el proceso de la fotosíntesisbacterias como la bacterias purpúreas del azufre y la bacterias...

37
El Proceso de la Fotosíntesis Guizar Agredano Oscar Hernández Mejía Diana Mar7nez Herrera Arle9e Mendivil Pindter Diego Rodríguez Durán Alejandra

Upload: phamdien

Post on 09-Jul-2018

232 views

Category:

Documents


0 download

TRANSCRIPT

El Proceso de la Fotosíntesis Guizar Agredano Oscar   Hernández Mejía Diana Mar7nez Herrera Arle9e Mendivil Pindter Diego Rodríguez Durán Alejandra

2 ?pos de fotosíntesis La fotosíntesis oxígenica o fotolitótrofa 

(Plantas, algas y cianobacterias)

6 CO2 + 6 H2O + 686 kcal/mol -> C6H12O6 + 6 O2 Productos

- Energía de la luz del sol - dióxido de carbono (sustrato a reducir)

- agua (dador de electrones que se oxida) Reactivos

- Fabrican glúcidos - liberar oxigeno a la atmosfera o hidrosfera

-  ATP y NADHP

La fotosíntesis anoxígenica o foto‐organótrofa 

(bacterias como la bacterias purpúreas del azufre y la bacterias verdes del azufre)

2H2S + CO2 ‐‐‐> [CH2O] + H2O + 2 S 

Productos ‐ energía de la luz del sol 

‐ dióxido de carbono (su sustrato a reducir)  ‐ sulfuro de hidrógeno (en lugar del agua, como dador de electrones que se oxida )  

Reac?vos ‐ fabrican glúcidos  

‐ se libera azufre a el medio acuoso donde habitan o se aloja en el interior de la bacteria. 

 ‐ H2 O  

materia La energía luminosa 390 nm y 770 nm partícula  

La energía de un fotón es inversamente proporcional a su longitud de onda. Las longitudes de onda largas tienen menos energía (fotones) que las de longitudes de onda cortas. 

Un pigmento que absorbe la luz, absorbe unelectrón de esa molécula y el electrón se desplaza de su posición inicial respecto al núcleo a una distancia diferente que proporciona la energía del fotón que absorbió, toma un estado de exitación. Para que se realice la fotosíntesis es necesario que la energía de los electrones excitados de varios pigmentos se transfiera a un pigmento antena (colector de energía) a un centro de reacción. En la fotosíntesis hay dos centros de reacción el del fotsistema I y el del fotosistema II.

Pigmentos

Los pigmentos son sustancias que absorben luz, transmi?endo o reflejando las longitudes de onda que no absorben.  

Cuando un pigmento absorbe un fotón o cuanto de luz, un electrón de la molécula de pigmento es lanzado a un nivel energé?co más alto; se dice entonces que está excitado. Este estado de excitación puede mantenerse sólo por períodos muy cortos de ?empo. 

Cuando la mol esta en esas condiciones puede tomar 3 rutas 

-

Periodo de exitación  

Que la energía se disipa como calor 

 ‐ Que la energía se emite inmediatamente como una de longitud de onda más larga, fenómeno conocido como 

fluorescencia. 

Que la energía puede dar lugar a una reacción 

química como en la fotosíntesis.  

Clorofila  •  La clorofila son compuestos de ?po etrapirrol, constan de cuatro anillos de pirrol unidos por 

medio de puentes de me?lo (‐‐CH=) lo que cons?tuye una porfirina. En el centro se halla un átomo metálico que es el magnesio. 

•   Se encuentra junto con todos los pigmentos en la membrana 4lacoidal 

•  Absorbe la luz en el espectro violeta, azul y rojo. Puesto que transmite y refleja la luz verde, su aspecto es verde. Es pigmento que hace que las hojas sean verdes,  

•  En  los  eucariotas  fotosinté4cos,  la  clorofila  es  el  pigmento  implicado  directamente  en  la transformación de la energía de la luz en energía química.  

