dq 35655671

17
7/27/2019 Dq 35655671 http://slidepdf.com/reader/full/dq-35655671 1/17 T. S. Amer et al. Int. Journal of Engineering Research and Application www.ijera.com  ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671 www.ijera.com 655 | Page The Spinning Motion of a Gyrostat under the Influence of Newtonian Force Field and a Gyrostatic Moment Vector T. S. Amer 1 , Y. M. Abo Essa 2 , I. A. Ibrahim 3 and W. S. Amer 4  1,2,3 Mathematics Department, Faculty of Education and Science (AL-Khurmah Branch), Taif University, Kingdom of Saudi Arabia (4) Mathematics Department, Faculty of Science, Minufiya University, Shebin El-Koum, Egypt. In this paper, the rotational motion of a gyrostat about a fixed point in a central Newtonian force field is considered. This body is acted upon by a gyrostatic moment vector  . We consider the motion of the body in a case analogous to Lagrange's case. The analytical periodic solutions of the equations of motion are obtained using the Poincaré’s small parameter method. A geometric interpretation of motion i s given by using Euler’s angles to describe the orientation of the body at any instant of time. The graphical representations of these solutions are presented when the different parameters of the body are acted. The fourth order Runge-Kutta method is applied to investigate the numerical solutions of the autonomous system. A comparison between the analytical and the numerical solutions shows a good agreement between them and the deviations are very small. MSC (2000): 70E15, 70D05, 73V20 Keywords: Euler's Equations, Gyrostat, Newtonian force field, Perturbation methods I. Introduction The rotational motion of a gyrostat about a fixed point in a uniform force field or in a Newtonian one is one of the important problems in the theoretical classical mechanics. This problem had shed the interest of many outstanding researchers e. g. [1-14]. In fact this problems require complicated mathematical techniques. It is known that this motion is governed by six non-linear differential equations with three first integrals [15]. Many attempts were made by outstanding scientists to find the solution of these equations but they have not found it in its full generality, except for three special cases (Euler-Poinsot, Lagrange-Poisson and Kovalevskaya). These cases have certain restrictions on the location of the body’s centre of mass and on the values of the principal moments of inertia [1-3]. Arkhangel’skii, Iu. A. [1] showed that this fourth algebraic integral exists only in two special cases analogous to those of Euler and Lagrange and that, other cases with single-valued integrals are not additional cases but it can be reduced to previous cases. The necessary and sufficient condition for some functions to be a first integral for the Euler- Poisson equations when the motion of a rigid body is acted upon by a central Newtonian force field is investigated in [4]. The Hess’s case for the motion of a rigid body was studied in [5] having the assumption of giving initial high value for the angular velocity about some axis, is imparted to the body. The motion of Kovalevskaya gyroscope was studied in [6-11]. In [8], the existance of periodic solutions for the equation of motion of a rigid body in a Kovalevskaya top are obtained and it has been extended in [9]. The periodic solutions nearby equilibrium points for the same problem are investigated in [10] using the Liapunov theorem of holomorphic integral when the body moves under the influence of a central Newtonian field. The author generalized this problem in [11] when the body acted  by potential and groscopic forces. An exceptional case of motion of this gyroscope was treated in [12]. In [16], the authors have obtained the ten classical integrals for the generalized problem of the roto-translatory motion of n gyrostats 2 n . This  problem was studied in [17], when a system was made of two gyrostats attracting one another according to  Newton’s law. The problem of the earth’s rotation, using a symmetrical gyrostat as a model was considered in [18]. The authors considered the first two components of the gyrostatic moment are null and the third component is chosen as a constant. This study was extended and was generalized in [19]. The small parameter method of Poincaré [20] was used to find the first terms of the series expansion of the periodic solutions of the equations of motion of a rotating heavy rigid body about a fixed point when the body spins rapidly about the dynamically symmetric axis [21,22 ] and acted by the gravitaional and Newtonian force field respectively. This problem was generalized in [23] when the body moves under the unfluence of Newtonian force field and the third component of gyrostatic moment vector. The problem of a perturbed rotational motion of a heavy solid close to regular precession with constant restoring moment was treated in [13] and [14]. It is assumed that the angular velocity of the body RESEARCH ARTICLE OPEN ACCESS

Upload: anonymous-7vppkws8o

Post on 14-Apr-2018

235 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Dq 35655671

7/27/2019 Dq 35655671

http://slidepdf.com/reader/full/dq-35655671 1/17

T. S. Amer et al. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671

www.ijera.com 655 | P a g e

The Spinning Motion of a Gyrostat under the Influence of 

Newtonian Force Field and a Gyrostatic Moment Vector

T. S. Amer 1, Y. M. Abo Essa2, I. A. Ibrahim3 and W. S. Amer 4 

1,2,3Mathematics Department, Faculty of Education and Science (AL-Khurmah Branch), Taif University,

Kingdom of Saudi Arabia(4)

Mathematics Department, Faculty of Science, Minufiya University, Shebin El-Koum, Egypt.

In this paper, the rotational motion of a gyrostat about a fixed point in a central Newtonian force field is

considered. This body is acted upon by a gyrostatic moment vector  . We consider the motion of the body in a

case analogous to Lagrange's case. The analytical periodic solutions of the equations of motion are obtained

using the Poincaré’s small parameter method. A geometric interpretation of motion is given by using Euler’s

angles to describe the orientation of the body at any instant of time. The graphical representations of thesesolutions are presented when the different parameters of the body are acted. The fourth order Runge-Kuttamethod is applied to investigate the numerical solutions of the autonomous system. A comparison between the

analytical and the numerical solutions shows a good agreement between them and the deviations are very small.

MSC (2000): 70E15, 70D05, 73V20

Keywords: Euler's Equations, Gyrostat, Newtonian force field, Perturbation methods

I.  IntroductionThe rotational motion of a gyrostat about a

fixed point in a uniform force field or in a Newtonian

one is one of the important problems in the theoretical

classical mechanics. This problem had shed the interest

of many outstanding researchers e. g. [1-14]. In fact

this problems require complicated mathematicaltechniques. It is known that this motion is governed by

six non-linear differential equations with three first

integrals [15].

