efecto de la viscosidad de una suspensión en la clasificación de · pdf...

50
EFECTO DE LA VISCOSIDAD DE UNA SUSPENSIÓN EN LA CLASIFICACIÓN DE HIDROCICLONES. LILIANA TRINIDAD LÓPEZ CHALARCA. LISBETH SOFÍA MIRANDA GALVIS. UNIVERSIDAD NACIONAL DE COLOMBIA, SEDE MEDELLÍN FACULTAD NACIONAL DE MINAS MEDELLIN. 2009.

Upload: vuongdang

Post on 19-Mar-2018

218 views

Category:

Documents


2 download

TRANSCRIPT

EFECTO DE LA VISCOSIDAD DE UNA SUSPENSIÓN EN LA CLASIFICACIÓN

DE HIDROCICLONES.

LILIANA TRINIDAD LÓPEZ CHALARCA.

LISBETH SOFÍA MIRANDA GALVIS.

UNIVERSIDAD NACIONAL DE COLOMBIA, SEDE MEDELLÍN FACULTAD NACIONAL DE MINAS

MEDELLIN. 2009.

2

EFECTO DE LA VISCOSIDAD DE UNA SUSPENSIÓN EN LA CLASIFICACIÓN

DE HIDROCICLONES.

LILIANA TRINIDAD LÓPEZ CHALARCA.

LISBETH SOFÍA MIRANDA GALVIS.

Trabajo Dirigido de Grado presentado como requisito parcial para optar al Título de Ingeniera Química

DIRECTOR: OSCAR JAIME RESTRPO BAENA. Msc, DSc

UNIVERSIDAD NACIONAL DE COLOMBIA, SEDE MEDELLIN. FACULTAD DE MINAS.

MEDELLÍN. 2009.

3

TABLA DE CONTENIDO.

TABLA DE FIGURAS. ........................................................................................................ 4

RESUMEN. ........................................................................................................................ 5

OBJETIVO GENERAL. ...................................................................................................... 6

OBJETIVOS ESPECÍFICOS. ............................................................................................. 6

1. INTRODUCCIÓN. ......................................................................................................... 7

2. CLASIFICACIÓN DE MINERALES EN HIDROCICLONES. ......................................... 8

3. CONCEPTO DE VISCOSIDAD. .................................................................................. 15

3.1. Tipo de fluidos de acuerdo a la aplicación de esfuerzos cortantes. .................. 16

3.1.1. Fluidos independientes del tiempo. ...................................................... 16

3.1.2. Fluidos dependientes del tiempo. ........................................................ 18

3.1.3. Viscoelásticos. ..................................................................................... 20

3.2. Variación de la viscosidad con la temperatura. ................................................ 21

3.3. Variación de la viscosidad con la presión. ........................................................ 22

3.4. Función de disipación energía mecánica . .................................................... 22

3.5. Reología de suspensiones. .............................................................................. 23

3.5.1. Análisis termodinámico de los cambios de energía interna en la

deformación de suspensiones. ........................................................................... 23

3.5.2. Fuerzas que actúan sobre las partículas suspendidas en un líquido. .. 25

3.5.3. Viscosidad de la suspensión. ............................................................... 26

3.5.4. Electroviscosidad de la suspensión ..................................................... 39

4. EFECTO DE LA VISCOSIDAD EN LA CLASIFICACIÓN DE HIDROCICLONES. ....... 42

CONCLUSIONES. ........................................................................................................... 49

REFERENCIAS BIBLIOGRÁFICAS. ................................................................................ 50

4

TABLA DE FIGURAS.

Figura 1. Esquema de corrientes en un hidrociclón……………………………………………8

Figura 2.Descripción de un hidrociclón………………………………………………………10

Figura 3. Corrientes de flujo al interior del hidrociclón………………………………………12

Figura 4. Geometría del hidrociclón……………………………………………………………13 Figura 5. Curvas de flujo para distintos tipos de comportamiento…………………………16 Figura 6. Ciclo de histéresis para un fluido tixotrópico………………………………………19 Figura 7. Viscosidad aparente de una suspensión cizalle adelgazante…………………27

Figura 8. Forma general de la curva de viscosidad para suspensiones…………………29

Figura 9. Variación de la curva de flujo a medida que se adiciona partículas a una

suspensión mineral……………………………………………………………………………….31

Figura 10. Diagrama de fuerzas para una partícula en el interior del hidrociclón.

Esquema de la velocidad vertical cero…………………………………………………………43

5

RESUMEN.

En el presente trabajo se estudia la relación existente entre la reología de suspensiones

poliminerales y la clasificación en hidrociclones. Para ellos se presentan algunos

conceptos fundamentales de reología y del comportamiento de las suspensiones; y

gracias a una extensa revisión bibliográfica se estudian algunos modelos empíricos y

semiempíricos existentes para la descripción de la operación de hidrociclones teniendo

en cuenta el comportamiento reológico de la alimentación compuesta al menos por dos

tipo de minerales, en este caso, arenas de cuarzo y arcillas.

De acuerdo a lo antecedentes, se tiene previsto que el comportamiento de los

clasificadores hidráulicos tipo hidrociclones deberían ser sensibles a este tipo de

alimentación, pero lamentablemente poco trabajo se ha efectuado en este campo.

Palabras claves: Reología, viscosidad, suspensiones minerales, clasificación,

hidrociclones.

6

OBJETIVO GENERAL.

Estudiar la influencia del comportamiento reológico de suspensiones poliminerales en la

clasificación de hidrociclones.

OBJETIVOS ESPECÍFICOS.

Estudiar los conceptos básicos de la reología

Estudiar el comportamiento reológico de las suspensiones

Analizar algunos de los modelos existentes que relacionan la viscosidad de las

suspensiones con la clasificación en hidrociclones.

7

1. INTRODUCCIÓN.

Gran parte de las sustancias que encontramos en la vida cotidiana son

suspensiones o dispersiones, las más comunes son el cemento, la sangre, las

salsas, lociones, pomadas, adhesivos, lubricantes y grasas. En todos estos

casos habría que hablar de una fase discreta (aquella de menor fracción

volumétrica), y de una fase continua, de mayor concentración, y en la que está

suspendida la fase discreta.

Aunque en ocasiones se tienda a hablar de manera indistinta de dispersiones o de

suspensiones, en muchos casos se busca particularizar el caso de dispersiones

como aquellos sistemas en los que la fase discreta tiene un tamaño inferior a la

micra, sistemas en los que los factores coloidales son significantes. En general,

hay que destacar que el comportamiento reológico de este tipo de sistemas es

extremadamente complejo, dado el gran número de factores que intervienen:

Concentración de la fase dispersa o discreta.

Naturaleza de la fase dispersa.

Forma, tamaño de partícula y distribución de tamaños de la fase discreta.

Efecto de la presencia de aditivos

Efecto de la temperatura.

Por este motivo, cada sistema a estudiar podría considerarse como un mundo

diferente; a pesar de ello, es posible describir una serie de reglas generales que

para la mayoría de sistemas suelen explicar su comportamiento. Con frecuencia

en la industria minera se emplean hidrociclones para clasificar suspensiones

minerales. La reología de la suspensión es un factor determinante en dicha

clasificación ya que afecta de forma directa la eficiencia del proceso de

clasificación. Con este trabajo se pretende estudiar el efecto de la reología de las

suspensiones en la clasificación en hidrociclones.

8

2. CLASIFICACIÓN DE MINERALES EN HIDROCICLONES.

La clasificación de minerales es un proceso en el cual una corriente mineral se separa en

al menos dos corrientes, una enriquecida con partículas de tamaño relativamente mas

finas que un tamaño de corte determinado y otra corriente enriquecida con partículas de

tamaño mas gruesas que el mismo tamaño de corte (ver figura 1).

Figura 1. Esquema de corrientes en un hidrociclón.

Debido a que la operación en clasificadores hidráulicos tipo hidrociclón, ocurre en medio

acuoso, la separación es muy sensible a la reología de las suspensiones minerales que

alimentan al equipo (Kawatra et al., 1996, Gómez, 2005 y Chica, 2009, entre otros), sobre

todo a la viscosidad de las dispersiones.

Para entender el efecto que presenta la viscosidad en la clasificación de hidrociclones es

esencial conocer el funcionamiento de estos equipos. La gran mayoría de los procesos de

obtención de materias primas cerámicas requieren en sus etapas iniciales, la clasificación

de minerales como método de concentración del material de interés que se va a procesar

usando una propiedad intrínseca de los minerales tipo arcillas, la cual consiste en que

este mineral se enriquece a medida que disminuye el tamaño de partícula.

