energy tutorial: solar energy 101 - stanford university ... · global climate and energy project |...

65
GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry Department, California Institute of Technology GCEP Theme Leader Solar Energy, Stanford University SEPTEMBER 28, 2010 GLOBAL CHALLENGES GLOBAL SOLUTIONS GLOBAL OPPORTUNITIES GCEP RESEARCH SYMPOSIUM 2010 | STANFORD, CA

Upload: phamhuong

Post on 27-Apr-2018

220 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY

Energy Tutorial:

Solar Energy 101

Professor Nate LewisChemistry Department, California Institute of Technology

GCEP Theme Leader – Solar Energy, Stanford University

SEPTEMBER 28, 2010

GLOBAL CHALLENGES – GLOBAL SOLUTIONS – GLOBAL OPPORTUNITIES

GCEP RESEARCH SYMPOSIUM 2010 | STANFORD, CA

Page 2: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Basic Research Needs for Solar Energy

• The Sun is a singular solution to our future energy needs

- capacity dwarfs fossil, nuclear, wind . . .

- sunlight delivers more energy in one hour than the earth uses in one year

- free of greenhouse gases and pollutants

- secure from geo-political constraints

• Enormous gap between our tiny use of solar energy and its immense potential

- Incremental advances in today’s technologywill not bridge the gap

- Conceptual breakthroughs are needed that come

only from high risk-high payoff basic research

• Interdisciplinary research is required

physics, chemistry, biology, materials, nanoscience

• Basic and applied science should couple seamlessly

Page 3: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

World Energy Demand

EIA Intl Energy Outlook 2004http://www.eia.doe.gov/oiaf/ieo/index.html

0

10

20

30

40

50

%

World Fuel Mix 2001oil

gas coal

nucl renew

85% fossil

2100: 40-50 TW 2050: 25-30 TW

0.00

5.00

10.00

15.00

20.00

25.00

1970 1990 2010 2030

TW

World Energy Demand total

industrial

developing

US

ee/fsu

energy gap~ 14 TW by 2050~ 33 TW by 2100

Hoffert et al Nature 395, 883,1998

Page 4: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Renewable Energy

Solar1.2 x 105 TW at Earth surface

600 TW practical

Biomass5-7 TW grossall cultivatable land not used

for food

Hydroelectric

Geothermal

Wind2-4 TW extractable

4.6 TW gross1.6 TW technically feasible0.9 TW economically feasible0.6 TW installed capacity12 TW gross over land

small fraction recoverable

Tide/Ocean Currents 2 TW gross

energy gap~ 14 TW by 2050~ 33 TW by 2100

Page 5: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Solar Land Area Requirements

3 TW

Page 6: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Cost of Solar Electric Power

competitive electric power: $0.40/Wp = $0.02/kWh

competitive primary power: $0.20/Wp = $0.01/kWh

assuming no cost for storage

I: bulk Si

II: thin film dye-sensitizedorganic

III: next generationCost $/m2

$0.10/Wp $0.20/Wp $0.50/Wp

Effic

ien

cy %

20

40

60

80

100

100 200 300 400 500

$1.00/Wp

$3.50/Wp

Thermodynamic

limit at 1 sun

Shockley - Queisser

limit: single junction

module cost onlydouble for balance of system

Page 7: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Solar Energy Utilization

Solar ElectricSolar Fuel

Solar Thermal

.001 TW PV$0.20/kWh w/o storage

CO2

sugar

H2O

O2

e-

h+

NC O

N CH3

NN

NN

HH

H

naturalphotosynthesis

artificialphotosynthesis

50 - 200 °Cspace, water

heating

500 - 3000 °Cheat engines

electricity generationprocess heat

1.5 TW electricity $0.03-$0.06/kWh (fossil)

1.4 TW solar fuel (biomass)

~ 14 TW additional energy by 2050

0.002 TW

11 TW fossil fuel (present use)

2 TW space and water

heating

H2O

O2

CO2

H2, CH4

CH3OH

Page 8: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Solar Energy Challenges