Many attempts were made by outstanding

scientists to find the solution of these equations butthey have not found it in its full generality, except for 

three special cases (Euler-Poinsot, Lagrange-Poisson

and Kovalevskaya). These cases have certain

restrictions on the location of the body’s centre of massand on the values of the principal moments of inertia

[1-3]. Arkhangel’skii, Iu. A. [1] showed that this fourth

algebraic integral exists only in two special cases

analogous to those of Euler and Lagrange and that,

other cases with single-valued integrals are notadditional cases but it can be reduced to previous

cases. The necessary and sufficient condition for some

functions  to be a first integral for the Euler- Poisson

equations when the motion of a rigid body is acted

upon by a central Newtonian force field is investigated

in [4]. The Hess’s case for the motion of a rigid body

was studied in [5] having the assumption of giving

initial high value for the angular velocity about some

axis, is imparted to the body.

The motion of Kovalevskaya gyroscope was

studied in [6-11]. In [8], the existance of periodicsolutions for the equation of motion of a rigid body in

a Kovalevskaya top are obtained and it has been

extended in [9]. The periodic solutions nearby

equilibrium points for the same problem are

investigated in [10] using the Liapunov theorem of 

holomorphic integral when the body moves under the

influence of a central Newtonian field. The author 

generalized this problem in [11] when the body acted

 by potential and groscopic forces. An exceptional case

of motion of this gyroscope was treated in [12].

In [16], the authors have obtained the tenclassical integrals for the generalized problem of the

roto-translatory motion of  n gyrostats 2n . This

 problem was studied in [17], when a system was made

of two gyrostats attracting one another according to

 Newton’s law. The problem of the earth’s rotation,

using a symmetrical gyrostat as a model was

considered in [18]. The authors considered the first two

components of the gyrostatic moment are null and the

third component is chosen as a constant. This study

was extended and was generalized in [19].The small parameter method of Poincaré [20]

was used to find the first terms of the series expansionof the periodic solutions of the equations of motion of 

a rotating heavy rigid body about a fixed point when

the body spins rapidly about the dynamically

symmetric axis [21,22 ] and acted by the gravitaional

and Newtonian force field respectively. This problem

was generalized in [23] when the body moves under 

the unfluence of Newtonian force field and the third

component of gyrostatic moment vector.

The problem of a perturbed rotational motion

of a heavy solid close to regular precession with

constant restoring moment was treated in [13] and[14]. It is assumed that the angular velocity of the body

RESEARCH ARTICLE OPEN ACCESS

Page 2: Dq 35655671

7/27/2019 Dq 35655671

http://slidepdf.com/reader/full/dq-35655671 2/17

T. S. Amer et al. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671

www.ijera.com 656 | P a g e

is sufficiently high, its direction is close to the axis of 

dynamic symmetry of the body, and the perturbing

moments are small in comparison with the gravity

moments. Averaged systems of the equations of 

motion are obtained in the first and second

approximations in terms of the small parameter. The

 perturbed problem of the rotatory motion of asymmetric gyrostat about a fixed point with the third

non-zero component of a gyrostatic moment vector (about the axis of symmetry) and under the action of 

some moments was considered in [24]. This problem is

generalized in [25]. The problem of existence of 

 periodic motions of a solid was studied in [26]. The

author used the Poincaré’s method of small parameter 

to obtain the periodic solutions of the equations of motion. It was assumed that the center of mass of the

solid differs little from a dynamically symmetric axis.

This problem was generalized in [27], when the body

rotates under the action of a central Newtonian force

field and the third component of the gyrostatic momentvector.

In this work, the rotational motion of a

gyrostat  about a fixed point in a central Newtonian

force field analogous to Lagrange's case is studied

when the body is acted upon by a gyrostatic moment

vector about the moving axes. The equations of motion

and their first integrals are obtained and have been

reduced to a quasilinear autonomous system of two

degrees of freedom with one first integral. Poincaré’s

small parameter method [20] is applied to investigate

the analytical periodic solutions of the equations of 

motion of the body with one point fixed, rapidly

spinning about one of the principal axes of theellipsoid of inertia. A geometric interpretation of 

motion is given by using Euler’s angles [28] to

describe the orientation of the body at any instant of 

time. The numerical solutions of the autonomous

system are obtained using the fourth order Runge-Kutta method [29]. The phase plane diagrams describe

the stability are presented. A comparison between the

analytical and the numerical solutions shows a good

agreement between them and the deviations are very

small.

The model of a gyrostat  has a wide range of 

applications in various fields such as satellite, robot

manipulators, and spacecraft. Moreover, the study of the rotational motion of a gyrostat has been motivated

 by industrial applications in many fields. This is because the gyrostat provides a convenient model for 

the satellite-gyrostat, spacecraft and like; see [30,31]

II.  Equations of Motion and Change of 

VariablesConsider a rigid body (gyrostat) of mass  M ,

with one fixed point O ; its ellipsoid of inertia is

arbitrary and acted upon by a central Newtonian force

field arising from an attracting centre 1O being located

on a downward fixed axis OZ  passing through thefixed point with gyrostatic moment vector 

),,( 321 about  y x, and  z  axes respectively.

It is taken into consideration that at the initial

time, the body rotates about axis z  with a high

angular velocity 0r  , and that this axis makes an angle

...),2,1,0(2/0 nn   with the  Z  axis.