Para este efecto, el equipo más apropiado para realizar dicha clasificación es el

hidrociclón. El hidrociclón ha demostrado ser muy eficiente para corrientes de tamaños

finos de separación y también como pre-concentrador (separación por diferencia de

densidad) (Bustamante, 1992), de acuerdo al ángulo de cono. Cada vez se usan más en

Corriente enriquecidacon finos

Corriente empobrecida

de finos

Corriente de alimento

Corriente enriquecidacon finos

Corriente empobrecida

de finos

Corriente de alimento

9

las operaciones de molienda en circuito cerrado, pero también tiene otros usos como el

desarenador y espesamiento o decantación. Cuando se tienen procesos de separación de

sólido-líquido se emplean hidrociclones pero en cambio si se tienen procesos de sólido-

gas se utiliza el ciclón (Serna, 2002).

Un hidrociclón típico es en general una cámara, con una parte cilíndrica unida a otra

cónica (ver figura 2). El aparato tiene una entrada en la sección cilíndrica, generalmente

rectangular y en forma de voluta, lo que mejora la hidrodinámica en la corriente de

entrada. Por otro lado, posee además dos salidas axiales, en los extremos de su eje

central: una en la parte más baja de su sección cónica, llamada salida inferior o ápex

(descarga) y otra en el extremo superior; llamada salida superior, rebose o rebalse.

La parte superior de la sección cilíndrica está cubierta con una placa la cual es atravesada

por un tubo denominado buscador de vórtice (“vortex finder”), el cual penetra al

hidrociclón y por donde fluye la corriente denominada rebalse (“overflow”).

Se asume que una operación de clasificación es ideal, si los productos de descarga y

rebalse quedan separados de tal forma que la descarga contenga todo el material de

tamaño mayor a un tamaño denominado de corte o de separación, el cual denotamos

como d50, y el rebalse contiene todo el material menor a ese tamaño. Los equipos de

clasificación como el hidrociclón, difícilmente alcanzan la separación ideal, pues existe la

probabilidad de que partículas del mismo tamaño pero con propiedades físicas diferentes,

tales como razón de aspecto y densidad, generen respuestas hidrodinámicas

equivalentes en el equipo y salgan por la misma corriente. Esto implica que partículas de

igual tamaño pueden reportarse en la descarga y en el rebalse, desarrollando ineficiencias

en la clasificación.

Existen varios índices para medir la ineficiencia de la clasificación en hidrociclones, entre

los que se encuentran, el corto circuito CC (“by pass”), el índice de claridad de la

separación S.I. (“Sharpness Index”) y la fuga. En una separación ideal, el corto circuito y

la fuga deberán ser cero, mientras que el S.I. debe ser unitario.

10

El corto circuito CC, en un hidrociclón clasificador se puede definir bajo las circunstancias

en que los finos no llegan a la descarga por efecto de una clasificación, sino que

simplemente pasaron por el interior del equipo y no “obedecieron” las leyes de la

separación, (Chica 2009).

Figura 2.Descripción de un hidrociclón.

Las corrientes existentes en el interior del hidrociclón, se puede resumir diciendo que, en

primer lugar se produce un remolino primario que desde la entrada hasta la salida de su

sección cónica recorre el hidrociclón próximo a sus paredes interiores, siendo solamente

el fluido cercano a la pared el que sale por el apex, arrastrando al mismo tiempo los

sólidos con más masa. El resto del fluido, que suele ser la mayor parte, se desplaza en

dirección contraria en un remolino secundario dentro del primario, que tiene una mayor

fuerza centrífuga y en el cual son arrastradas las partículas con menos masa. Este

remolino secundario sale por el tubo de la parte cilíndrica, siendo en general la mezcla

más diluida que la de la entrada, al contrario de lo que sucede con la salida del apex, que

es más concentrada que la de la entrada. La alimentación se introduce bajo presión a

través de la entrada tangencial, lo cual imparte un movimiento de remolino a la pulpa.

11

Esto genera un remolino o vórtice dentro del ciclón, así como una zona de baja presión a

lo largo del eje vertical. (Bustamante, 1992).

A lo largo de este eje se desarrolla un núcleo de aire (“air core”), que generalmente se

conecta a la atmósfera a través del vórtice de salida, creado en parte por el aire disuelto

que sale de la solución en la zona de baja presión. La teoría clásica de la acción del

hidrociclón es que las partículas dentro del modelo de flujo están sometidas a dos fuerzas

opuestas: una fuerza centrífuga hacia afuera y una fuerza de arrastre que actúa hacia el

interior. La fuerza centrífuga que se desarrolla acelera la velocidad de sedimentación de

las partículas. Las partículas de sedimentación más rápida se mueven hacia la pared del

ciclón donde la velocidad es más baja y emigran hasta el ápice de salida. Debido a la

acción de la fuerza de arrastre, las partículas de asentamiento más lento se mueven hacia

la zona de baja presión a lo largo del eje del ciclón y son transportadas hacia arriba a

través del buscador de remolino hasta el derrame (Gómez, 2005).

Como existe una región de flujo descendente y una región interior de flujo ascendente, se

origina una envolvente de velocidad axial igual a cero. Esta envolvente se aplica a lo largo

de la parte más grande del cuerpo del ciclón (Figura 3) y las partículas arrojadas fuera

de la envolvente de velocidad axial igual a cero saldrán por la descarga, mientras que las

partículas arrastradas hacia el centro por la fuerza de arrastre saldrán en el rebalse. Las

partículas que caen sobre la envolvente de la velocidad axial igual a cero tienen igual

oportunidad salir por la descarga o por el reblase, y se cree que son las particulas que

poseen el d50, o tamaño de corte (Kellsal, 1959).

12

Figura 3. Corrientes de flujo al interior del hidrociclón.

Las ventajas que tiene clasificar mediante hidrociclones es obtener una Clasificación fina,

exacta y aguda, ocupa poco espacio, consume relativamente poca energía, requiere

menos mantenimiento, puede operar grandes tonelajes, carencia de partes rotativas en el

aparato, lo cual implica una amplia gama de materiales para su construcción, no tiene

problemas de desequilibrio dinámico, ni de resistencia. Debido a las altas fuerzas

centrífugas que se generan, superan las fuerzas cortantes y la viscosidad de

suspensiones minerales, acelerando enormemente el proceso de separación, son

frecuentemente usados como protección o pre-tratamiento para mejorar el funcionamiento

de otros equipos del sistema, como bombas, válvulas, filtros y mallas. (Gómez, 2005) y

presenta como desventajas el Limitado intervalo de operación. Sensibles a los cambios de

presión y caudal, sensible a los cambios en la dilución y en la distribución granulométrica

de los sólidos (reología de la suspensión mineral), no existe un estándar en el estudio de

los hidrociclones, varios investigadores han desarrollado diferentes teorías, lo cual

conduce a dispersión de datos a la hora de realizar una evaluación definitiva. Pulpas

minerales con alto contenido de cuarzo fino y feldespatos, generan mucha abrasión, sobre

todo a la altura del apex, más que en tamices o decantadores centrífugos, lo que afecta el

tiempo de vida de los hidrociclones.

13

La geometría del hidrociclón se describe en la siguiente figura:

Figura 4. Geometría del hidrociclón.

Donde:

Dc: Diámetro del hidrociclón.

Di: Diámetro a la entrada done ingresa la pulpa o suspensión.

Do: Diámetro del Rebalse o sobre flujo.

Du: Diámetro del Apex, o diámetro de la descarga, o del bajo flujo..

Lc: Altura de la sección cilíndrica.

Lk: Altura de la sección cónica.

Lv: Altura del Vortex Finder.

θ: Angulo de la sección cónica.

Se sabe que los resultados de la clasificación de los hidrociclones están determinados por

varios factores, siendo los más importantes los siguientes (Chica 2009):

Diámetro interno de la sección cilíndrica: mayor capacidad y mayor punto de

separación cuanto mayor es este diámetro.

14

Presión de entrada: aumento de la capacidad y ligera disminución del punto de

separación al aumentar la presión de entrada.

Diámetro de su vortex finder o tubo interior del rebose: es menor el punto de

separación D50, y la capacidad del hidrociclón al disminuir este diámetro.

Contenido de sólidos en la alimentación: el punto de separación D50 será mayor al

aumentar la concentración y en muchos casos al mismo tiempo será menos

precisa la separación, pudiendo decirse que un hidrociclón que trabaje con el 27%

en volumen de sólidos tiene aproximadamente un punto de separación doble que

si actúa con el 10% de contenido de esos mismos sólidos.

Diferencia entre las densidades de parte sólida y líquida: esta diferencia entre

arena silícea y agua es de 1.64, pero si es mayor, el punto de separación se

desplaza a más fino, ocurriendo lo contrario si es más pequeña. Por ejemplo, para

sólidos que tengan 7.5 de peso específico, el D50 puede ser la mitad que el de la

sílice. Para sólidos con una densidad de 1.4 tendrán un D50 del doble que el de la

sílice. Esta propiedad puede ser utilizada para separar sólidos con semejante

granulometría, pero con diferente densidad.