Solar electric

Solar fuels

Solar thermal

Cross-cutting research

Page 9: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Solar Electric

• Despite 30-40% growth rate in installation,

photovoltaics generate

less than 0.1% of our electricity

less than 0.01% of total energy

• Decrease cost/watt by a factor 10 - 25 to be

competitive with fossil electricity (without storage)

• Find effective method for storage of

photovoltaic-generated electricity

Page 10: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Solar Energy Conversion

Capture

Conversion

Storage

100 nm-100 µm

e-

h+

Page 11: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Optimum Absorption Threshold

0.00

0.04

0.08

0.12

360 760 1160560 960

Wavelength, nm

AM 1.5 Solar Spectrum

Too LargeBand Gap

Too Small Band Gap

Irra

dia

nce

, m

W/(

cm

-n

m)

2

Page 12: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Semiconductor DopingE

ner

gy

(eV

)

Position (x)

vb

cb

vb vb

cb cb

Ef

a) undoped, or intrinsic,

semiconductor

Ef

b) n-type

Ef

c) p-type

Page 13: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Band Bending at SC/Metal

Junctions

x

(-) (+)

Ef,sc

Ecb

Evb

Ef,m

e-

Semiconductor Metalx

(-) (+)

Ef,sc

Ecb

Evb

Ef,m

Semiconductor Metal

+++++++-

-

-

-

-

-

-

Page 14: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

The Depletion Region

x

(-) (+)

Charge

Density

(+)

x=0 x=W

x

(-) (+)

Electric Field

Strength

W

Emax

(-) (+)

Electric

Potential

Vmax

x

E max qNd

s

W

qNd

V max qNd

2s

W

2

Page 15: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Thermionic Emission

Thus, always

-dn/dt = ket*ns - ket-1

Rewrite it as:

-dn/dt = ket(ns - nso)

Now relate flux to current density:

J = -q(-dn/dt) = -q ket(ns - nso) =

-qkenso (ns/nso - 1)

By substituting for ns/nso, we obtain:

J qketnso[expqV

kT

1] Jo[exp

qV

kT

1]

Ef,sc

Ecb

Evb

Semiconductor Metal

Ef,m

qVbi

ket*ns

ket-1

Page 16: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

The Dark Current

The current given by the equation:

J Jo[expqV

kT

1]

Jo

J

V

Joexp(-qV/kT)

Page 17: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

I-V CurvesPhotovoltaic I-V Curve

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

Voltage (V vs Voc)

Cu

rre

nt (

arbit

rary u

nit

s)

Dark Current

Photocurrent

Isc

Voc

Pmax

Voc: Open circuit voltage, the voltage when no current flows. Jph = -J0

Isc: Short circuit current, current where V = 0

Pmax: Maximum power point, greatest value of I * V

Page 18: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Carrier RecombinationIn an ideal system, electrons and holes will only recombine at the back face of the

semiconductor after they have performed work. In a real system, alternative pathways

for recombination will shorten the effective carrier lifetime of the sample and lower the

efficiency of photovoltaic devices. The dominant recombination pathways are:

x(+)

Ef,sc

Ecb

Evb

Ef,m

e- e- e- e- e-e-

h+ h+h+ h+

hv

Radiative

Recombination

Thermionic Emission

Tunneling

Surface Recombination

Bulk

Recombination

Depletion

Region

Recombination

Page 19: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

“Solar Paint”

inexpensive processing, conformal layers

polymer donorMDMO-PPV

fullerene acceptorPCBM

O

O

(

)n

O

OMe

O

OMe

d

“Fooling “inexpensive particles into behaving as single crystals

Page 20: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Interpenetrating Nanostructured Networks

-

metal electrode

transparent electrode

glass

+- 100 nm

---

metal electrode

transparent electrode

glass

+- 100 nm

Page 21: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Revolutionary Photovoltaics: 50% Efficient Solar Cells

present technology: 32% limit for • single junction• one exciton per photon• relaxation to band edge

multiple junctions multiple gaps multiple excitons per photon

3 I

hot carriers

3 V

rich variety of new physical phenomenaunderstand and implement

Eg

lost toheat

Page 22: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Concentrator vs. Flat Plate

ArraysWhy not stack several semiconductors to get better energy conversion ? A

large band gap semiconductor can get higher voltage out of the more energetic

photons, then smaller band gap semiconductors underneath can extract

additional energy from the remaining photons.