Without loss of generality, we select the positive

 branches of the  z  axis and of the  x axis in a way to

avoid an obtuse angle with the direction of the

 Z  axis. The equations of motion and their three first

integrals similar to Lagrange case take the forms

[32,33]

;)(,,

],)()()([

),(])([

),(])([

111111111111111

1111112111

1

0

2

1

11110

1

11

1

031

1

0

1

1111

11110

1

21

1

031

1

0

1

1111

            

    

     

     

 pqr  pqr 

C k q pC  pqC cr 

 Ba z br c pr  Br  p Bq

 Aak  z ar cqr  Ar q A p

(1)

;)(,1,1 2

0

2

1

2

1

2

12111

22

1

        S r S r  (2)

where

];)1(

)()([)()]()[(

)1(2]})1()()([)(){(

13

11021101

1

01110101110102

10

2

1

2

1

2

10

2

1

2

10

2

1

2

10

2

1

2

101

 

         

      

C cqq p paS 

 z k qq p paS 

(3)

;10,0,,,,

,).(,,,

000101010

2

101010

            

   

r t 

d d c N k r r r qcq pc p(4)

Page 3: Dq 35655671

7/27/2019 Dq 35655671

http://slidepdf.com/reader/full/dq-35655671 3/17

T. S. Amer et al. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671

www.ijera.com 657 | P a g e

,,3,0,0,

,/,/,,)(

2

00000

2

11

 R g  R g  N  z  y xr c

C l  g  M cC  Aba B A A AC  B A

   

(5)

 B A, and C  are the principal moments of 

inertia; 00 , y x and 0 z  are the coordinates of the

centre of mass in the moving coordinate system

   ,);( z  y xO and   are the direction cosines of 

the downwards fixed axis Z  of the fixed frame in

space ,);( q p Z Y  X O and r  are the projections

of the angular velocity vector of the body on the

 principal axes of inertia;  R is the distance from the

fixed point O to the centre of attraction 1O ;   is the

coefficient of attraction of such centre; 21, and 3  

are the components of the gyrostatic moment vector 

; and ,,,, 00000    r q p and 0  are the initial

values of the corresponding variables.

III.  Reduction of the Equations of Motion

to a Quasilinear Autonomous System

From the first two equations of (2), one can express the

variables 1r  and 1 

as

,])1(

)1(2[2

11

,])1(

)1(2[2

11

2

1

101

2

21

2

1

101

2

1

 

    

 

  

 z S S 

 z S r 

(6)

Differentiate the first and the fourth equations

of (1) and use (6) to reduce the four remainingequations to the following two second order differential equations

,})2(])1(

)1(2[)(2

1])1()1(2

)[1(2

1{})(])1(

)1(2[])1()1(

)1([][{}][

)()()1()(

)()()({)(

120

1

13

2

1

10111

1

0

2

100

11

1

10

3

3211

1

0

2

1

0011

1

13

1

01211111

2

11110

1

11

22

31110

1

1

011

2

11

1

02111

1

0

11

1

112111

1

0111

1

01

2

1

 pS  z a Ak k 

 z S  Ak r  Ak  z 

S  Aa z S  Ak r  Ak 

 z S  A A pr S  AC q

 p Ak  p z a pS  Ak  z a

r  A Ak  Aa z q pC r  A

S r  A Aq pqr C  A A Ac p p o

 

    

    

    

     

   

   

(7)

,)2(]

)()1([])

()()()()1[()(

2110

13

11

2

1

1

0111121111

2

121

11

1

01321

1

0111

1

011

S  Ak  z a Ak 

qa z q pS  p AS  p

qr C  pS r  A p Ar  A

   

     

   

(8)

 

where   is a new frequency called Ismail and Amer's

frequency [23] and takes the form

.,2 13

1

01

122  Ar  A A      

Here 0r  is large, so ,,3

0

2

0

r r  are neglected.

Solving the first and the fourth equations of system (1),

and using (6), we obtain 1q and 1   in the form

).(

],)(

)(][)(1[)(

1111

11

11110

1

121

1

03

1

101

1

111

    

    

 

qr 

 Aak  z a

 pr  Acr r  A Ar  Aq

(9)

Page 4: Dq 35655671

7/27/2019 Dq 35655671

http://slidepdf.com/reader/full/dq-35655671 4/17

T. S. Amer et al. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671

www.ijera.com 658 | P a g e

Let us introduce new variables 2 p and 2  such that

,, 2122112 p p p             (10)

where

,)( 1

2

2

122

10  y A Ar C       

],)()()()1([)1( 310

11

0

2

11

1

0

12

1  Ak  z ar  A Ak  Aa z        

.3,2,1)(],)(1[)1( 1

03

1

01

12 iC c yr  A A ii      

In terms of the new variables 2 p and 2  , the variables 1q and 1   take the form

,}2

1]

)[({])([)(

,})(2

1])

([{])([)(

21122122

112

1

0

2

212

1

0222

1

021

2121211

1

12110

1

1

2

112

1

0222

1

21

    

     

  

     

S  pS 

S r  A X S r  A X  pr  A X 

S  Ak  X  pS  A pS  z a

 Ak  X S r  A X  y AC  p X q

(11)

where

.,],)(1[ 210

1

123

1

01

1

1 X  Ak  z ar  A A A X          

Making use of (11) and (10) into (3), we obtain the following expressions for  1S  and 2S  in terms of power series

in    

)2,1(,2 2

2

1

iS S S  i

i

ii   (12)

where

)},(2])()(2

)()([)(){(

2202

12

2220

1

0

2

2

2

20

2

2

2

20

2

2

2

20

22

2

2

2011

 p p y A X C r  A X 

k  p p X  p paS 

  

     

),(]})(

)([)()()

({)()]()(

)[(])()([

22022

12

2220

212202

1

0222020222

20202102220202220

112

1

0

2

222020122012

     

      

      

      

 y A X C  p p

S ar  A X  p pa p

 pak S k  z  p p p p

S r  A X a p p p paS 

(13)

),)(1()(

)]}()()([){(

220

1

22201

2202

1

022202022202021

    

    

 AC  X a y y

 p pr  A X  p p X  p paS  

.)()(})()(

)()())((

)({])()()([

2132202220122

2202220

211

1

02220212

1

022

1

2

2

2

202

2

2

2

201220

2

2

2

2022

S  y p p y p p y

 X S r  A p pS r  X  yC  A

 p p X a p paS 

       

   

          

 

Page 5: Dq 35655671

7/27/2019 Dq 35655671

http://slidepdf.com/reader/full/dq-35655671 5/17

T. S. Amer et al. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671

www.ijera.com 659 | P a g e

From (12), (13) and (6), we get

.])([)2

1(1

,])([2

11

21012

3

1122

2

211

21012

3

11

2

1

S  z k S S S S 

S  z k S S r 

    

  

(14)