Viscosidad: el punto de separación se desplaza de forma importante hacia más

grueso al aumentar la viscosidad, sobre todo a partir de viscosidades de fluido

superiores a 10 veces la del agua. Esta característica suele estar unida a la

concentración de sólidos y sobre todo a la finura de éstos.

Longitudes de la parte cónica y cilíndrica del hidrociclón, forma y diámetro de la

entrada, material del que está fabricado el hidrociclón, etc., son otros factores que

tienen incidencia en los resultados.

15

3. CONCEPTO DE VISCOSIDAD.

Luego de entender el funcionamiento y la descripción de los equipos de clasificación

hidrociclones se debe comprender el concepto de viscosidad. Así inicialmente La Ley

formulada por Newton dice que, cuando las capas de un líquido se deslizan entre sí, la

resistencia al movimiento depende del gradiente de la velocidad y del área superficial. De

este modo, se establece la proporcionalidad existente entre el esfuerzo por unidad de

área (F/A) necesario para producir un gradiente de velocidad en un fluido, siendo la

constante de proporcionalidad un factor que describe "la capacidad de deslizamiento de

un fluido” conocida como viscosidad. Matemáticamente esto es:

dx

dv

A

F (1)

Donde:

: Esfuerzo por unidad de área o esfuerzo de cizalla, en .

: Gradiente de velocidad, velocidad de deformación o velocidad de cizalla, en .

: Viscosidad del fluido, en Poise (p).

Los fluidos que tienen un único valor de viscosidad a temperatura y presión constante

para cualquier velocidad de cizalla (independiente del tiempo), se denominan fluidos

Newtonianos.

Los fluidos se pueden desviar del comportamiento Newtoniano modificando en cierto

grado de complejidad la Ley de Newton, su viscosidad se suele representar por η y en

ocasiones se conoce como una viscosidad aparente. La ciencia que estudia el

comportamiento de los fluidos No Newtonianos es la Reología, el término fue acuñado por

Bingham. Etimológicamente reología significa ciencia de los flujos, del griego , flujo;

y , sabiduría o conocimiento. Así, la reología estudia la deformación y flujo de estos

fluidos sometidos a esfuerzos externos.

16

3.1. Tipo de fluidos de acuerdo a la aplicación de esfuerzos cortantes.

Existen tres tipos de fluidos no newtonianos según su reacción a esfuerzos cortantes

aplicados; independientes del tiempo, dependientes del tiempo y viscoelásticos.

3.1.1. Fluidos independientes del tiempo.

En este tipo de fluido, la tasa de deformación es una función monovaluada no lineal del

esfuerzo cortante aplicado y no poseen memoria. Al graficar el esfuerzo de cizalla contra

la velocidad de fluidos no Newtonianos se obtienen curvas denominadas curvas de flujo

que son muy utilizadas para describir el comportamiento reológico de los fluidos.

Figura 5. Curvas de flujo para distintos tipos de comportamiento.

La pendiente en cada punto de las curvas de flujo mide una viscosidad local; lo que

equivale a un coeficiente de viscosidad. Los comportamientos que se presentan en la

figura anterior son los siguientes:

Comportamiento Dilatante: se presenta cuando al aumentar la velocidad de

cizalla se aumenta la viscosidad del fluido.

Comportamiento Plástico: se presenta cuando al someter el material a esfuerzos

inferiores a cierto valor umbral, éste almacena energía. Si por el contrario se

17

supera el umbral, el material se deforma continuamente como un fluido, siendo el

esfuerzo una función, lineal o no, de la velocidad de deformación.

Comportamiento Pseudoplástico: Se presenta en materiales en los que al

aumentar la velocidad de deformación se reduce su viscosidad. Éste es el

comportamiento más común a nivel industrial y se puede encontrar marcado en

mayor o menor medida dependiendo de la distribución de pesos moleculares y de

la estructura del material.

3.1.1.1. Modelos de flujo

Estos modelos sirven para correlacionar el comportamiento de varios fluidos en un rango

de cizalla amplio; aunque en ocasiones no es suficiente un solo modelo para describir el

comportamiento de un determinado fluido.

Tabla 1. Fluidos No-Newtonianos Independientes del Tiempo.(Naranjo, 1999)

Nombre Ecuación Constitutiva Parámetros

Ostwald De Waele

nk

n < 1 seudoplástio

n > 1 dilatante

nk,

Bingham p 0 p ,0

Casson c 0 c ,0

Prandtl-Eyring )( 0

1

0 pEsenh pE ,0

Herschell-Bulkley nk 0 nk,,0

Sisko nk 0 nk,,0

Powell-Eyring )( 00

1

01 senh 010 ,,

Spriggs 1

0000 )(;, n n,, 00

Reiner-Phillipoff 22.

0 1 s s ,,0

18

Williams 22

10 1 10 ,,

Ellis 1

210 1

,, 210

Crowley-Kitzes

L

c

c

32.0

1

32.0

1

12.1

12.1 ,, 1cL

Skelland 1

000 1

m

c mc,,, 00

Metzner

1

1

0

01

11

m

m ,,,0 m

Cross pp

10 1 p,,, 10

Cuanto menos parámetros presente un fluido más sencilla será su reología y más

aplicable como modelo de ajuste reométrico.

3.1.2. Fluidos dependientes del tiempo.

En este tipo de fluido, la tasa de deformación no es una función monovaluada del

esfuerzo y varía según el historial de los estados previos. Poseen memoria actual, de

corto plazo, que se traduce en una medida de la viscosidad aparente.

Si la viscosidad disminuye con el paso del tiempo a determinada velocidad de cizalla se

trata de un fluido tixotrópico, si por el contrario aumenta, el fluido se denomina reopéctico,

éste último se asocia con la ruptura o formación de agregados coloidales e interacciones

que forman una estructura reticular en la muestra. El comportamiento de los fluidos con

esta variación de la viscosidad depende en gran medida de la historia y se podrían

obtener distintas curvas para una misma muestra, dependiendo del procedimiento

experimental.

Un fluido se llama tixotrópico cuando, bajo la acción de una tasa de corte constante

(velocidad de cizalla), alguna de sus propiedades decrece isotérmicamente, con marcada

dependencia del tiempo que dure la acción cortante, y con capacidad de recuperar su

valor inicial una vez cesa dicha acción. La propiedad de más interés sujeta a esos

19

cambios es la viscosidad. Para explicar la tixotropía se asume que el material consiste en

una red de moléculas grandes, ligadas por fuerzas elásticas y capaces de resistir

pequeños esfuerzos cortantes, pero que ceden si estos aumentan lo suficiente, y

degradan en subunidades ó moléculas más pequeñas, que fluyen con facilidad como

sustancias newtonianas. Si el esfuerzo cesa el material regenera el tejido

macromolecuclar y recupera sus resistencias elásticas y sus reologías no-newtonianas.

Pero el proceso de reconstrucción no procede por la misma ruta espacio-temporal que el

de degradación, y tampoco es obvio esperar que el estado recuperado, al cabo de

cualquier tiempo sea idéntico al inicial. Hay lazos de histéresis en el proceso repetido de

la desagregación-regeneración del material por acciones de corte. (Naranjo, 1999)

En la figura 6, se representa el efecto de la tixotropía y la histéresis asociada a estos

comportamientos; se obtiene un valor de viscosidad con el aumento paulatino de la cizalla

y se obtiene otro valor diferente con la disminución de la aplicación de la cizalla.

Figura 6. Ciclo de histéresis para un fluido tixotrópico.

20

3.1.3. Viscoelásticos.

Fluidos viscoelásticos, son aquellos cuya deformación y tasa de deformación son función

del esfuerzo aplicado. Parcialmente elásticos, pueden almacenar energía y pueden

cederla según las solicitaciones, creando así esfuerzos y deformaciones remanentes.

La visco elasticidad es la combinación de la viscosidad de un liquido para velocidades de

deformación bajas (Ley de newton) y elasticidad de un sólido (Ley de Hooke). Así para un

sólido si se aplica un esfuerzo este se deforma hasta que la fuerza cesa y la deformación

vuelve a su valor inicial. Si el esfuerzo se le aplica a un fluido viscoso este se deforma,

pero no recupera nada de lo que se deforma. Un comportamiento intermedio es el

viscoelástico, en el que el cuerpo sobre el que se aplica el esfuerzo recupera parte de la

deformación.

Para evaluar la elasticidad de un material se emplea el Número de Débora

tDe

(2)

Donde t es un tiempo característico del proceso de deformación al que se somete el

material y T es característica del material. Para De<1 comportamiento viscoso; De >1

comportamiento elástico y para De ≈1 el comportamiento es viscoelástico.

3.1.3.1. Viscoelasticidad lineal.

Para materiales con comportamiento viscoelástico acurre un fenómeno en el cual a

deformaciones muy bajas casi de equilibrio la relación entre el esfuerzo y la deformación

es lineal. Al aumentar la deformación se pierde la linealidad de la relación.

