.Neumann,'DieAxiomatisierungderMengenlehre',Math.Zeitschr.27,1928,Journ.f.reineu.angew.Math.154(1925),160(1929).Wemaynotethatinordertocompletetheformalization,theaxiomsandrulesofinferenceofthelogicalcalculusmustbeaddedtotheaxiomsofsettheorygivenintheabovementionedpapers.TheremarksthatfollowalsoapplytotheformalsystemspresentedinrecentyearsbyD.Hilbertandhiscolleagues(sofarasthesehaveyetbeenpublished).Cf.D.Hilbert,Math.Ann.88,Abh.ausd.math.Sem.derUniv.HamburgI(1922),VI(1928)P.Bernays,Math.Ann.90J.v.Neumann,Math.Zeitsehr.26(1927)W.Ackermann,Math.Ann.93.I.e.,moreprecisely,thereareundecidablepropositionsinwhich,besidesthelogicalconstants~(not),(or),(x)(forall)and=(identicalwith),therearenootherconceptsbeyond+(addition)and.(multiplication),bothreferredtonaturalnumbers,andwheretheprefixes(x)canalsoreferonlytonaturalnumbers.Inthisconnection,onlysuchaxiomsinPMarecountedasdistinctasdonotarisefromeachotherpurelybychangeoftype.Hereandinwhatfollows,weshallalwaysunderstandtheterm"formulaofPM"tomeanaformulawrittenwithoutabbreviations(i.e.withoutuseofdefinitions).Definitionsserveonlytoabridgethewrittentextandarethereforeinprinciplesuperfluous.I.e.wemapthebasicsignsinonetoonefashiononthenaturalnumbers(asisactuallydoneon).I.e.acoveringofasectionofthenumberseriesbynaturalnumbers.(Numberscannotinfactbeputintoaspatialorder.)Inotherwords,theabovedescribedprocedureprovidesanisomorphicimageofthesystemPMinthedomainofarithmetic,andallmetamathematicalargumentscanequallywellbeconductedinthisisomorphicimage.Thisoccursinthefollowingoutlineproof,i.e."formula","proposition","variable",etc.arealwaystobeunderstoodasthecorrespondingobjectsoftheisomorphicimage.Itwouldbeverysimple(thoughratherlaborious)actuallytowriteoutthisformula.Perhapsaccordingtotheincreasingsumsoftheirtermsand,forequalsums,inalphabeticalorder.Thebarsignindicatesnegation.[Replacedwith~.]AgainthereisnottheslightestdifficultyinactuallywritingouttheformulaS.Notethat"[R(q)q]"(orwhatcomestothesamething"[Sq]")ismerelyametamathematicaldescriptionoftheundecidableproposition.ButassoonasonehasascertainedtheformulaS,onecannaturallyalsodeterminethenumberq,andtherebyeffectivelywriteouttheundecidablepropositionitself.Everyepistemologicalantinomycanlikewisebeusedforasimilarundecidabilityproof.Inspiteofappearances,thereisnothingcircularaboutsuchaproposition,sinceitbeginsbyassertingtheunprovabilityofawhollydeterminateformula(namelytheq inthealphabeticalarrangementwithadefinitesubstitution),andonlysubsequently(andinsomewaybyaccident)doesitemergethatthisformulaispreciselythatbywhichthepropositionwasitselfexpressed.

    2

    [DescriptionoftheformalsystemP]

    Weproceednowtotherigorousdevelopmentoftheproofsketchedabove,andbeginbygivinganexactdescriptionoftheformalsystemP,forwhichweseektodemonstratetheexistenceofundecidablepropositions.PisessentiallythesystemobtainedbysuperimposingonthePeanoaxiomsthelogicofPM (numbersasindividuals,relationofsuccessorasundefinedbasicconcept).

    ThebasicsignsofthesystemParethefollowing:

    I. Constants:"~"(not),""(or),""(forall),"0"(nought),"f"(thesuccessorof),"(",")"(brackets).

    II. Variablesoffirsttype(forindividuals,i.e.naturalnumbersincluding0):"x ","y ","z ",Variablesofsecondtype(forclassesofindividuals):"x ","y ","z ",Variablesofthirdtype(forclassesofclassesofindividuals):"x ","y ","z ",

    andsoonforeverynaturalnumberastype.