Substituting (10), (11), (12), (13) and (14) into (7) and (8), we obtain the following quasilinear 

autonomous system of two degrees of freedom

),,,,,()(

),,,,,(

22221

1

022

22221

1

12

2

2

      

     

 p pr  A

 p p F  y A AC  p p

(15)

 

where

,, 3

2

213

2

21      F  F  F  F   

,)(})(

]2)2([{)()(

2221

1

022

1

21

1

22222

12

2

1

2

1

0111

1

01

  

     

C k r  A p y A p AC 

 p p y A pC r  Ar  A F 

 

])([)()( 2222

1

1

1

2

1

0121

1

01 p p y A Ar C S r  A    

,)1(),()1(

),)(1(,)1(

2

2

1

2

23321

2

12133

21

2

222

2

122

 p f  f  F 

 p f  F 

                  

            

 

]},])([[{

)()1()]()([

}])(][)([2)(2

1{)(2)(

)})((])(2[{)(

2222

1

12

1

211

11

01

1

11

21131

1

02121122

1

2

1

012

212121

012221

012221

01

2

22102

1

211

2

1211

1

0222

1

0

22

1

211

1

22

1

12

1

22

1

012

 p p y AC S  Ar  y A AC 

 pS  Ar  A AS  Ak  p y Ar  A A

 X  Ak S r  A A pr  A Ar  A A

 pk  A z  pa pS S  Ar  A pr  A

 p y A AC C  A pC  A yr  A f 

    

  

    

    

        

 

),2(

)]}2([{)](

)([)1()1()](

[)(]})([)({

2120

1

21

22

1

2

12

2

2

1

1

0222

1

1

0122

1

112121112212

2222

1

0

2

2222

1

22

1

122

1

1

1

02

  

 

        

      

 Ak  z aS 

 p y A y A p X  Ak a z  p y A

r  A A AC S  p AS 

 p pr C  p y A p AC S  Ar 

 

Page 6: Dq 35655671

7/27/2019 Dq 35655671

http://slidepdf.com/reader/full/dq-35655671 6/17

T. S. Amer et al. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671

www.ijera.com 660 | P a g e

)},(])(2[)({

)2(])()1([2

1

}])([2)({)()(

)1(})]())(())(

([])(][)([{

}]))()()((2)(2

1[)(){(])(2[

})(}]2

1)([{

])(2[)({)(

22

11

2222

1

2

1

12

1

021

0

1

121221

1

03120

1

11

021122211131

1

02222

1122

1

2

1

0122212

1

01

2222112

1

012

1

01221

2121

012221

012221

01

2

210

1

212111122

2

22

2

1

1

2221212110

1

1

21

1

22

112

22

11

0123

 p y AC  p y A p AC  pr 

 z a Ak S  p Ak r  A A z aS 

 z k S S  pS  A Ar  pS 

 A Ak  p y Ar  A A pS r  A A

 p X  X S r  A Ar  A A Ak 

S r  A A pr  A Ar  A A

 Ak  z aS S  p

 p p AC S  Ak  pS  z a Ak 

 p AC  p y AC C r  A f 

      

  

       

  

       

   

            

      

   

(16)

.)2(

])()[(2}])2(

[{}]))()(())(

([)(])(][)([{

])()[1()2(])(

)([)(}])([]

)2

1([))(({)(

2120

1

21

2122

1

021122

1

2

2

22

1

2

1

2

2

2

0

1

2

1

012221

1

01212

22222

11

012222

1

02112

212122211221122122

221222

1

1

1

0222

1

0211222121

110

1

1222212222

11

1

1

0113

  

     

       

     

             

        

     

 Ak  z aS 

 p Ak r  AS  p y A X  p y A y A

 p X  z a pr  A Ar  A AS 

 p p p y Ar  A Ar  AS  p X 

S S  p AS S  p p

 pS  p Ar C r  AS  pS  Ak 

S  z a Ak  p pS  p y A Ar C  A

 

The first integral of system (15) can be obtained from (2) in the form

.1)(})2

1

(2])(][)([2

])(2[{}])(

][)([{2])(2[

2

011

22

2

2122122

1

0112

1

0122

1

012122222

2

2

22

21

1

01212

22

1

012222

1

01222

2

2

 

    

    

        

S S  pS r  AS r  A A X 

r  A AS  p p pS r  A AS 

 pr  A A pr  A A

(17)

Our aim is to find the periodic solutions of 

system (15) under the condition C  B A or 

C  B A ( 2  is positive). This means that, the

 body is set in a fast initial spin 0r  about the major axis

of the ellipsoid of inertia or about the minor axis of the

ellipsoid of inertia.

IV.  Formal Construction of the Periodic

SolutionsSince the system (15) is autonomous, the

following conditions

,0),0(

,0)0,0(

,)0,0(

2

2

1

1

12

  

 p

 y B AC  p

(18)

do not affect the generality of the solutions [23]. The

generating system of (15) is

,0,0 )0(2

)0(2

)0(2

2)0(2     p p (19)

which admits periodic solutions with period

nT   20 in the form

,cos,sincos 3

)0(

221

)0(

2        M  M  M  p

(20)

where )3,2,1(, i M i are constants to be

determined. So, we suppose the required periodic

solutions of the initial autonomous system in the form

Page 7: Dq 35655671

7/27/2019 Dq 35655671

http://slidepdf.com/reader/full/dq-35655671 7/17

T. S. Amer et al. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671

www.ijera.com 661 | P a g e

),(cos)(),(

),(sin)(cos)(),(

1

332

1

22112

        

            

 H  M 

G M  M  p

(21)

with period ).()( 0     T T  The quantities 1   ,

2    and 3   represent the deviations of the initial

values of  22, p p and 2  of system (15) from their 

initial values of system (19); these deviations are

functions of    and vanish when 0  . The initial

conditions of (21) can be expressed as

.0),0(,),0(),(),0(,),0( 2332222112               M  M  p M  p (22)

Let us define the functions )( k G and ),3,2,1()( k  H k    by the operator [23]

  