•  Existen varios ?pos de corofilas, las principaes: la clorofila a (principal encargada del proceso de fotosíntesis) y la clorofila b (pigmento accesorio) 

Pigmentos Accesorios Los pigmentos accesorios absorben energía que la clorofila es incapaz de absorber, lo pigmentos accesorios incluyen

•  clorofila b (en algas y protistas las clorofilas c,d y e) absorbe en el azul, en el rojo y anaranjado del espectro (con longitudes de ondas largas y baja energía ).

•  Xantofila (amarilla) •  Caroteno -> Beta caroteno (anaranjado) Los carotenoides absorben la longitud de

onda azul y un poco en el verde

Los pigmentos accesorios ayudan a la clorofila a realizar el proceso de absorción de la luz visible

Bacterioclorofila 

•  También son conocidas como P870 •  Pigmentos fotosinté?cos que se encuentran bacterias fototrofas anoxigénadas 

•   Están relacionadas con las clorofilas.  

•  Usan longitudes de onda de luz que no son absorbidas por las plantas. Cada pigmento da el nombre a las bacterias. 

Bacterioclorofila a, Bacteria púrpura,  

Bacterioclorofila b Bacteria púrpura 

Bacterioclorofila c Bacteria verde del azufre  

Bacterioclorofila d Bacteria verde del azufre 

Bacterioclorofila e, Bacteria verde del azufre 

Bacterioclorofila g Heliobacteria. 

Hojas -  Órgano vegetativo de las plantas vasculares especializadas para la fotosíntesis. Son

estructuras laminares o aciculares que contienen sobre todo tejido fotosintetizador, situado siempre al alcance de la luz. En las hojas se produce la mayor parte de la transpiración,

-  La fotosíntesis se produce principalmente en las hojas de las plantas, ya que estas son ricas en cloroplastos, aunque en menor proporción puede producirse en los tallos,

Estomas: Están ubicadas en la hojas o en partes verdes de la planta, formadas por células 

oclusivas, que pueden agrandar o cerrar la abertura y que permiten, de este modo, regular 

la entrada o salida de agua y gases, como el oxígeno y dióxido de carbono. 

Celulas Vegetales 

La unidad estructural de la fotosíntesis es el cloroplasto, son organelos de las células eucariotas fotosinté?cas (únicamente vegetal) que se encuentran en el citoplasma, su forma es variable, desde esférica o elíp?ca a mucho más compleja asemejando cintas. forman parte de un conjunto de orgánulos denominados pla?dios o plastos, la mayoría de sus proteínas son codificadas por el ADN nuclear. 

•  membranas externa: con?ene porinas y delimita al cloroplasto 

•  membrana  interna:  hecha  a  base  de  proteínas específicas para el transporte, delimita al cloroplasto 

•  espacio  intermembranal  separaa  la  membrana interior y exterior, composición simlar al glisol 

•   estroma son cavidades situada entre  la membrana interna  y  las  granas,  donde  se  encuentran ribosomas,  enzimas,  varias  copias  de  ADN,  varios ?pos  de  ARN,  gránulos  de  almidón  y  gotas  de lípidos. En este espacio ?ene lugar el Ciclo de Kalvin de la fotosíntesis. 

•  membrana  :lacoidal  formada  por  grasos poliinsaturados,  se  encuentra  altamente  plegada formando  sacos  aplanados  interconectados llamados :lacoides, que se apilan y la agrupación de éstos se denomina grana. En ella se encuentran  los fotosistemas  que  con?enen  sustancias  como  los pigmentos fotosinté?cos y la enzimas ATP‐sintetaza.  