GaAs (1.44 eV))Metal

TiO2 (3.2 eV)

CdS (2.4 eV)

GaAs (1.44 eV)

Ge (0.7 eV)

UV

Green

Red

IR

Metal

Flat Plate Array Concentrator Array

Page 23: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Ultra-high Efficiency Solar Cells

multiple junctions

hot carriers

3 V

rich variety of new physical phenomenaunderstand and implement

lost toheat

Substrate

Metal

Page 24: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Dye Sensitization

ECB

EVB

Dye+

Dye*

e-

h

Dye

Semiconductor

A-

A

Pt

e-

Solution

R

En

erg

y (

eV

)

e-

(+)

Can Use Metal Oxides

Only Monolayer of Dye

<<1% Efficiency

Page 25: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Semiconductor Photoelectrochemistry

h

dye-sensitized

nanocrystalline TiO2

i

Red

Ox

SS*

S+

work

nanocrystalline solar cell

e- e-

B. O’Regan, M. Grätzel Nature 1991, 353, 737

Page 26: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Nanocrystalline Titanium Dioxide

• Particle Size ~ 15nm

• Surface Area

is larger than single crystal

~1000 times

• No Quantum Size Effects

(large electron effective mass)

• Different Electrochemistry

from single crystal semiconductors

35 nm

TEM of nanostructured TiO2

Page 27: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Dye Sensitized Solar Cells

N

N

C

CO

OH

O OH

N

N

II

Ru

CO OH

NCS

NCS

CO

OH

I-

I3-

ACN

h

Loade-

e-

e-

e-

RuL'2(NCS)2

8-10% Efficient

>15% Efficiency Possible

Stability

Page 28: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Dye-Coated TiO2 Electrodes

OsL'2(NCS)2 RuL'2(CN)2OsL'2(CN)2RuL'2(NCS)2

OsL2L' RuL2L' OsL'3 RuL'3

TIO2 coated on conducting glass (INAP), deposited TiCl4 overnight, heated450 °C for 30 min, cooled to 120 °C, immersed in ethanolic dye solution for 15-24 h

Page 29: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

To red-shift the absorption spectra, require: More positive excited state potential, or more negative ground state potential

(+)

(-)

V vs SCE

0.24

0.8

-1

Eo'

(I-/I3-)

Ru(II/III)L'2(NCS)2*

Eo'*

Eo'

Ru(II/III)L'2(NCS)2

CB

VB

TiO2

workingelectrode

electrolyte Pt counter

electrode

DG0´ > 0.25eV

for I- oxidation

MLCT

Triplet State

-E0´* > 0.8eV

Energetics of Sensitized TiO2 Solar Cell

Page 30: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Solar electric

Solar fuels

Solar thermal

Cross-cutting research

Solar Energy Challenges

Page 31: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Solar Thermal + Electrolyzer System

Page 32: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Solar Thermal

• heat is the first link in our existing energy networks

• solar heat replaces combustion heat from fossil fuels

• solar steam turbines currently produce the lowest cost solar electricity

• challenges: new uses for solar heatstore solar heat for later distribution

fuel heatmechanical

motion electricity

space heat

process heat

Page 33: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Solar Thermochemical Fuel Production

high-temperature hydrogen generation500 °C - 3000 °C

Scientific Challengeshigh temperature reaction kinetics of

- metal oxide decomposition - fossil fuel chemistry

robust chemical reactor designs and materials

fossil fuelsgas, oil, coal

SolarReforming

SolarDecomposition

SolarGasification

CO2 , CSequestration

Solar H2

concentrated solar power

Solar ReactorMxOy x M + y/2 O2

Hydrolyserx M + y H2O MxOy + yH2

H2

M

MxOy

MxOy

H2O

1/2 O2

concentratedsolar power

A. Streinfeld, Solar Energy, 78,603 (2005)

Page 34: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Thermoelectric Conversion