  

k k 

k k 

h g u H GU 

 M u

 M u

 M u

 M uuU 

,,,

21 2

12

1

2

3

3

2

2

1

1

         (23)

where

.)3,2,1()(sin)()(

,)(sin)(1

)(

0

111

)0(

0

111

)0(

k t d t t h

t d t t  F  g 

k k 

k k 

 

 

   

   

 

(24)

 Now, we try to find the expressions of the functions)0(

2

)0(

1

)0(

1 ,, F  F  and)0(

2 . The periodic solutions (20) can

 be rewritten as

,cos),(cos 3

)0(

2

)0(       M  E  p (25)

where

.tan, 12

12

2

2

1 M  M  M  M  E     

Making use of (25) and (13), we obtain

],)sin(sin[)(2sin)(2

]})(2cos1)[1(2

1sincos{

1

02

21

0133

2222222)0(

11

       

       

 Ac X  E ar  A A M ak 

 X  X aE S 

 

],sin)cos1([

}])(sinsin[)(sin{

}])1[(cos)1(2

1])1([cos)1(

2

1cos{

213

1

01223

1

3

)0(

21

  

      

         

 y y M 

r  A A E  y M  AC  X a

 X  X a E  M S 

 

Page 8: Dq 35655671

7/27/2019 Dq 35655671

http://slidepdf.com/reader/full/dq-35655671 8/17

T. S. Amer et al. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671

www.ijera.com 662 | P a g e

,)(sin)(}]]))sin(sin(sin[

)()sin(sin[])cos(coscos[

{})sin(sin])sin(sin[)({

}])(coscoscos[])(coscos[{

)0(

210

1

0223

2

2

)0(

213

1

0232

332

1

0

)0(

112

2

31

)0(

12

S k  z  Ac M  X  E S  M 

r  A X  M  E 

 M  E ak  M r  AS 

 E  X a M  X  E aS 

           

           

           

            

(26)

.}])sin(

sin[])cos(cos[{}])(

))(sin([sin])sin(sin[

])([])(sinsin[

{}sin)cos1(])(coscos[{

)0(

213

21

1

0

2

122

)0(

112

1

0323

1

0

2

1

)0(

212

1

22

222

2

222

313

222)0(

22

S  y

 y y E r  A A

S r  A M  X  M 

r  A AS  A X C  y E  X 

 E a M  M  E aS 

   

         

        

        

           

 

Substitution of (25) and (26) into formulas (16), to get

,cos)(

,]sincos[)(

,sin])([1{

,]cossin][)(2[

3

)0(

2

21

)0(

2

31

1

01

1

2

)0(

1

2122

1

01

)0(

1

   

     

 

     

 N  M 

 M  M  L F 

 M r C  AC  X a A y

 M  M  yr C  A A F 

(27)

where

,})(2])(

)1(´[2

1)]1(

2

1)[({

)(])(2[])1([)(

1

0

2

22

2

2

2

1

22

1

2

3

222

2

222

1

2

1

1

3

1

0

1

011

2

10

1

  

   

        

 Ac X  M a M  M 

 X aC  M k  X  M  X  M a

 A Ar r  Aak  A z a L

(28)

.])()

()[2()(2

)()]1(

[))(1()()(

1

01221

131

1

0

1

0

2

22

1

1

1

0

2

2

1

1

2

1

1

0

2

2

2

1

222

2

222

1

r  A X  M a y

 M a M  Ak a z  Ac X  M a

 Aar  y X  A Ak 

b z  M  M a X  M  X  M a N 

 

  

      

   

 

Form (24), (27) and (28), the following results are obtained

).()(,0)(

]},)([1{)(,0)(

),()(),()()(

,)(2)(

,)(2)(

30202

1

1

01

1

230101

1022

1

02

22

1

01201

22

1

01101

  

 

     

  

 

 N  M nT hT h

r C  AC  X a A y M nT hT h

 L M nT  g  L M nT  g 

 yr C  A A M nT  g 

 yr C  A A M nT  g 

(29)

Substituting (22) into (17) for  0  , we obtain

Page 9: Dq 35655671

7/27/2019 Dq 35655671

http://slidepdf.com/reader/full/dq-35655671 9/17

T. S. Amer et al. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671

www.ijera.com 663 | P a g e

.1)(])(

)())(([22

2

022

1

01223311

2

333

2

3

   

            

 M 

r  A A M  M  M  M  

Supposing that 0  is independent of  ,  we get 3 M  and 3   as

.)(,0)()1( 1133

1

0

2

0321

         M  M  M  (30)

The independent conditions for the periodicity are [21]

),(])()()([])([

,0])([}]))(

()(1)[)(()({

,0])([

}]))(()(1)[()({)(

032

020111

0133

02

11

01

33

1

0111

1

1111

02

11

0133

1

011

2

1

1

2

       

 

          

 

         

T  H T  H T  H r  A M 

T Gr  B

 M r  A y A AC  N  Ln

T G

r  A M r  A N  Ln

(31)

where )(1   L and )(1   N  can be obtained from (28) by replacing 21, M  M  and 3 M  by 21,     and

33   M  respectively. Then, we have

),()()()()()()( 43201

2

2

2

11

2

1             W W k W  z W  N  L (32)

where

,))(1(])(][1)([2

1

)(

22

31

1

0

22

1 X a A Ar  X aW      

 

]},)())((1[1{)( 1

0

2

1223311

211

2

r  A Aa M  yaaaW            

],)(2))((21[)( 2

1

0

2

1233111

2

13

r  A Aa M  ya A AW            

.]})([2)(41{4

1

)1()()2()()(

2

2

2

1

1

02

2

2

22

1

4

1

21

21

21

014

          

         

 X  Ac X  X  ya

 A y X  Ar  AaW 

 

From the condition that the  z  axis has to be

directed along the major or the minor axis of the

ellipsoid of inertia of the body, it follows that0)(1

 W  for all   under consideration. So, let

us assume

.0)()()( 4320     W W k W  z   

Using (31), the expression of  1   and 2   are obtained

in the form of a power series of integral powers of    .These expansions begin with terms of order higher 

than2

  . Consequently, the first terms in the

expansions of the periodic solutions and the quantity

)(   can be expressed as

,

]cos)([ 31

12

0

2

1

2

211

      M r  A AC  y p 

,sin]