Etapas de la fotosíntesis El proceso de fotosíntesis se divide en 2 etapas: 

Etapa fotodependiete •  Ocurre sólo en presencia de luz 

•   Consiste en la transformación de la energía lumínica en energía química (bajo la forma de moléculas de ATP) y en la obtención de un agente reductor de alta energía (la coenzima reducida NADPH)  

•  Se produce principalmente en las hojas de las plantas, aunque en menor proporción puede producirse en los tallos, está etapa  

•  Se da en los cloroplastos, específicamente en las :lacoides, estos :enen pigmentos que son moléculas capaces de "capturar" ciertas can:dades de energía lumínica y los fotosistemas. 

•  Se divide en 2 :pos de fosforilación, la cicla y la aciclica 

                                                   Para hacer más eficiente la absorción se u?lizan 

Fotosistemas 

Un fotosistema constan de un pigmento principal como la clorofila a o b y diferentes pigmentos accesorios

La clorofila y otras molécules están empaquetadas en los tilacoides en unidades llamadas fotosistemas;

cada unidad contiene unas 300 moléculas de pigmentos, que sirven como antenas recolectoras de luz.

                                        Son 2                                                                                          Sus partes son 

 ‐ 

Fotosistema I (PS I 700): Se localiza en las zonas del ?lacoides que no se apilan, y su centro ac?vo posee dos clorofilas llamadas P700.‐ 

‐ Fotosistema II (PS II 680): Se localiza en las zonas donde el ?lacoides se apila, y su centro ac?vo posee dos clorofilas llamadas P680. 

Complejo  antena:  formado  por cientos  de  moléculas  de  clorofila  y o t r o s  p i gm e n t o s  c om o  l o s carotenoides,  que  se  unen  a proteínas de  la membrana, de modo que cada una capta una determinada longitud de onda y va canalizando  la radiación hacia el centro reac?vo. 

Centro reac?vo o centro de reacción fotoquímica: Está situado en una proteína de transmembrana y ?ene dos moléculas especiales de clorofila que captan los fotones y se oxidan. 

Fotosistemas 

Fosforilación aciclica •  En esta reacción, par?cipan los dos fotosistemas 

       Comienza cuando  las antenas del pigmento P680 atrapan energía  luminosa, haciendo que  los fotones  inciden  sobre el  fotosistema  II,  excitando y  liberando un par electrones del pigmento P680 que pasan al primer aceptor de electrones (feofi?na) después pasa a la molécula llamada platoquinona,  que  gracias  a  el  ciclo  de  oxido‐reducción  se  irán  agregando  protones  a  la membrana ?lacoidal, una vez que los protones atravesaron la membrana la plastoquinona cede al  citocromo b6f  que  servirá  de  pasó  de  electrones  hacía  la plastocianina que  es  el  donador primario hacía el Fotosistema I. Todo estos aceptores son conocido como cadena transportadora de electrones . 

Simultáneamente, en el fotosistema II se produce  

la ruptura de una molécula de agua, proceso,  

llamado fotooxidación del agua o fotolisis, el cual 

 libera electrones, que son capturados por el  

fotosistema II(la molécula de agua se divide en  

2H+ + 2e‐ + 1/2O2) estos iones O‐2 se combinan  

para formar O2 que se libera a la atmósfera a 

 través de los estomas. 

. •  La energía lumínica actúa sobre el pigmento P700 del Fotosistema I, haciendo que

un electrón se existe, pasando a el aceptor A0 y este a su vez seda a la molécula ferredoxina donde transporta a la coenzima NADP. La reducción de la coenzima se da cuando se liberan protones de la molécula de agua combinando el NADP+ con un H+ para formar NADPH. Durante esta etapa se realiza la síntesis de de ATP, la enzima ATP sintetasa libera el gradiente electroquímico que se produce dentro del tilacoide y utiliza la energía de este gradiente para adicionar un grupo fosfato al ADP produciendo ATP , pero está ATP es insuficiente, por lo tanto en la fosforilación ciclica se busca compensar esta falta de ATP.