La relación entre el esfuerzo de deformación, la deformación y su dependencia con el

tiempo vienen dadas por la ecuación constitutiva o ecuación reológica de estado. Para un

sistema sometido a una cizalla simple, asumiendo que se cumple el principio de aditividad

de cambios secuenciales de deformación (principio de Maxwell-Boltzmann), se tiene que:

21

''

)'()'()( dt

dt

tdttGt

t

(3)

''

)'()'()( dt

dt

tdttJt

t

(4)

Donde t es el tiempo actual, y t' es un instante anterior cualquiera del proceso; se definen

G(t) como el módulo de relajación y J(t) como complianza.

La ecuación constitutiva puede ser utilizada para representar la respuesta de los

materiales que siguen un comportamiento viscoelástico lineal en distintos tipos de

experimentos con cizalla simple. Entre los experimentos relacionados con

viscoelasticidad lineal y que buscan caracterizar las sustancias los más conocidos son:

• Relajación de esfuerzos.

• Ensayo de fluencia.

• Recuperación elástica.

• Experimentos dinámicos u oscilatorios.

Un fluido puede pasar de pertenecer de una clase a otra, según sean los esfuerzos a los

que se le somete, si intensos o débiles, si de corta o larga duración, de manera continua o

intermitente.

De acuerdo a lo anterior, la viscosidad de un fluido puede ser afectado por la velocidad de

cizalla y el tiempo de aplicación de la cizalla, existen otros factores que afectan la

viscosidad tales como, la temperatura y presión, aunque de todos ellos, la velocidad de

cizalla es el factor más interesante desde el punto de vista reológico.

3.2. Variación de la viscosidad con la temperatura.

Por lo general los materiales disminuyen el valor de su viscosidad en forma exponencial al

aumentar la temperatura; y cuanto más viscoso sea el fluido, más se ve afectado por

22

variaciones en ésta. Por lo general la ecuación de Arrhenius describe bien la relación

entre la viscosidad y la temperatura así:

(5)

Donde:

T: Temperatura absoluta y

A y B: Constantes del fluido estudiado.

Si se conoce la viscosidad del fluido a otra temperatura, la ecuación de Arrhenius también

se puede encontrar así:

(6)

3.3. Variación de la viscosidad con la presión.

Por lo general la viscosidad de los líquidos aumenta exponencialmente con la presión.

Para presiones cercanas a la atmosférica estos cambios no son significativos.

3.4. Función de disipación energía mecánica .

Al graficar el esfuerzo de cizalla vs la tasa de cizalladura, El área debajo de la curva

representa la función de disipación de energía mecánica por unidad de volumen

(potencia mecánica por unidad de volumen necesaria para genera una deformación

permanente). es un escalar y a la vez es una propiedad intensiva del fluido

0

dvolumen de unidad por

mecánica Potencia (7)

23

3.5. Reología de suspensiones.

Una suspensión es una mezcla entre una fase continua que se encuentra en mayor

fracción volumétrica y una fase discreta. La fase discreta puede ser aire, gotas de aceite o

partículas duras, por lo cual la suspensión recibe el nombre de espuma, emulsión y pulpa,

respectivamente.

Si se observa el comportamiento reológico de un fluido al cual se le han agregado

partículas, se puede verificar fácilmente que la presencia de éstas modifica

substancialmente la disipación de energía mecánica a medida que se deforman

permanentemente los fluidos a una tasa de cizalladura determinada. Las modificaciones

del comportamiento reológico de las suspensiones llegan a ser tan abruptas que si el

fluido que forma parte de la suspensión es Newtoniano, la presencia de las partículas

puede generar comportamientos no-Newtonianos de la mezcla.

Cabe resaltar que la deformación de una suspensión se origina principalmente por la

deformación del fluido, el que a su vez le transmite los esfuerzos de contacto a las

partículas sólidas, las cuales se ven obligadas a desplazarse implicando colisiones y

reorientación de las partículas con el fin de atenuar la disipación de energía. De esta

manera, la suspensión se comporta mecánicamente como un fluido al cual se le ha

modificado substancialmente las propiedades mecánicas. (Barnes H.A., Hutton J.F.,

1989)

En pocas palabras, una suspensión es un material que de acuerdo a las características de

la deformación puede presentar comportamiento tipo fluido, pero es posible que bajo otras

circunstancias presente comportamiento tipo sólido, esto depende fuertemente de las

condiciones de deformación.

3.5.1. Análisis termodinámico de los cambios de energía interna en la

deformación de suspensiones.

Se puede partir de la suposición que la variación de la energía interna en una suspensión

generada por un fenómeno de deformación por esfuerzos de contacto puede producir

24

efectos como la variación de los niveles de energía interna en la suspensión y la variación

de la distribución de la energía interna.

Se sabe que para una suspensión una deformación isotermal afecta sus niveles de

energía interna y sin embargo no produce cambios en la distribución. La teoría que

sustenta esta afirmación es la llamada “Formación de paquetes de partículas” tienen una

distribución de tamaños controlada por la granulometría de la fase dispersa en el fluido

Newtoniano.

Consideremos el caso de una suspensión de un fluido Newtoniano y un sistema articulado

a temperatura constante suponiendo que el sistema está compuesto por una distribución

de n paquetes de partículas no necesariamente idénticos (n1,n2,n3….nj) cada uno con

energías internas U1,U2,…...Uj) respectivamente; entonces el número total de paquetes

de partículas N en la suspensión será:

j

iinN

1

(8)

Y la energía interna total del sistema será:

Un jj

jU (9)

Entonces la probabilidad de encontrar un paquete de partículas en el estado Uj dentro

del volumen de medición es:

N

nP

j

j (10)

Ahora bien; si se supone que la distribución de probabilidad de encontrar un paquete de

partículas es similar a la distribución granulométrica se puede llegar a la siguiente

ecuación:

j

jppj

j dUffdUdU xx )())(( (11)

Donde en el primer término se observa los cambios de energía interna ocasionados por

variaciones de la distribución de tamaños de paquetes de energía; esto implica que

25

cambia la distribución de la energía interna en el volumen de la suspensión. El segundo

término representa los cabios que se producen por los cambios en los niveles de energía

interna conservando la distribución de tamaños de los paquetes de partículas.

(Bustamante 1999)

Al deformar una suspensión aplicando una tasa de cizalladura constante sin pérdidas de

calor por el recipiente, los cambios globales de la energía interna se debe en los cambios

en la distribución de energía interna.

Si la suspensión es deformada y el calor generado se retira de modo tal que se trabaja

isotérmicamente; los cambios en la energía interna se producen en mayor medida por

cambios en los niveles de energía y no por la distribución de ella en el seno de la

suspensión.

La tasa de cambio de los niveles de energía interna que se produce a medida que la

suspensión se deforma a diferentes tasas de cizalladura viene dada por:

dt

dWxF

dt

dUp )(1 (12)

3.5.2. Fuerzas que actúan sobre las partículas suspendidas en un líquido.

En una suspensión coexisten tres clases de fuerzas en diversos grados. Las primeras son

de origen coloidal que surgen a partir de las interacciones entre las partículas, como

resultado de atracciones o repulsiones entre ellas mismas. Estas fuerzas coloidales se

ven controladas por propiedades del fluido como puede ser la polaridad; pero no por la

viscosidad. Dichas fuerzas pueden surgir por ejemplo, debido a la presencia de

atracciones tipo London- van der Waals entre partículas, por atracciones electrostáticas

entre cargas en diferentes partes de las partículas; entre otras razones. Si el resultado

neto de ésta fuerza es de atracción, las partículas tienden a flocularse; por el contrario, si

el resultado es de repulsión intentan separarse dando origen a una defloculación o

dispersión.

26

En segundo lugar tenemos la presencia de fuerzas de origen Brownianas; éstas

dependen en gran medida del tamaño de las partículas, para tamaños inferiores a 1 μm

tienen gran influencia. Esta fuerza hace que las partículas de las suspensiones se

encuentren en constante movimiento.

Por último se encuentran las fuerzas de tipo viscoso que son proporcionales a la

diferencia entre la velocidad de la partícula y el fluido circundante. Por lo tanto es la

viscosidad de la fase continua la determinante en esta situación.

Obviamente el comportamiento macroscópico de la reología depende en gran medida del

comportamiento microscópico. Es por esto que la presencia de partículas aisladas

originan desviación en líneas de flujo y por lo tanto un incremento en la viscosidad. A

medida que se aumenta la concentración en una suspensión se origina una mayor

resistencia; ya que las partículas se ven forzadas a moverse unas sobre otras.

Cuando las partículas se encuentran floculadas se crea una mayor resistencia por los

flocs; debido a que parte de la fase continua se adhiere a éstos quedando inmovilizada y

por lo tanto se crea un efecto en el cual aparentemente se aumenta la denominada fase

volumen y esto da origen a una viscosidad superior a la esperada.