)(2[

32

32

2

012

1

1

   

 

 M  X 

r  A Aak  y A X C q 

,sin)(11

0133

2

1    r  A Aa M k r   

,cos31    M   

Page 10: Dq 35655671

7/27/2019 Dq 35655671

http://slidepdf.com/reader/full/dq-35655671 10/17

T. S. Amer et al. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671

www.ijera.com 664 | P a g e

,]}sin)(2[sin)(

sin{]}sin)cos1([1{)(sin

3

1

012

1

0133

32

2

213

1

01231

  

         

 M  X r  A Ar  A Ab M k 

 M  X  y y M r  A A M  

.}sin)(

]sin)(sin)cos1([sin)(

)2cos1)((21)cos1({

]sin)(sin)cos1([1

1

013

1

0

2

1

2

22213

1

0

2

1

2221332

1

0

2

1

2

222131

 

    

           

     

r  A Aak 

r  A A yC a y y yr  A A

a X  M aa M 

r  A A yC a y y M 

 

.])2()()(

)1(}[])([1{)(

1

1

031

1

011

21

2

2

1

1

0

1

3330

1

1

 Ak a z  M  yr  Aa Ak  A X  y

a z  M r  An

  

          (33)

The solutions obtained in [22], [34] and [35]

have singular points when .,31,21,3,2,1    

These singularities are solved separately in [34], [36],[37] and [38]. In our problem when we used Ismail and

Amer's frequency   [23] instead of   , there are no

singular points at all. Moreover, the obtained solutions

are valid for all rational values of    and are

considered as a general case of [21], [22] and [23].

V.  Geometric Interpretation of MotionIn this section, the motion of the rigid body is

investigated by introducing Euler’s angles   , and , which can be determined through the obtained

 periodic solutions. Since the initial system is

autonomous, the periodic solutions are still periodic if 

t  is replaced by )( 0t t  , where 0t  is an arbitrary

interval of time. Euler’s angles, in terms of time t ,take the forms [27,28]

.cos,tan,1

,cos0

002

   

 

  

 

     

t d 

d r 

t d 

d q p

t d 

(34)

Substituting (33) into (34), in which t  has been replaced by 0t t  , and using relations (4), the following

expressions for the angles   ,   and   are obtained as

,tan,)2/( 3

1

000 M hr       

)],()([)]()([ 22

2

110 hht hht            

},])()([

])()([])()({[coseccos

33

2

2211000

hht 

hht hht c

   

         

 

)]},()([coscot)]()([{tan

)]}()([)]()({[coscot

4400330

2

22110000

hht chht 

hht hht ct r 

        

         

 

where

,sin])(1[cos)( 02

1

0

22

12011 t r  yr  A Aact r  yt     

,2cos)(tan2

1

sin}])([)({cos)()(

0210

032

1

12

1

01320312

t r  X a

t r k  Ar  A Aa y yt r a y yt 

     

     

 

],cos)(cos[)()( 0

1

102

1

0121 t r t  A Ar  A A yC t      

,2sintan)(

4

1]tan

2

1)[()( 002

1

1002212

1

0

22

12 t r  Ar t  X  y yC r  A At           

Page 11: Dq 35655671

7/27/2019 Dq 35655671

http://slidepdf.com/reader/full/dq-35655671 11/17

T. S. Amer et al. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671

www.ijera.com 665 | P a g e

0 40 80 120 160 200

16E-05

12E-05

8E-05

4E-05

0

- 4E-05

-8E-05

-14E-05

320

310

  0

Fig. (1) t-axis

 p -axis2a

 A = B < C 

 

,cos)(2sintan4

1

]tan)(tan)(tan[2

1)(

0

1

0

2

122001

1

0

0

1

0

2

12220

1

0

2

132

2

013

t r r  A A yC t r r 

t r  A A yr  A Aa y X C k t 

     

          

),()(),()(),()( 342211 t t t t t t          

.cos)(8

1)( 0

1

0133 t r r  A Aak t   

It is evident that the Eulerian angles   ,  

and   depend on some arbitrary constants

000 ,,     and 0r  ( 0r  is large). For  ,0  we

have 0,0    and 0r   . This permits

 permanent rotation of the body with spin 0r   

(sufficiently large) about the  z  axis.

VI.  Numerical Solutions Matching of 

Analytical Solutions This section is devoted to ascertain accuracy

of the obtained solutions.

(i ) We introduce the analytical solutions

through computer program. So, let us consider the

following data that determine the motion of the body

.566371.12,..)50,40,30,20,10,0(

,352.0,5,30,6.0,2000,1000

.4.33.32.50,.6.35.49.22

12

321

000

2222

T  smkg 

m z kg  M m Rmr 

mkg C mkg  B Amkg C mkg  B A

  

 

Consider  aa p 22 ,   denoting the analytical solutions

22,   p . The graphical representations for these

solutions are given in figures (1)-(5) for the case

C  B A and figures (6)-(10) for the case

C  B A .

(i i ) The quasilinear autonomous system (15) is

solved numerically using the fourth order Runge-Kuttamethod through another program with the same

 previous data and the initial values of the analytical

solutions. Consider  nn p 22 ,   to denote the numerical

solutions 22,   p . The numerical graphical

representations are given in figures (11)-(15) for the

case C  B A and figures (16)-(20) for the case

C  B A .

The comparison between the analytical and

the numerical solutions shows quite agreement between them, see the corresponding figures (1)-(5),

(11)-(15) and (6)-(10), (16)-(20) for the cases

C  B A and C  B A respectively. This

agreement gives powerful ascertain for the analytical

technique. The corresponding phase plane diagrams for 

some of these solutions describing the stability of the

solutions are given in figures (4), (5), (9), (10) for the

analytical solutions and (14), (15), (19), (20) for the

numerical solutions.

Here, the concerned plots represent the

functional time dependence of the amplitude of the

waves revealing when increases. We conclude

that when increases the amplitude of the wave

increases also and the number of the waves remain

unchanged, see figures (1), (2), (11) and (12) for the

case C  B A but for the case C  B A , we

can see from figures (6), (7), (16) and (17) that theamplitude of the wave decreases. Also, the solutions

a2  and n2  remain unchanged for different values of 

because these solutions do not include the variables

 B A,,,, 321 and C .