Fosforilación ciclica •  En esta etapa se busca compensar la baja producción de ATP de la fosforilación

aciclicaesto •  La fase luminosa cíclica, es la más sencilla ya que solo interviene el fotosistema I •  Se genera un mecanismo cíclico, ya que los electrones excitados de la molécula P700 del

Centro de Reacción vuelven a su origen •  Está fase se da al mismo tiempo que la fase aciclica.

Los fotones inciden sobre el fotosistema I, esto hace que la clorofila P700 libere electrones que son transportados por la enzima ATP sintetasa, a través de una canal ubicado en el interior de la membrana tilacoidal a la ferredoxina (aceptor) la cual cede a un citocromo b6 (aceptor) y éste a la plastoquinona (aceptor), que capta dos protones y pasa a una plastoquinona reducida (PQH2) la cual cede los dos electrones al citocromo f e introduce de nuevo al sistema.

Etapa independiente de la luz o Biosinte?ca 

•  La Fase Biosinte:ca o Ciclo de Calvin busca reducir el carbono y sinte:zar glúcidos sencillos. 

•  Las moléculas NADPH y los ATP (obtenidas de la fase anteior) son básicas para el proceso 

•  Se da independientemente de si hay luz o no.  

•  Esta  etapa  comienza  con  la  obtención  de  carbono  por  medio  del  CO2  que  toman  de  la atmosfera o de la hidrosfera, este CO2 es absorbido por medio de las células especializadas, las estomas (hojas y tallos verdes) 

•  La fuente de nitrógeno son los nitratos y nitritos, y como fuente de azufre, los sulfatos.  

•  Se  produce mediante  un  proceso  de  carácter  cíclico  en  el  que  se  pueden  dis:nguir  varios pasos o fases.  

. ‐ El dióxido de carbono se une a la RuDP, donde se rompe un núcleo atómico, mediante el bombardeo de neutrones, para liberar energía inmediatamente en moléculas de ácido fosfoglicérico (PGAc). Esta reacción está catalizada por una enzima específica, la RuDP carboxilasa oxigenasa (RuBisCO). 

              CO2 + RuDP ‐‐‐> 2 PGAc 

‐  El  ácido  fosfoglicérico  (PGAc) debe  reducirse,  pero para ello  el  PGAc debe previamente ac?varse,  lo que  consigue añadiendo otro grupo fosfato a su molécula mediante una fosforilación que requiere el empleo de ATP (procedente de la fase luminosa) y en la que se ob4ene ácido difosfoglicérico (DPGAc): 

        2 PGAc + 2 ATP ‐‐‐> 2 DPGAC + 2 ADP ‐ Una vez ac4vado, el ácido está en condiciones de reducirse a aldehído, en este caso a fosfogliceraldehido (PGAl). En 

esta reducción, se consume NADPH (procedente de la etapa luminosa), y se pierde el fosfato adicional    2 DPGAc + 2 NADPH ‐‐‐> 2 PGAl + 2 NADP+ + 2 Pi 

‐ El PGAl es ya un glúcido sencillo. Está moléculas puede conver4rse su isómero, el fosfato de dihidroxiacetona (PDHA), 

.     Las  triosas‐fosfato  que  se  forman  después  de  la  reducción  y  no  se  emplean  en  la 

regeneración  de  la  RuDP  (PGAl  y  PDHA),  se  exportan  al  citosol,  mediante  un transportador  de  la  membrana  de  cloroplasto  que  los  intercambia  con  Pi,  el  cual  se emplea  en  el  cloroplasto,  principalmente  para  la  obtención  de  ATP  en  las  reacciones lumínicas  de  los  ?lacoides.  Las  triosas‐fosfato  en  el  citosol  dan  lugar  a  la  síntesis  de sacarosa, a través de una serie de reacciones en las que se forman fosfatos de fructosa y de  glucosa,  y  UDP‐glucosa;  el  proceso  culmina  al  unirse  la  fructosa‐fosfato  y  la  UDP‐glucosa para dar sacarosa‐fosfato, cuya hidrólisis da Pi y sacarosa. 