Como se mencionó anteriormente una suspensión es definida como una mezcla entre una

fase continua y una dispersa; por lo tanto al estudiar la reología de éste tipo de sustancias

se encuentra un cierto grado de complejidad; ya que su comportamiento depende en gran

medida de la naturaleza de cada una de las fases, la concentración de la fase dispersa, la

forma y distribución de tamaños de partícula, entre otros factores. Por esto las

generalidades en este caso son escasas y se hace necesario estudiar cada sistema por

separado, sin embargo se mencionará el efecto esperado para cada uno de estos factores

a continuación.

3.5.3. Viscosidad de la suspensión.

Una vez entendido el concepto de viscosidad y de lo que es una suspensión se hace

énfasis en la reología de suspensiones, o para describirlo de otra forma la viscosidad de

las suspensiones.

27

Viscosidad aparente de la suspensión.

La viscosidad de una suspensión es conocida como viscosidad aparente a y queda

definida como la razón entre el esfuerzo de cizalladura aplicado y la tasa de cizalladura

generada por la deformación permanente en la suspensión así:

aCizalladur de Tasa

aCizalladur de Esfuerzoa (13)

Esto implica que para cada par

, hay un valor de

a , así este se lee como la

viscosidad aparente que depende de la tasa de cizalladura.

Cuando se grafica a vs se obtienen graficas similares a la siguiente:

0.1 1 10 100 10000.01

0.1

1

Región cizalle adelgazante

Viscosidad New toniana a

baja tasa de cizalladura 0

0.8

0.047

Viscosidasd New toniana a

alta tasa de cizalladura

Vis

co

sid

ad

ap

are

nte

[P

a-s

]

Tasa de cizalladura [s-1

]

Figura 7. Viscosidad aparente de una suspensión cizalle adelgazante.

Para suspensiones cizalle adelgazante (pseudoplástico) se ha encontrado que para tasas

de cizalladura muy bajas cercanas a cero y para tasas de cizalladura muy altas en la

suspensión permanece constante la viscosidad aparente, estas viscosidades suelen ser

definidas con los nombres de viscosidad Newtoniana a baja tasa de cizalladura (o) y

viscosidad Newtoniana a alta tasa de cizalladura (), respectivamente. (Bustamante)

28

Si se tiene que la viscosidad aparente a de una suspensión es monótonamente

decreciente con aumento de la tasa de cizalladura, es decir la tasa de cizalladura se

incrementa más rápidamente que el esfuerzo de cizalladura en el proceso de deformación

permanente. A este tipo de fluido se le denomina pseudoplástico ó fluido cizalle-

adelgazante (“shear thinning”).

De manera inversa, si la viscosidad aparente a es monótonamente creciente a medida

que aumenta la tasa de cizalladura, se presenta un comportamiento dilatante o cizalle-

espesante (“shear-thickening”).

Se ha encontrado que las suspensiones minerales presentan un comportamiento

reológico cizalle-adelgazante tanto para dispersiones en las cuales los tamaños de

partícula de los sólidos que forman parte de la pulpa son relativamente gruesos como en

dispersiones coloidales y a diferentes fracciones volumétricas de sólidos en las pulpas.

Viscosidad relativa de una suspensión

Como una suspensión está compuesta por una fase líquida o continua y una fase discreta

o de partículas, la viscosidad de las suspensiones suele expresarse mediante el uso de

un número adimensional (Barrientos y Concha, 1994) llamado viscosidad relativa r, el

cual se define como:

f

sr

(14)

Donde s es la viscosidad aparente de la suspensión a una determinada tasa de

cizalladura y f es la viscosidad del fluido que forma parte de la dispersión.

(Bustamante)

3.5.3.1. Forma general de la curva de viscosidad para suspensiones.

En la figura 8 se presenta el comportamiento general de la curva de viscosidad para

suspensiones. A bajas tasas de cizalla se observa una primera meseta Newtoniana,

29

seguida por una región cizalla-adelgazante que termina en una segunda meseta

Newtoniana. En algún punto, por lo general sobre la zona Newtoniana, puede presentarse

un incremento de la viscosidad si se cumple con las condiciones necesarias. (Barnes

H.A., Hutton J.F., 1989)

Figura 8. Forma general de la curva de viscosidad para suspensiones.

La cantidad de material suspendido en el fluido es muy importante a la hora de analizar la

curva de flujo. La fracción del espacio de la suspensión que ocupa el material suspendido

se denomina la fase volumen (la fracción de volumen por volumen de suspensión). Se

emplea ésta fracción en vez de una fracción peso a peso ya que la reología depende en

gran medida de las fuerzas hidrodinámicas que actúan en la superficie de las partículas o

en la de los agregados de partículas; por lo general de manera independiente de la

densidad de dichas partículas.

3.5.3.2. Viscosidad de la fase continua de una suspensión.

Si a la fase continua se le agregan aditivos o se manipula su temperatura afectando el

valor de viscosidad, la suspensión de la cual hace parte también le varía su viscosidad.

Es importante destacar que si a la fase continua se le adicionan sustancias miscibles es

difícil predecir cómo esto afectará la viscosidad de la suspensión.

30

3.5.3.3. Viscosidad de la fase dispersa.

Suspensiones diluidas:

Se considera que una suspensión es diluida cuando la fracción volumétrica

(concentración volumen por volumen) es inferior al 10%. En una suspensión conformada

por un fluido Newtoniano y partículas esféricas rígidas la variación en la viscosidad que

genera la presencia de la fase dispersa en la fase continua la describe la ecuación de

Einstein. Ésta ecuación supone que las partículas se encuentran tan separadas unas de

otras que no sienten la presencia de las demás.

(1 )s

f

(15)

Donde φ es la fracción volumétrica de sólidos, f la viscosidad de la fase continua, s la

viscosidad de la mezcla resultante y [λ] es la viscosidad intrínseca (para esferas rígidas

es 2.5). La ecuación de Einstein se basa en el hecho que la fase dispersa está muy

diluida, es decir, unas partículas están tan alejadas de las otras que no interaccionan

entre sí.

Si se trabaja con partículas cuya forma es diferente a esferas rígidas se modifican las

líneas de flujo produciendo un aumento de la disipación de energía y con esto se logra

aumentar la viscosidad; éste aumento viene dado por la viscosidad intrínseca [λ].

Además cuando se tienen partículas no esféricas la suspensión manifiesta un carácter

No-Newtoniano. Si estas partículas no son rígidas se deforman con el flujo y además del

comportamiento No-Newtoniano pueden presentar viscoelasticidad.

Suspensiones concentradas:

La influencia de la concentración de las partículas sólidas dentro de las suspensiones

concentradas, se determina mejor a partir de la máxima fracción de empaquetamiento.

Se define la máxima fracción de empaquetamiento como aquella fracción volumétrica de

sólidos en la que las partículas poseen un contacto tridimensional entre sí, por lo que el

31

flujo de la suspensión se hace prácticamente imposible; generando un incremento

exagerado de la viscosidad. El valor de la máxima fracción de empaquetamiento para

cada suspensión depende del arreglo de las partículas dentro de ella.

La ecuación propuesta por Einstein no tiene aplicación para suspensiones concentradas;

por ello se han desarrollado muchas correlaciones para la viscosidad y la fracción

volumétrica de sólidos, con las que se ha evidenciado un aumento en la viscosidad de la

suspensión al aumentar la fracción volumétrica de sólidos. Se ha encontrado que para

suspensiones con alta fracción volumétrica de sólidos y tasa de cizalldura tendiendo a

cero se desarrolla una viscosidad newtoniana 0 muy grande.

0 200 400 600 800 10000

50

100

150

200

250

300

350

Esf

ue

rzo

de

Ciz

all

ad

ura

[P

a]

= 0.01

= 0.10

= 0.20

= 0.30

= 0.35

= 0.40

Tasa de cizalladura [s-1

]

Figura 9. Variación de la curva de flujo a medida que se adiciona partículas a una suspensión

mineral.

Cuando en la suspensión se encuentran presentes partículas de tamaño pequeño, éstas

normalmente se ven sujetas a grandes fuerzas de atracción debido a una elevada

superficie y una pequeña distancia entre partículas. Estas fuerzas favorecen la agregación

y la formación de estructuras que producen un aumento paulatino de la pseudoplasticidad

de la suspensión hasta el punto de producir la aparición de un “yield stress” (limite

32

elástico). El “yield stress” puede deberse a que las partículas suspendidas forman una

red con fuertes interacciones, que debe ser destruida para que el flujo pueda tener lugar.

El hecho que las partículas más pequeñas sean capaces de interaccionar más fácilmente

se traduce en que haga falta una mayor velocidad de cizalla para que se desmorone la

estructura y aparezca la zona pseudoplástica. Sin embargo, de igual modo que se puede

producir una destrucción de estructuras presentes en la sus pensión, el flujo provocado a

elevadas cizalladuras es capaz de inducir la formación de cúmulos de partículas que son

las responsables de la aparición de una cierta dilatancia en suspensiones con altas

concentraciones de sólidos.