    Note:Variablesfortwotermedandmanytermedfunctions(relations)aresuperfluousasbasicsigns,sincerelationscanbedefinedasclassesoforderedpairsandorderedpairsagainasclassesofclasses,e.g.theorderedpaira,bby((a),(a,b)),where(x,y)meanstheclasswhoseonlyelementsarexandy,and(x)theclasswhoseonlyelementisx.

    Byasignoffirsttypeweunderstandacombinationofsignsoftheform:

    a,fa,ffa,fffaetc.

    whereaiseither0oravariableoffirsttype.Intheformercasewecallsuchasignanumbersign.Forn>1weunderstandbyasignofn typethesameasvariableofn type.

    Combinationsofsignsoftheforma(b),wherebisasignofn andaasignof(n+1) type,wecallelementaryformulae.Theclassofformulaewedefineasthesmallestclass containingallelementaryformulaeand,also,alongwithanyaandbthefollowing:~(a),(a)(b),x(a)(wherexisanygivenvariable). Weterm(a)(b)thedisjunctionofaandb,~(a)thenegationand(a)(b)ageneralizationofa.Aformulainwhichthereisnofreevariableiscalledapropositionalformula(freevariablebeingdefinedintheusualway).Aformulawithjustnfreeindividualvariables(andotherwisenofreevariables)wecallannplacerelationsignandforn=1alsoaclasssign.

    BySubsta(v|b)(whereastandsforaformula,vavariableandbasignofthesametypeasv)weunderstandtheformuladerivedfroma,whenwereplacevinit,whereveritisfree,byb. Wesaythataformulaaisatypeliftofanotheroneb,ifaderivesfromb,whenweincreasebythesameamountthetypeofallvariablesappearinginb.

    [AxiomsoftheformalsystemP]

    Thefollowingformulae(IV)arecalledaxioms(theyaresetoutwiththehelpofthecustomarilydefinedabbreviations:.,,,(x),= andsubjecttotheusualconventionsaboutomissionofbrackets):

    I.1. ~(fx =0)2. fx =fy x =y3. x (0).x (x (x )x (fx ))x (x (x ))

    II.Everyformuladerivedfromthefollowingschematabysubstitutionofanyformulaeforp,qandr.

    1. ppp2. ppq3. pqqp4. (pq)(rprq)

    III.Everyformuladerivedfromthetwoschemata

    1.v(a)Substa(v|c)2. v(ba)bv(a)

    bymakingthefollowingsubstitutionsfora,v,b,c(andcarryingoutinItheoperationdenotedby"Subst"):foraanygivenformula,forvanyvariable,forbanyformulainwhichvdoesnotappearfree,forcasignofthesametypeasv,providedthatccontainsnovariablewhichisboundinaataplacewherevisfree.

    IV.Everyformuladerivedfromtheschema

    1. (u)(v(u(v)a))

    onsubstitutingforvoruanyvariablesoftypesnorn+1respectively,andforaaformulawhichdoesnotcontainufree.Thisaxiomrepresentstheaxiomofreducibility(theaxiomofcomprehensionofsettheory).

    V.Everyformuladerivedfromthefollowingbytypelift(andthisformulaitself):

    1. x (x (x )y (x ))x =y

    Thisaxiomstatesthataclassiscompletelydeterminedbyitselements.

    [RulesofinferenceoftheformalsystemP]

    Aformulaciscalledanimmediateconsequenceofaandb,ifaistheformula(~(b))(c),andanimmediateconsequenceofa,ifcistheformulav(a),wherevdenotesanygivenvariable.Theclassofprovableformulaeisdefinedasthesmallestclassofformulaewhichcontainstheaxiomsandisclosedwithrespecttotherelation"immediateconsequenceof".

    [TheGdelnumberingsystem]

    ThebasicsignsofthesystemParenoworderedinonetoonecorrespondencewithnaturalnumbers,asfollows:

    0"1"f"3"~"5""7""9"("11")"13

    Furthermore,variablesoftypenaregivennumbersoftheformp (wherepisaprimenumber>13).Hence,toeveryfiniteseriesofbasicsigns(andsoalsotoeveryformula)therecorresponds,onetoone,afiniteseriesofnaturalnumbers.Thesefiniteseriesofnaturalnumberswenowmap(againinonetoonecorrespondence)ontonatura