6 RuDP + 6 CO2 + 12 NADPH + 12 H+ + 18 ATP ‐> 6 RuDP + Glucosa + 12 NADP+ + 18 ADP + 18 Pi + H2O 

C3 •  Compuesto de tres Carbonos (gliceraldehído fosfato) •   Fijación del Carbono por medio del Ciclo de Calvin 

•  Con la enzima RuBP carboxilasa que combina una 

 molécula de dióxido de carbono con la ribulosa difosfato 

C4 •  La enzima PEPC une primero el dióxido de carbono al PEP 

 para formar un compuesto de cuatro carbonos  

(ácido málico u ácido aspar?co). 

•  Luego de una serie de reacciones químicas el ácido es  

transportado a espacios internos dentro de la hoja y  

finalmente se libera CO2 que ingresa en el ciclo de Calvin. 

•  La unión del dióxido de carbono al PEP es catalizada por  

•  la enzima PEP carboxilasa. 

. PLANTAS CAM 

(Crassulacean Acidic Metabolism plants) 

Es  caracterís:co  de  ésta  ruta  formar  ácidos  orgánicos,  en  especial  ácido  málico,  durante  el periodo oscuro, en las hojas o en las demás partes verdes del vástago de algunas especies vegetales  suculentas  o  semi‐suculentas  como  Bryophyllum,  Kalanchoe,  Sedum,  Kleinia, Crassula,  Opun:a.  La  variación  diurna  del  contenido  de  ácidos  fue  descubierta  en representantes de las crasuláceas de ahí su nombre. La carboxilación reduc:va en la que se basa esta definida por  la alta disponibilidad de CO2 en la oscuridad. Durante el día, en la luz, ocurre un desdoblamiento rápido en el que se libera CO2 el cual entrara directamente al proceso fotosinté:co. 

•  Nopal  Pertenece al grupo de las plantas CAM, sus estomas son abiertas en la 

noche para evitar transpirar tanto, 

como pasaría en el días por la gran 

can:dad de calor que hay. Esta 

planta convierte el oxido de carbono que captura en acido málico, 

despuès con los estomas cerrados 

convierte este ácido málico en 

azúcares. 

•  Maíz El maíz pertenece a las plantas C4,  por lo tanto habré sus estomas en el 

día para absorver el dioxido de 

carbono de la atmosfera, para que 

pueda llevar a cabo sus prosesos 

fotosínte:cos. 

Molécula de H2O ‐  Los  organismos  fotosinté?cos  necesitan  del  agua  disponible  en  su  medio  para  poder  realizar  su 

metabolismo.  

‐  La función de la molécula de agua es suministra electrones para las reacciones redox, es decir el agua interviene como fuente de electrones. 

‐ El agua se rompe por efecto de la luz, dando lugar a oxígeno y a hidrógenos, el oxigeno es liberado, 

mientras que en la fase oscura el hidrogeno se suma al dióxido de carbono gaseoso (CO2) presente en  

el aire, dando como resultado la producción de compuestos  

orgánicos, principalmente carbohidratos.  

‐ La molécula de agua es un agente reductor muy débil, sus 

  electrones deben ser energe?zados por los fotones de la luz 

  solar. 

‐ La energe?zación de los electrones del agua se realiza  

  gracias a la clorofila. 

‐ También cons?tuye el medio necesario para que se puedan 

  disolver los elementos químicos del suelo que la plantas  

  deben u?lizar para construir sus tejidos.

Carbono 

‐  El  carbono  (CO2)  cons?tuye  el material  que  las  plantas  u?lizan  para  sinte?zar  hidratos  de carbono. 