La viscosidad de una suspensión concentrada constituida por una carga con una

distribución de partículas ancha pueda ser menor que aquella constituida por otra de una

distribución monomodal.

3.5.3.4. Efecto de la distribución de tamaños en la viscosidad de la suspensión.

Por lo general cuando se tiene una distribución de tamaños en un rango pequeño, la

viscosidad a bajas tasas de cizalladura aumenta al disminuir el tamaño de la fase discreta.

Lo que ocurre es que cada partícula se rodea por la fase continua, pero el fluido más

cercano a la superficie de la partícula se adhiere a ésta y no fluye, sólo es el resto de la

fase continua la que queda disponible para el flujo.

Cuando se tiene una distribución de tamaños de partículas más amplia se tiene un efecto

más complejo. Cuando a una determinada distribución se le añade una segunda familia

de menor tamaño de fase discreta, ello puede conllevar una disminución de la viscosidad,

al contrario de lo que se espera. Ello se explica desde el punto de vista que la fase

discreta de menor tamaño ocupa los huecos entre las de mayor tamaño, y libera de algún

modo fluido retenido en dichos huecos, provocando un aumento efectivo de la

concentración de fase continua “libre para el flujo”. Sin embargo, una vez ocupados los

huecos libres, un aumento en la concentración de finos de la fase dispersa, provoca, un

aumento de la viscosidad del sistema. (Barnes H.A., Hutton J.F., 1989).

33

3.5.3.5. Efecto de la temperatura en la viscosidad de la suspensión.

Una variación en la temperatura del sistema puede provocar cambios tanto en la fase

dispersa como en la continua y más aún, en las interacciones que se producen entre las

dos. Por lo tanto cada suspensión debe ser estudiada individualmente ya que gradientes

de temperatura pueden producir efectos muy particulares y difícilmente explicables.

3.5.3.6. Efecto de la presencia de aditivos en la viscosidad de la suspensión.

Varios aditivos con la capacidad de modificar la concentración real de la fase dispersa del

sistema, afectan notablemente la reología dicho sistema. Cualquier sustancia, que pueda

modificar la carga superficial de la fase dispersa, y por tanto su capacidad para atraerse o

repelerse, modifica drásticamente el comportamiento reológico de los sistemas

constituidos por varias fases.

3.5.3.7. Modelos de viscosidad considerando las suspensiones como fluidos

Newtonianos generalizados.

Una aproximación de la viscosidad para una suspensión es considerando esta como un

fluido newtoniano generalizado incompresible. Como se había descrito anteriormente la

viscosidad de una suspensión es una función de la fracción volumétrica de sólidos ( , la

tasa de cizalladura ( , el tamaño del sistema particulado ( y la forma de las partículas

( .

Existen diferentes modelos para determinar la viscosidad de las suspensiones en función

de los términos anteriores. (Bustamante, 1999)

2.5.3.7.1. Modelos que dependen de la fracción volumétrica de sólidos ( en

suspensiones diluidas.

Cuando se agregan partículas rígidas a un fluido en este se alteran las líneas de flujo,

esta perturbación hidrodinámica fue calculada por Einstein para el caso singular de

partículas esféricas y de tamaño pequeño en una suspensión diluida, así cuando se tiene

34

una suspensión con una fracción volumétrica de sólidos muy baja es decir esta tiende a

cero, Einstein predice la viscosidad eficientemente, se supone que la distancia entre las

partículas es lo suficiente para evitar las colisiones entre ellas, no se presenta efecto de

empaquetamiento

(16)

Esta no considera efectos generados por el tamaño de partícula, ni las interacciones

hidrodinámicas, luego se propone el siguiente modelo por Tomas

(17)

Luego este modelo es modificado parcialmente por Jinescu

(18)

Si las partículas son muy pequeñas (< 1 micrón), las fuerzas coloidales entre las

partículas comienzan a controlar fuertemente el campo de flujo, y aunque se tenga baja

concentración y pequeños cambios de la fracción volumétrica de sólidos se generan

cambios muy grandes de la viscosidad de la mezcla, así finalmente se propone la

siguiente ecuación por Batchelor, eliminando el término al cubo ya que si era mayor

que 0.2 se apreciaba un error considerable.

(19)

Los modelos presentados anteriormente son aplicables para suspensiones con las

siguientes características: la fase continua es un fluido Newtoniano, la fase dispersa está

conformada por esferas de un único tamaño y la densidad del fluido y las partículas son

iguales.

35

2.5.3.7.2. Modelos que dependen de la fracción volumétrica de sólidos en

suspensiones concentradas.

Se debe tener en cuenta la influencia de las partículas vecinas. Así Ball & Richmond hace

un aporte donde supone que los efectos de todas las partículas en una suspensión

concentrada es la suma de los efectos de las partículas agregadas secuencialmente, así

que diferenciando la ecuación:

(20)

Se tiene la siguiente ecuación:

(21)

Ahora haciendo el remplazo de cuando es cero se tiene la siguiente ecuación:

(22)

Como esta ecuación sigue siendo para suspensiones diluidas se hace una modificación a

la ecuación anterior quedando de la siguiente forma:

(23)

Así tendría en cuenta el efecto del empaquetamiento y así

2.5.3.7.3. Modelos que involucran además de la fracción volumétrica de sólidos, el

tamaño de las partículas que forman la suspensión.

Evenson realizó una aproximación y concluyó que a medida que la amplitud del intervalo

de tamaños de las partículas esféricas se aumenta, se produce una reducción de la

viscosidad de la suspensión. Luego Tangsathitkulchai & Austin comprueban que la

36

viscosidad de una suspensión está fuertemente afectada cuando se varía la distribución

de tamaños del sistema particulado que forma parte de la mezcla. Así ellos encontraron

que la viscosidad de las suspensiones varía fuertemente a medida que las partículas

cambiaron su parámetro de tamaño KRR. Pero las variaciones con el parámetro m no son

significativas. Esto permite concluir que el empaquetamiento de las partículas no es en si

un parámetro tan importante en el comportamiento reológico de suspensiones, el cual ha

sido la suposición clásica para las anteriores teorías reológicas.

Donde:

m: es el módulo de distribución, el cual indica la polidispersidad de tamaños en un

sistema particulado.

KRR: es el módulo de tamaño en micrones

Estos factores se encuentran en la ecuación de Rosin-Rammler que se efectúa para hallar

una distribución de tamaño en un sistema:

(24)

F(X): es la fracción acumulada más fina que el tamaño x.

Así de esta forma se establece la siguiente ecuación:

* (25)

2.5.3.7.4. Modelos de viscosidad dependientes de la tasa de cizalladura

Modelo de viscosidad de Cross

Con el fin de encontrar la viscosidad de la suspensión Cross propone la siguiente

expresión:

37

(26)

Donde µ∞ y µ0 son las viscosidades Newtonianas a alta y baja tasa de cizalladura

respectivamente, y Kc es una constante con unidades de tiempo y h es una constante

adimensional.

Modelo de viscosidad de Ellis

Es una alternativa al modelo de Cross, se expresa la anterior ecuación en función del

esfuerzo de cizalladura

Luego

(27)

Donde KT será:

(28)

Modelo de viscosidad de Carreau

Tiene una estructura similar al modelo de Cross donde Kc es una constante y posee un

significado similar al modelo de Cross.

(29)

38

Modelo de viscosidad de la ley de potencia

Esta ley es un caso particular que satisface conjuntamente al modelo de Cross y al

modelo de Carreau, cuando µ0 µs y a su vez µs µ∞ luego cancelando estos términos

de la ecuación de Cross se obtiene:

(30)

Y

kh

c

K

0 , h=1-n

La ecuación final sería:

(31)

Conocida como el modelo de ley de potencia, y n es el índice de la ley de potencia y K se

le denomina consistencia.

Cabe anotar que este modelo tiene una limitada capacidad de predicción de la viscosidad

en las regiones de baja y alta tasa de cizalladura.

De la ecuación anterior se halla la ecuación constitutiva de Ostwald si se multiplica a

ambos lados de la ecuación por la tasa de cizalladura:

(32)

Modelo de viscosidad de Sisko.

Este se obtiene si: µ0 µ∞ luego de la ecuación de Cross se llega a:

(33)

39

Y haciendo

kh

c

K

0 , h=1-n

Se tiene que:

1.

n

sK (34)

Ecuación constitutiva de Bingham.