TAGS

0 200 400 600 800 1000 1200 1400RT

2.5

1.5

0.5

ZT

CsBi4Te6

Bi2Te3

LaFe3CoSb12

Zn4Sb3

Si Ge

�PbTe

Temperature (K)

Bi2Te3/Sb2Te3

superlattice

PbTe/PbSe

superlattice

LAST-18

AgPb18SbTe20

figure of merit: ZT ~ (/) T

ZT ~ 3: efficiency ~ heat enginesno moving parts

Scientific Challengesincrease electrical conductivitydecrease thermal conductivity

nanoscale architecturesinterfaces block heat transport

confinement tunes density of statesdoping adjusts Fermi level

nanowire superlattice

thermal gradient electricity

Page 35: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Solar Energy Challenges

Solar electric

Solar fuels

Solar thermal

Cross-cutting research

Page 36: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Leveraging Photosynthesis for Efficient Energy Production

• photosynthesis converts ~ 100 TW of sunlight to sugars: nature’s fuel• low efficiency (< 1%) requires too much land area

Modify the biochemistry of plants and bacteria

- improve efficiency by a factor of 5–10

- produce a convenient fuel methanol, ethanol, H2, CH4

Scientific Challenges- understand and modify genetically controlled biochemistry that limits growth- elucidate plant cell wall structure and its efficient conversion to ethanol or other fuels - capture high efficiency early steps of photosynthesis to produce fuels like ethanol and H2

- modify bacteria to more efficiently produce fuels - improved catalysts for biofuels production

hydrogenase2H+ + 2e- H2

switchgrass

10 µ

chlamydomonas moewusii

Page 37: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

photosystem II

• Biology: protein structures dynamically control energy and charge flow

• Smart matrices: adapt biological paradigm to artificial systems

Scientific Challenges• engineer tailored active environments with bio-inspired components

• novel experiments to characterize the coupling among matrix, charge, and energy

• multi-scale theory of charge and energy transfer by molecular assemblies

• design electronic and structural pathways for efficient formation of solar fuels

Smart Matrices for Solar Fuel Production

h

charge charge energy energy

h

smart matrices carry energy and charge

Page 38: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Bacterial Photosynthetic Reaction Center

rhodobacter sphaeroides

Stowell, M.H.B.; Rees, D.C.; et. al. Science 1997, 276, 882.

Page 39: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

BChl bacteriochlorophyll

BPheo bacteriopheophytin

Q quinone

(BChl)2

BPheo

BChl

Q

Boxer, S.G. Annu. Rev. Biophys. Biophys. Chem. 1990, 19, 267.

1 step distance : 25 Å

calculated time : ~100 ms

25 Å

photons in

1 oxidant & reductant out

Energy In

reducing

equivalents

4 steps

ET distance : 55 Å

total time : < 1 ns

13 Å

10 Å

19 Å

13 Å

Page 40: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Nature uses two photosystems to span the redox space from O2/H2O to NAD+/NADH

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

QuickTime™ and aTIFF (LZW) decompressor

are needed to see this picture.

B Blankenship

N.B. Giving more

thermodynamic

push to synthesis

Page 41: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Defect Tolerance and Self-repair

• Understand defect formation

in photovoltaic materials and

self-repair mechanisms in

photosynthesis

•Achieve defect tolerance and

active self-repair in solar

energy conversion devices,

enabling 20–30 year operation

the water splitting protein in Photosystem IIis replaced every hour!