‐  Penetra en las hojas a través de los estomas, es procesado durante la etapa independiente de luz, este carbono se encuentra en  la atmosfera y en  los océanos  ,también, puede proceder del bicarbonato disuelto en el agua del  suelo que  la plantas absorben mediante sus  raíces. aunque, en una proporción muy pequeña 

‐  La fotosíntesis cons?tuye uno de los procesos biológicos que integra el ciclo del carbono, en el  que  también  se  integra  el  bioquímico,  que  controla  las  transferencias  de  CO2  entre  la biosfera y otros subsistemas. 

‐  El CO2 es el gas que está en la atmósfera en una concentración de más del 0,03% y cada año aproximadamente  un  5%  de  estas  reservas  de  CO2,  se  consumen  en  el  proceso  de  la fotosíntesis 

Oxígeno 

•  Durante la etapa ciclica luminica en el fotosistema II se produce un proceso llamado fotolisis

•  la ruptura de una molécula de agua, debido a la acción directa de la luz solar, libera electrones, (la molécula de agua se divide en 2H+ + 2e- + 1/2O2)

• El pigmento P680 fotoionizado hace que la molécula de H20 se rompa libernado O2 que es liberado hacia la atmósfera

Productos y reac?vos de la fotosíntesis 

•  Fotosíntesis oxigénica  :6 CO2 + 6 H2O + 686 kcal/mol ‐‐> C6H12O6 + 6 O2 

Los reac:vos son: 

‐      energía de la luz del sol (ac?va los fotosistemas) 

‐  dióxido de carbono (sustrato a reducir) 

‐   agua (dador de electrones que se oxida) 

Además de otros productos iniciales como las 

sales minerales 

‐  Los productos son: 

‐   O2 (que se libera a la atmosfera)‐ Glucosa (C6H12O6) 

‐   Además de Sacarosas, Almidónes, Celulosas 

‐  ATP (producto de un ADP + P) 

‐  NADPH (producto de un NDPH + H+) 

•  En el caso de la fotosíntesis anoxigénica l2H2S + CO2 ‐‐‐‐> [CH2O] + H2O + 2  

       Los reac:vos son: 

‐  CO2 (sustrato a reducir) 

‐   energía de la luz del sol 

‐   sulfuro de hidrógeno (dador de electrones que se oxida) 

       Los productos son: 

‐   glúcidos 

‐  Azufre 

‐   agua 

‐   ATP  

Factores que influyen en la fotosíntesis •  Los  organismos  autótrofos  fotosinté?cos  cuentan  varios  estructuras  que  tras  una  serie  de 

pasos  logran  realizar  la  fotosíntesis  pero  además  de  este  conjunto  de  herramientas,  el proceso es afectado por varios factores tanto ambientales como internos. 

Factores ambientales •  Concentración de dióxido de carbono(CO2): La ac?vidad fotosinté?ca crece al aumentar 

 la can?dad de CO2, hasta llegar a un límite a  

par?r del cual el rendimiento se estabiliza.  

•    Concentración de oxígeno: La presencia  

de oxígeno disminuye la can?dad de una  

enzima imprescindible para fijar el CO2 (Rebisco)   

•   Tiempo de iluminación: También conocido 

 como fotoperiodo; la luz, su duración y periodicidad, 

 ?ene una gran influencia sobre la germinación y la  

duración del crecimiento vegeta?vo. 

•  Intensidad luminosa: Sólo la radiación cuya longitud 

 de onda oscila entre 400 y 700 nm ?ene el nivel 

 de energía para es?mular a la clorofila 

•  Temperatura: Las reacciones enzimá?cas son  

dependientes de la temperatura.  

. •  Humedad: provoca el cierre de los estomas lo que reduce significa?vamente  

la entrada de CO2, y aumenta la temperatura 

 interna 

•   Minerales: La planta depende directamente  

de los nutrientes que contenga el suelo  

donde se encuentra y del PH. 