En el caso que una suspensión tenga un índice de ley de potencia igual a cero (n=0), en

la ecuación anterior K tendrá unidades de esfuerzo, siendo remplazada por 0 y queda:

(35)

Si la anterior se multiplica a ambos lados por la tasa de cizalladura se tiene la ecuación

constitutiva de Bingham:

(36)

Donde 0 es un esfuerzo de cedenci

3.5.4. Electroviscosidad de la suspensión

Cuando en una suspensión hay partículas coloidales con un tamaño menor de 10

micrones se presentan fuerzas de gran importancia como: hidrodinámicas y no

hidrodinámicas que actúan sobre la superficie mineral, afectando la reología de la

suspensión. Las primeras se presentan con el movimiento relativo de las partículas con el

líquido que forma la suspensión y la segunda se refieren a fuerzas Brownianas entre las

partículas. (Bustamante )

Fuerzas de Van der Waals, fuerzas de doble capa eléctrica, fuerzas de

hidratación.

40

El esfuerzo de cedencia indica la transición del comportamiento sólido al comportamiento

líquido. Este se puede originar por el equilibrio entre las fuerzas de van der waals y de la

doble capa eléctrica, las primeras son fuerzas generalmente atractivas y de largo alcance,

producidas por los momentos dipolares de las moléculas en las susperficies de los

sólidos, cuya magnitud se puede determinar mediante (Jhonson, et. al. 2000):

212H

rAF H

VDW (37)

Donde AH es la constante de Hamaker, r es el radio de las partículas y H es el la distancia

entre ellas, asumiendo que r >>> H.

Y la segunda son fuerzas de atracción o repulsión generadas por la interacción de las

cargas electricas en el líquido cerca de la superficie del sólido de vida a la alta

concentración de contraiones en la interface.

La magnitud de esta fuerza se puede expresar como:

H

H

DCEe

erF

1

2 0 (38)

Donde; 0 es la permitividad en el vacío, es la constante dieléctrica en el seno de la

solución, es la longitud de Debye, es el potencial eléctrico el cual está ligado

fuertemente a la concentración de iones en la solución y e es la carga electrónica.

La longitud de Debye está dada por:

41

5.0

0

2

0221

KT

enz

(39)

Donde z es la valencia de los iones involucrados, n0 es la concentración en número de

iones en el seno de la solución, K la constante de Boltzman y T la temperatura absoluta,

esta se presentan cuando hay atracción entre las partículas de la suspensión.

Según Escales et al. (1998) el esfuerzo de cedencia se puede calcular con la siguiente

ecuación:

kH

kH

e

ekζ

H

Ak

εH0 struc

1

2

12

2

0

2

(40)

Donde kstruc es un término estructural que depende del tamaño de la partícula, la fracción

volumétrica de sólidos en suspensión y el número de coordinación medio, AH es la

constante de Hamaker, o es la permisividad del espacio vacío, es la constante

dieléctrica de la suspensión, k es la constante de Boltzmann, e es la carga eléctrica, H es

la separación entre dos partículas esféricas idénticas de radio a, siendo a >> H, es el

potencial eléctrico (potencial Z) generado por la superficie cargada de cualquier ión o

molécula asociada fuertemente. Cuando la magnitud del potencial zeta es alto, la

repulsión electrostática entre las partículas ocasiona que los minerales se dispersen

fácilmente y formen suspensiones estables. Para bajos potenciales zeta, la fuerza

repulsiva entre las partículas se reduce y de esta manera se favorece el acercamiento

entre las partículas, lo cual conlleva a un característico asentamiento de las partículas en

suspensión.

En esta ecuación se puede ver que el esfuerzo de cedencia es máximo cuando =0, este

es el punto isoeléctrico. Así mismo el potencial Z depende del pH de la suspensión,

también la adición de iones monovalentes a una suspensión mineral disminuye el valor

del potencial Z (fuerzas estructurales de hidratación). Luego la reología de la suspensión

42

se ve fuertemente afectada por el potencial Z, la fracción volumétrica de sólidos y la

distribución del tamaño del sistema.

Fuerzas hidrófobas

Este tipo de fuerzas se presenta cuando hay adición a la suspensión de surfactantes o

tensoactivos adsorbidos por las partículas de una mineral hidrofílico, las moleculas de la

especie surfactante conforman una capa con una estructura alineada sobre la superficie

adsorbida, las cadenas hidrófobas se orientan hacia el seno de la solución. Esta

adsorción modifica las magnitudes del esfuerzo de cedencia.

Fuerzas istéricas y electrostéricas

Estas fuerzas se presentan cuando se adiciona un polímero a una suspensión en medio

acuoso. El polímero se adsorbe en la partícula mineral, generando una barrera

compresible al acercamiento entre las partículas venciendo las fuerzas de atracción de

Van der Waals cuando las partículas se acercan así se obtiene una suspensión dispersa y

de baja densidad.

Así se logra ver la gran influencia que presenta la variación del pH, el potencial Z, la

fracción volumétrica de sólidos, la distribución de tamaño sobre la viscosidad de la

suspensión.

4. EFECTO DE LA VISCOSIDAD EN LA CLASIFICACIÓN DE HIDROCICLONES.

La viscosidad de la suspensión, juega un rol significante en la clasificación donde se

emplean hidrociclones. Una variación en la viscosidad de la suspensión altera la

velocidad de sedimentación de la partícula y la velocidad de la suspensión en el interior

del hidrociclón, afectando de forma directa su comportamiento.

Un parámetro importante de la clasificación en hidrociclones es el tamaño de corte d50. La

dependencia de la viscosidad con el tamaño de corte d50 fue explicada en un principio por

43

varios autores entre ellos Bradley (1965), quién basándose en la teoría más aceptada

hasta ese momento para explicar la operación de hidrociclones, “Teoría del equilibrio de

órbita” predice la relación entre el d50 y la viscosidad. Para esta teoría, se asumen

condiciones de flujo laminar y establece que cada partícula dentro del hidrociclón tiende a

estar en equilibrio entre dos fuerzas opuestas, una de ellas es la fuerza centrífuga que

actúa hacia la pared del hidrociclón y la segunda fuerza es la de arrastre del líquido que

actúa axialmente. Si se hace variar la viscosidad de la pulpa con la que se alimenta el

hidrociclón se afectará el balance de estas fuerzas y se podrá conocer el efecto de la

viscosidad sobre el tamaño de corte (Rietema, 1961). En este sentido, la reología de las

suspensiones está determinada principalmente las variables siguientes; tasa de

cizalladura y esfuerzo cortante, que definen la viscosidad de la suspensión, por las

variables operativas del equipo como presión de entrada, que determina los caudales por

la descarga y el rebalse, y por las variables propias del material como fracción volumétrica

de sólidos y distribución de tamaño de partícula.

Figura 10. (a) Diagrama de fuerzas para una partícula en el interior del hidrociclón. (b) Esquema

de la velocidad vertical cero.

Para ésta teoría el diámetro de la partícula permanece en equilibrio en una órbita

particular que viene dada por:

44

V tls

rWd

2*)(

**18

(41)

Donde

d: diámetro de la partícula, ρs: densidad de las partículas sólidas, ρl: densidad del líquido,

Vt: velocidad tangencial de la partícula, R: radio de la órbita de equilibrio, η: viscosidad del

fluido, W: velocidad radial.

Luego la relación encontrada por Bradley para el tamaño de corte d50 y la viscosidad

viene dada por:

d50 α ηβ (42)

Pero estas ecuaciones se desarrollaron para alimentos cuyos porcentajes de sólidos eran

bajos; es decir, concentraciones volumétricas inferiores al 11%; sin embargo la mayoría

de los hidrociclones trabajan con concentraciones superiores a éstas. Cuando el

contenido de sólidos incrementa se empiezan a presentar interacciones entre partículas.

Debido a esto se toma en cuenta la viscosidad y densidad de la suspensión en vez de la

del líquido.

La viscosidad de la suspensión influye en el mecanismo de separación del hidrociclón y

debe ser incluida en la formulación de modelos que representan el tamaño d50. Varios de

los modelos desarrollados en el pasado para tamaño de corte en el clasificador

contemplan términos de viscosidad; sin embargo muchas de estas ecuaciones se

desarrollaron para suspensiones diluidas e hidrociclones con diámetro pequeño, lo que

no es comparable con las condiciones normales de una planta. En años posteriores,

Lynch & Rao y Plitt utilizaron datos de hidrociclones de diámetro grande y suspensiones

con alto porcentaje de sólidos para desarrollar un modelo más versátil para predecir el

tamaño de separación situaciones de planta reales.