Page 12: Dq 35655671

7/27/2019 Dq 35655671

http://slidepdf.com/reader/full/dq-35655671 12/17

T. S. Amer et al. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671

www.ijera.com 666 | P a g e

0 40 80 120 160 200

4E-04

3E-04

2E-04

1E-04

0

-1E-04

340

330

350

Fig. (2) t-axis

 p -axis2a

 A = B < C 

0 40 80 120 160 200

2

1

0

-1

-2

Fig. (3) t-axis

-axis2a  340330 350

, , A = B < C 

 

1.4E-04 2.2E-04 3E-04 3.8E-04

0.012

0.008

0.004

0

-0.004

-0.008

-0.012

350

Fig. (4)  p -axis2a

 p -axis2a  A = B < C 

 

-2 -1 0 1 2

200

100

0

-100

-200

310

Fig. (5) -axis2a 

 

-axis2a   A = B < C 

 

0 40 80 120 160 200

14E-05

8E-05

4E-05

0

- 4E-05

-8E-05

-12E-05

-18E-05

  0

320

310

Fig. (6) t-axis

 p -axis2a

A = B > C 

 

0 40 80 120 160 200

1E-04

0

-1E-04

-3E-04

-5E-04

-7E-04

350

340

330

Fig. (7) t-axis

 p -axis2a

A = B > C 

 

Page 13: Dq 35655671

7/27/2019 Dq 35655671

http://slidepdf.com/reader/full/dq-35655671 13/17

T. S. Amer et al. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671

www.ijera.com 667 | P a g e

0 40 80 120 160 200

2

1

0

-1

-2

Fig. (8)

-axis2a

   340330 350, , A = B > C 

 

-6.2E-04 -5.4E-04 - 4.6E-04 -3.8E-04 -3.2E-04

0.014

0.008

0.004

0

-0.004

-0.008

-0.014

350

Fig. (9)p -axis

2a

 p -axis2a A = B > C 

 

-2 -1 0 1 2

200

100

0

-100

-200

310

Fig. (10)-axis

2a 

-axis2a  A = B > C 

 

0 40 80 120 160 200

16E-05

12E-05

8E-05

4E-05

0

- 4E-05

-8E-05

-14E-05

320

310

Fig. (11) t-axis

 p -axis2n

 A = B < C 

  0

 

0 40 80 120 160 200

4E-04

3E-04

2E-04

1E-04

0

-1E-04

350

330

340

Fig. (12) t-axis

 p -axis2n

A = B < C 

 

0 40 80 120 160 200

2

1

0

-1

-2

340330 350, ,

Fig. (13) t-axis

 A = B < C -axis2n

  

 

-2 -1 0 1 2

200

100

0

-100

-200

310

Fig. (15)

-axis2n

  

-axis2n  

 A = B < C 

 

1.4E-04 2.2E-04 3E-04 3.8E-04

0.012

0.008

0.004

0

-0.004

-0.008

-0.012

350

Fig. (14)p -axis

2n

 p -axis2n A = B < C 

 

Page 14: Dq 35655671

7/27/2019 Dq 35655671

http://slidepdf.com/reader/full/dq-35655671 14/17

T. S. Amer et al. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671

www.ijera.com 668 | P a g e

VII.  ConclusionThe problem of the three-dimensional motion of 

a gyrostat in the Newtonian force field with a

gyrostatic moment about one of the principal axes of 

the ellipsoid of inertia, is investigated by reducing the

six first-order non-linear differential equations of 

motion and their first three integrals into a quasilinear 

autonomous system with two degrees of freedom and

one first integral. Poincaré’s small parameter method is

used to investigate the periodic solutions of the present

 problem up to the first order approximation in terms of 

the small parameter   . The periodic solutions (33) are

considered as a generalization of those obtained in [21]

(in the case of the uniform force field), [22] (in the

case of the Newtonian force field) and [23] (in the case

of presence 3 only). The solutions and the correction

of the period for the latter problems can be deduced

from the obtained solutions in this work as limiting

cases by reducing the Newtonian terms and thegyrostatic moment. The introduction of an alternative

frequency   instead of    avoids the singularities

traditionally appearing in the solutions of other 

treatments. The analytical solutions are analysed

geometrically using Euler’s angles to describe the

orientation of the body at any instant of time. These

solutions are performed by computer program to get

their graphical representations. The fourth order Runge-Kutta method is applied through another 

computer program to solve the autonomous system and

represent the obtained numerical solutions. The

comparison between both the analytical and the

numerical solutions is considered to show thedifference between them. These deviations are very

0 40 80 120 160 200

1E-04

0

-2E-04

- 4E-04

-6E-04

-7E-04

330

350

340

Fig. (17) t-axis

 p -axis2n

 A = B > C 

 

0 40 80 120 160 200

2

1

0

-1

-2

Fig. (18)t-axis

-axis2n  340330 350

, , A = B > C 

 

0 40 80 120 160 200

14E-05

8E-05

4E-05

0

-4E-05

-8E-05

-12E-05

-18E-05

  0

320

310

Fig. (16) t-axis

 p -axis2n

 A = B > C 

 

-6.2E-04 -5.4E-04 - 4.6E-04 -3.8E-04 -3.2E-04

0.014

0.008

0.004

0

-0.004

-0.008

-0.014

350

Fig. (19)

p -axis2n

 p -axis2n A = B > C 

 

-2 -1 0 1 2

200

100

0

-100

-200

310

Fig. (20)

-axis2n 

-axis2n 

 A = B > C 

 

Page 15: Dq 35655671

7/27/2019 Dq 35655671

http://slidepdf.com/reader/full/dq-35655671 15/17

T. S. Amer et al. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671

www.ijera.com 669 | P a g e

small, that is the numerical solutions are in full

agreement with the analytical ones. The great effect of 

the gyrostatic moment is shown obviously from the

graphical representations.