Page 42: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry
Page 43: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Efficient Solar Water Splitting

demonstrated efficiencies 10-18% in laboratory

Scientific Challenges

• cheap materials that are robust in water

• catalysts for the redox reactions at each electrode

• nanoscale architecture for electron excitation transfer reaction

+

-

H2O2

Page 44: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Fuel from Sunlight

QuickTime™ and aYUV420 codec decompressor

are needed to see this picture.

Page 45: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Photoelectrochemical Cell

metal

e-

e-

O2

H2O

H2

H2O

e-

h+

Light is Converted to Electrical+Chemical Energy

LiquidSolid

SrTiO3

KTaO3

TiO2

SnO2

Fe2O3

Page 46: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Optimum Absorption Threshold

0.00

0.04

0.08

0.12

360 760 1160560 960

Wavelength, nm

AM 1.5 Solar Spectrum

Too LargeBand Gap

Too Small Band Gap

Irra

dia

nce

, m

W/(

cm

-n

m)

2

Page 47: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry
Page 48: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

QuickTime™ and aÉÇÅ[ÉVÉáÉì JPEG OpenDML decompressor

are needed to see this picture.

Page 49: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

April 18-21, 2005

Lessons from Photosynthesis

Page 50: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Mission of JCAP

•Melvin Calvin, 1982: It is time to build an actual artificial photosynthetic system, to

learn what works and what doesn’t work, and thereby set the stage for making it

work better

•10-year JCAP Goal, 2010: To demonstrate a manufacturably scalable solar fuel

generator, using earth-abundant elements, that, with no wires, robustly produces

fuel from the sun, 10 times more efficiently than (current) crops

Photosynthesis Artificial Photosynthesis

Page 51: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

2H

2

O2 catalyst

anode

H2 catalyst

cathodeSolar PV & membrane

H2O

O

2

4H+

System Concept

Page 52: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

April 18-21, 2005

Constructing the Pieces of a Solar (H2) Fuel

Generator

Page 53: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Structure – Radial Advantage

Impure material but high performance

LD purity materials cost

Page 54: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Enables Application of New Materials

Page 55: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Relaxes Catalyst Activity Requirements

H+ H2

H2O O2

o alkaline

acidic

h h

Mn+ Mn+ Mn+ Mn+

o CoOx

o CoOx(neu)

o CoOx(neu)

Page 56: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

50 mm

Spurgeon, et al., Appl Phys. Lett. 93 (3) (2008).

Plass, et al., Adv. Mater. 21 (325) (2009).

Flexible PDMS-Si Wire Composites

Polymer-Embedded

Polymer-Supported

56

Page 57: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Fundamental Design Principles and Progress

• Require >1.23 V of photovoltage

• Require membrane to neutralize pH gradient and separate products

• Require catalytic sites to transform individual e--h+ pairs into multi-electron transferreactions

0.0 0.2 0.4 0.6

-30

-25

-20

-15

-10

-5

0

Cu

rre

nt

(mA

cm

-2)

E (V vs. RHE)

Page 58: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Solar-Powered Catalysts for Fuel Formation

hydrogenase2H+ + 2e- H2

10 µ

chlamydomonas moewusii

2 H2O

O2

4e-

4H+

CO2

HCOOHCH3OHH2, CH4

Cat Cat

oxidation reduction

photosystem II

Page 59: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Molecular-Nanoscale Interface

•Exploit 3-D to achieve desired activity

and/or functionality

silica shell (2 nm)SiO2

CoO xMnOx

H2O O2

Mn oxide (4 nm)

(a) (b)

silica shell (2 nm)SiO2

CoO xMnOx

H2O O2

Mn oxide (4 nm)

SiO2

CoO xMnOx

H2O O2

SiO2

CoO xMnOx

H2O O2

Mn oxide (4 nm)

(a) (b)

Figure 6: (a) Co oxide or Mn oxide catalyst core/silica shell

particle with hole conducting wires and mesoporous channels.