El modelo presentado por Plitt y Linch & Rao se presentan en las ecuaciones 43 y 44

respectivamente:

45

5,045.038.071.0

21.1

0

46.046.0

150

)(***

)063.0exp(****)(

lsu

iC

QhD

DDDKcd

(43)

Donde K1: constante, Dc : diámetro interior del ciclon en la parte del vortice , Di: diámetro

interior del hidrociclón (cm), Do:diámetro interno del rebose , Du: dimatro interno de la

descarga ,Q: caudal de alimentación de la viscosidad (L/min), d50: tamaño de corte en el

hidrociclón (micrómetros), h: distancia entre el vértice hallado hasta el tope del orificio de

la descarga (cm), : porcentaje en volumen de los sólidos en la pulpa, ρs: densidad del

sólido (g/cm3) y ρl: densidad del líquido (g/cm3)

15010 )*0048.0()*0130.0()*0695.0()*0173.0()(log KQVFSpigcd w (44)

Donde K1: Constante, VF: Diámetro interior del rebose (cm), Spig: Diámetro interno de la

descarga (cm), Q: Caudal volumétrico de la alimentación de la suspensión (L/min), d50:

Tamaño de corte del hidrociclón (micrómetros), w : Porcentaje en peso de sólidos en la

alimentación.

Lynch & Rao utilizaron el porcentaje en peso de los sólidos para su modelo; mientras que

Plitt uso el porcentaje en volumen de los sólidos (se relaciona mas con la reología de la

suspensión que el porcentaje en peso). Los modelos clásicos de Lynch & Rao (1975) y

Plitt (1976) no tienen un término de viscosidad explícito; más bien considera su efecto de

forma indirecta, por medio de una dependencia con la concentración de sólidos.

Además del contenido de sólidos la reología también se ve afectada por la temperatura,

la distribución de tamaños y el entorno químico (Shi y Napier- Munn, 1996). Esto sugiere

la necesidad de una medición directa de la viscosidad para determinar sus efectos en el

rendimiento de la clasificación.

En 1996 Kawatra, Bakshi y Rusesky incluyeron un término de viscosidad modificando los

modelos de Lynch & Rao y Plitt para predecir el tamaño de corte con base en la

viscosidad de alimentación en un tiempo real (medición en línea); en su investigación

46

Kawatra, Bakshi y Rusesky trabajaron con suspensiones minerales cuya concentración

volumétrica era inferior al 50%, según Klimpel (1982) las suspensiones con estas

características presentan un marcado comportamiento Newtoniano.

En las ecuaciones 45 y 46 se presentan los modelos modificados de Plitt y Lynch & Rao

respectivamente.

5,045.038.071.0

0

35.041.06.0

1

46.0

250

)(***

****)(

ls

c

QhD

DDKcd

(45)

310105010 )log35.0()*0048.0()*0130.0()*0695.0()log*41.0()(log KQVFSpigcd w (46)

Donde K3: es una constante, w : Porcentaje en volumen de sólidos en la alimentación, η:

viscosidad del fluido.

Los resultados obtenidos para los modelos modificados de Plitt y Linch & Rao por

Kawatra, Bakshi y Rusesky muestran a continuación.

Gráfico 1. (a) d50 predicho vs observado para el modelo modificado de Lynch y Rao. (b) d50

predicho vs observado para el modelo modificado de Plitt.

47

Al analizar las gráficas anteriores se observa que ambos modelos tienen un muy buen

ajuste para tamaños de corte inferiores a 30 micrómetros; además, se puede observar

que el modelo modificado de Lynch y Rao presenta un mejor ajuste de los datos que el

planteado para la modificación de Plitt.

Estos autores realizaron su investigación para hidrociclones con diámetros grandes

(100-380 mm); sin embargo su aplicabilidad a hidrociclones de diámetro pequeño no ha

sido comprobada. Son muy escasos los estudios de modelación de hidrociclones de

diámetro pequeño (Bradley y tira, 1959; Brookes, 1984; Vallebuona, 1995), y

corresponden por lo general a la modificación de las ecuaciones utilizadas para diámetros

mayores. La clasificación llevada a cabo en hidrociclones con estos diámetros plantea un

desafío técnico importante debido a la alta viscosidad asociadas a estas suspensiones y

la alta turbulencia que se presenta dentro de dichos hidrociclones.

En el trabajo realizado por Gómez (2009) se propone un modelo matemático para la

clasificación de minerales en hidrociclones de diámetros menores a 100 milímetros.

DcD

Du

Dc

D

Dc

H

Dc

k

Dc

DuPKd

o

ocrr *********

87654

321

50

(47)

48

-8.5 -8.0 -7.5 -7.0 -6.5 -6.0 -5.5

-8.5

-8.0

-7.5

-7.0

-6.5

-6.0

R=0.94009

SD=0.20438

VALIDACIÓN PARA LA ECUACIÓN DEL d50

CORREGIDO

Dato

s e

sti

mad

os s

eg

ún

el

mo

delo

de d

50

c

Datos experimentales de ln(d50

/DC)

Gráfico 2. d5o Predicho por el modelo de Gómez vs d5o observado.

Según los resultados obtenidos en este trabajo para las tasas de cizalla en las corrientes

de los hidrociclones estudiados se comprueba que los hidrociclones de 100 mm son el

punto de corte entre los hidrociclones grandes y los pequeños.

De los ensayos realizados por Gómez se estudia la relación existente entre el diámetro

de corte d50 y ciertas variables. Así se observa entre otras cosas que en general el

tamaño de corte tiende a ser mayor si las relaciones Di/Do y Du/Do son bajas (es decir el

Do aumenta), que para definir el rango de operación del hidrociclón y buscar un d50 en

una planta industrial primero debe establecerse si el hidrociclón va a estar ubicado en una

etapa de Rougher o de refinación; y por último que el tamaño de corte disminuye si el

hidrociclón opera con un corto circuito alto. Por lo tanto el valor del diámetro de corte es

una variable fuertemente dependiente de la configuración geométrica y operacional del

hidrociclón. Cada combinación de las variables planteadas produce efectos únicos en la

clasificación, evidenciados en el d50.

49

CONCLUSIONES.

La mayor limitación de los modelos existentes para la clasificación en

hidrociclones es que por lo general no se prestan para extrapolaciones.

No existe una única teoría donde se pueda modelar la clasificación en

hidrociclones de diámetros pequeños y grandes ya que para cada uno intervienen

diferentes parámetros.

Para la gran mayoría de separaciones en la industria minera se emplean equipos

hidrociclones para la clasificación de suspensiones.

Debido a que la clasificación en hidrociclones ocurre en medio acuoso, la

separación en estos es muy sensible a la reología de las suspensiones minerales

que alimentan al equipo; sobre todo a la viscosidad de las suspensiones.

La reología de la suspensión es un factor de gran importancia que determina la

clasificación de minerales en hidrociclones, por esto se hace necesaria la medición

de la viscosidad en línea dependiente de diferentes parámetros como la

concentración de sólidos, la distribución de tamaños, la forma de la partícula, la

temperatura, el medio químico entre otros.

El valor del diámetro de corte es una variable fuertemente dependiente de la

configuración geométrica y operacional del hidrociclón.

La viscosidad de las suspensiones afecta de forma directa el tamaño de corte d50,

este último influye en la clasificación en hidrociclones; por lo tanto la viscosidad de

la suspensión es un factor determinante en la eficiencia de clasificación de

suspensiones en hidrociclones.

El desarrollo del presente trabajo nos aportó conocimiento avanzados sobre la

reología de suspensiones y como afecta en la clasificación de hidrociclones.

50

REFERENCIAS BIBLIOGRÁFICAS.

1. BARNES, H.A. HUTTON, J.F. WALTERS, K. An Introduction to Rheology.

Elesevier 1989

2. BUSTAMANTE, O. Mejoramiento de la reología de suspensiones de caolín.

3. BUSTAMANTE, O. Reología de suspensiones. 1999

4. CANCHO, A. SUSIAL, P. Construcción y pruebas de un hidrociclón.

Ingeniería Química, Vol. 39, N°446, 2007.

5. CHICA, L. Estudio del cortocircuito de finos en hidrociclones operados con

suspensiones poliminerales en la industria cementera, 2009.

6. GOMEZ, H. Modelación de la clasificación de minerales en hidrociclones de

diámetro pequeño, 2005

7. KAWATRA, S.K. BAKSHI, A.K. RUSESKY, M.T. Effect of viscosity on the cut (d50) size of hidrocyclone classifiers. 1996.

8. KAWATRA, S.K. BAKSHI, A.K. RUSESKY, M.T. The effect of slurry viscosity on hydrocyclone classification.1996.

9. He, M. WANG,Y. FORSSBERG, E. Parameter studies on the rheology of limestone slurries. 2005

10. NARANJO, J. Introducción a la reología. 1999

11. SERNA, A. Efecto de la reología sobre el funcionamiento y diseño de

hidrociclones en clasificación de minerales

12. TAVARES, L.M. SOUZA, L.L.G. LIMA, J.R.B., POSSA, M.V. Modeling classification in small-diameter hydrocyclones under variable rheological conditions. 2002.

13. YABLONSKII, V.O. Effect of Rheological Properties of the Dispersion Medium on Separation of Suspensions in Hydrocycloneswith Various Working Space Configurations. 2005

14. CONCHA, F. BARRIENTOS, A. TORRES, V. Reología de suspensiones,

1992