•  El ser humano: El transporte,  

la industria, la deforestación,  

la agricultura y otras ac?vidades  

humanas, están provocando un  

aumento de la concentración atmosférica 

 de CO2, lo cual podría conducir, a cambios  

regionales o globales 

Factores extra: Existen otros factores  

que intervienen en el proceso de la  

fotosíntesis para perjudicarla o beneficiarla. 

 Los organismos parasitarios son un ejemplo de  

organismos que afectan la fotosíntesis. La simbiosis es 

 beneficiosa para los fotoautotrofos 

. Factores Internos •  La cantidad de células fotosintetizadotas: Cuando una planta tiene mas hojas o

tejido superficial verde, el número de cromoplastos que posea y la naturaleza de estos (clorofila y pigmentos accesorios) dictara la eficiencia de la captura de energía necesaria para la fotosíntesis.

•  Estructura de la hoja: El grosor de la cutícula, la epidermis, el número de estomas y los espacios entre las células del mesófilo influyen directamente en la difusión del CO2 y O2 y también en la pérdida de agua.

La fotosíntesis en otoño •  En el otoño,  los días son más cortos y por  lo  tanto  la energía  lumínica  (luz) se hace menos 

intensa, gracias a estos cambios en el ambiente, los árboles comienzan a prepararse para el invierno, estación en la que no hay la suficiente luz o agua como para hacer la fotosíntesis. 

Árboles caducifolios  

En otoño, las células de la capa de escisión empiezan a crecer y forman un material parecido al 

corcho, reduciendo y finalmente cortando el flujo entre la hoja y el árbol. La glucosa y los 

productos de deshecho quedan atrapados en la hoja, y sin agua fresca, la clorofila empieza a 

desaparecer. A medida que se forma el tapón, las células de la capa de escisión empiezan a 

desintegrarse, hasta que sólo quedan unos hilitos que sos?enen la hoja. Un golpe de viento o el 

simple efecto de la gravedad se encargarán del resto.Los árboles descansarán y vivirán con el 

alimento que almacenaron durante el verano. La clorofila de las hojas desaparece y comienza a 

notarse otros pigmentos como: 

Los colores rojos y lilas provienen de las antocianinas  

                                                      Los marrones provienen del tanino 

                                                                                                     <‐‐ Los amarillos y los naranjas xantofilas  

. Los árboles perennifolios En los árboles de follaje persistente solo mueren una parte de las hojas cada año y otras, las más jóvenes, permanecen en la planta y se unen a las nuevas que brotan cada primavera, de manera que el periodo vital de cada hoja puede durar varios años. Sus hojas son especiales, resistentes al frío y a la pérdida de humedad. Algunos árboles como los pinos y los abetos, tienen hojas como agujas. Otros, como la encina, las tienen anchas y recubiertas de ceras; los días más fríos y secos estas hojas se encorvan para reducir la superficie expuesta. Los árboles perennifolios continúan realizando la fotosíntesis durante el invierno, pero las reacciones son más lentas debido a las bajas temperaturas.

Importancia del proceso 

Todos los organismos heterótrofos dependen de las conversiones que se da en la fotosíntesis y de la materia para su subsistencia.  

Son la base de la cadena trófica 

Reciclan  la materia orgánica, desde que es producida por  los autotrofos, hasta que es u?lizada por  los  consumidores  y  los  descomponedores,  en  el  Ciclo  de  la  materia  y  el  Flujo  de  la energía. 

Gracias a  la  fotosíntesis  se ob?ene el O2  (oxígeno),  gas  fundamental para que  los heterotrofos consuman mataria organica y la transformen en energía.  

La fotosíntesis ha hecho posible que aparezca la respiración celular que ?enen la gran mayoría de los organismos mediante la cual ob?enen el máximo de energía de los nutrientes.  

La fotosíntesis fue causante del cambio producido en la atmósfera primi?va, que era anaerobia y reductora. 

De la fotosíntesis depende también la energía almacenada en combus?bles fósiles como carbón, petróleo y gas natural, todo esto gracias al ciclo del carbono.