(b) TEM of Mn oxide core/silica shell particle featuring embedded

C chains.

silica shell (2 nm)SiO2

CoO xMnOx

H2O O2

Mn oxide (4 nm)

(a) (b)

silica shell (2 nm)SiO2

CoO xMnOx

H2O O2

Mn oxide (4 nm)

SiO2

CoO xMnOx

H2O O2

SiO2

CoO xMnOx

H2O O2

Mn oxide (4 nm)

(a) (b)

Figure 6: (a) Co oxide or Mn oxide catalyst core/silica shell

particle with hole conducting wires and mesoporous channels.

(b) TEM of Mn oxide core/silica shell particle featuring embedded

C chains.

CoOx/MnOx core shell

catalyst

Synthesis and catalytic

activity of Ru double

gyroid vs planar Ru for

O2 evolution

Page 60: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Heterogeneous Catalyst Discovery

Schematic of the process of preparing the

substrate and making electrical contact to

130 individual materials on a single piece of

FTO-coated glass.

Activity Metrics/Goals:

~x 102 for H2; ~x 104 for O2

>x 105 for CO2

False color images of the

photocurrent of a slide that

contained spots of binary

mixed-metal oxides (top).

Three-dimensional plot

(bottom). Top-down view.

Measured OER overpotential vs calculated

adsorption energy

Page 61: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Envisioning JCAPs Products

km-scale

mm-scale

cm-scale

nm-scale

m-scale

Flow channel

building blocks

Page 62: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry
Page 63: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

April 18-21, 2005

Basic Research Needs for

Solar Energy UtilizationReport of the Basic Energy Sciences Workshop on Solar Energy

Utilization

Nathan S. LewisCaltech

with

George Crabtree, ANL

Arthur Nozik, NREL

Mike Wasielewski, NU

Paul Alivisatos, UC-Berkeley

Page 64: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

Conclusions• Without massive quantities (10-20 TW by 2050) of clean energy, CO2

levels will continue to rise

• The only sufficient supply-side cards we have are “clean” coal, nuclear fission (with a closed fuel cycle), and/or cheap solar fuel

• We need to pursue globally scalable systems that can efficiently and cost-effectively capture, convert, and store sunlight in the form of chemical fuels

– He that can not store, will not have power after four

• Semiconductor/liquid junctions offer the only proven method for achieving this goal, but we have a great deal of fundamental science to learn to enable the underpinnings of a cost-effective, deployable technology

– Nanorods, randomly ordered junctions to generate the needed potential

– Catalysts to convert the incipient electrons into fuels by rearranging the chemical bonds of water (and CO2) into O2 and a reduced fuel

CONCLUSIONS

Page 65: Energy Tutorial: Solar Energy 101 - Stanford University ... · GLOBAL CLIMATE AND ENERGY PROJECT | STANFORD UNIVERSITY Energy Tutorial: Solar Energy 101 Professor Nate Lewis Chemistry

BES Workshop on Basic Research Needs for

Solar Energy Utilization April 21-24, 2005

Workshop Chair: Nathan Lewis, CaltechCo-chair: George Crabtree, Argonne

Panel ChairsArthur Nozik, NREL: Solar ElectricMike Wasielewski, NU: Solar Fuel

Paul Alivisatos, UC-Berkeley: Solar Thermal

Plenary SpeakersPat Dehmer, DOE/BES

Nathan Lewis, Caltech

Jeff Mazer, DOE/EERE

Marty Hoffert, NYU

Tom Feist, GE

200 participantsuniversities, national labs, industry

US, Europe, Asia EERE, SC, BES

ChargeTo identify basic research

needs and opportunities in solar electric, fuels, thermal and

related areas, with a focus on new, emerging and scientifically challenging areas that have the potential for significant impact

in science and technologies.

TopicsPhotovoltaics

Photoelectrochemistry Bio-inspired Photochemistry

Natural Photosynthetic Systems Photocatalytic Reactions

Bio Fuels Heat Conversion & Utilization

Elementary Processes Materials Synthesis

New Tools