References

[1] Arkhangel'skii, Iu. A., On the algebraicintegrals in the problem of motion of a rigid

 body in a Newtonian field of force, PMM 27,

1, 171-175, 1963.

[2] Kharlamov, P. V., A solution for the motion

of a body with a fixed point, PMM 28, 1,

158-159, 1964.

[3] Keis, I. A., On algebraic integrals in the

 problem of motion of a heavy gyrostat fixed

at one point, PMM 28, 3, 516-520, 1964.

[4] Ismail, A. I. and Amer, T. S., A Necessary

and Sufficient Condition for Solving a Rigid

Body Problem, Technische Mechanik 31, 1,

50 – 57, 2011.

[5] Arkhangel'skii, Iu. A., On the motion of the

Hess gyroscope, PMM 34, 5, 973-976, 1970.

[6] Arkhangel'skii, Iu. A., On the motion of 

Kowalewski's gyroscope, PMM 28, 3, 521-522, 1964.

[7] Arkhangel'skii, Iu. A., On the motion of 

Kowalewska's gyroscope in the Delone case,

PMM 36, 1, 138-141, 1972.

[8] F.M. El-Sabaa, A new class of periodic

solutions in the Kovalevskaya case of a rigid body in rotation about a fixed point, Celestial

Mechanics 37, 71-79, 1985.

[9] F.M. El-Sabaa, Periodic solutions in the

Kovalevskaya case of a rigid body in rotation

about a fixed point, Astrophysics and Space

Science 193, 309-315, 1992.

[10] F.M. El-Sabaa, The periodic solution of a

rigid body in a central Newtonian field,

Astrophysics and Space Science 162, 235-42,

1989.

[11] F.M. El-Sabaa, About the periodic solutions

of a rigid body in a central Newtonian field,

Celestial Mechanics and Dynamical

Astronomy 55, 323-330, 1993.

[12] Starzhinskii, V. M., An exceptional case of 

motion of the Kovalevskaia gyroscope, PMM

47, 1, 134-135, 1984.[13] Leshchenko, D. D. and Sallam S. N.,

Perturbed rotational motions of a rigid body

similar to regular precession, PMM 54, 2,

183-190, 1990.

[14] Leshchenko, D. D., On the evolution of rigid body rotations, International Applied

Mechanics 35, 1, 93-99, 1999.

[15] Malkin, I. G., Some problems in the theory of 

nonlinear oscillations, United States Atomic

Energy Commission, Technical Information

Service, ABC. Tr-3766, 1959.[16] Cid, R. and Vigueras A., About the problem

of motion of  n gyrostats: 1. The first

integrals, Celestial Mechanics 36, 155-162,

1985.

[17] Sansaturio, M. E. and Vigueras, A.,

Translatory-rotatory motion of a gyrostat in a

 Newtonian force field, Celestial Mechanics

41, 297-311, 1988.

[18] Cid, R. and Vigueras, A., The analyticaltheory of the earth's rotation using a

symmetrical gyrostat as a model, Rev. Acad.Ciencias. Zaragoza 45, 83-93,1990.

[19] Molina, R. and Vigueras, A., Analytical

integration of a generalized Euler-Poinsot

 problem: applications, IAV Symposium, No.

172, Paris, 1995.

[20] Nayfeh, A. H., Perturbations methods,WILEY-VCH Verlag GmbH & Co. KGaA,

Weinheim, 2004.

[21] Arkhangel’skii, Iu. A., On the motion about a

fixed point of a fast spinning heavy solid,

PMM 27, 5, 864-877, 1963.[22] El-Barki, F. A. and Ismail, A. I., Limiting

case for the motion of a rigid body about a

fixed point in the Newtonian force field,

ZAMM 75, 11, 821-829, 1995.

[23] Ismail, A. I. and Amer, T. S., The fast

spinning motion of a rigid body in the

 presence of a gyrostatic momentum 3 , Acta

Mechanica 154, 31-46, 2002.

[24] Ismail, A. I. Amer, T. S. and Shaker, M. O.,

Perturbed motions of a rotating symmetric

gyrostat, Engng. Trans. 46, 3-4, 271-289,

1998.[25] Amer, T. S., New treatment of the perturbedmotions of a rotating symmetric gyrostat

about a fixed point, Thai J. Math. 7, 151-170,

2009.

[26] Elfimov, V. S., Existence of periodic

solutions of equations of motion of a solid

 body similar to the Lagrange gyroscope,

PMM 42, 2, 251-258, 1978.

[27] Ismail, A. I.; Sperling, L., and Amer, T. S.,

On the existence of periodic solutions of a

gyrostat similar to Lagrange’s gyroscope,

Technishe Mechanik 20, 4, 295-304, 2000.

[28] Rao, A. V., Dynamics of particles and rigid bodies: A systematic approach, Cambridge

University Press, 2006.

[29] Faires, J. D., and Burden, R., Numerical

methods, Inc. Thomson Learning, 2003.

[30] Rotea, M., Suboptimal control of rigid bodymotion with quadratic cost, Dyn. Control 8,

55 – 80, 1998.

[31] El-Gohary, A., On the orientation of a rigid

 body using point mass, Appl. Math. Comput.

151, 163 – 179, 2004.

[32] Baruh, H., Analytical dynamics, WCB/McGraw-Hill, 1999.

[33] Amer, T. S., On the motion of a gyrostatsimilar to Lagrange’s gyroscope under the

Page 16: Dq 35655671

7/27/2019 Dq 35655671

http://slidepdf.com/reader/full/dq-35655671 16/17

T. S. Amer et al. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671

www.ijera.com 670 | P a g e

influence of a gyrostatic moment vector,

 Nonlinear Dyn 54, 249-262, 2008.

[34] Arkhangel’skii, Iu. A., On a motion of an

equilibrated gyroscope in the Newtonian force

field, PMM 27, 6, 1099-1101, 1963.

[35] Ismail, A. I., On the application of Krylov-

Bogoliubov-Mitropolski technique for treating the motion about a fixed point of a

fast spinning heavy solid, ZFW 20, 205-208,1996.

[36] Ismail, A. I., Treating a singular case for a

motion a rigid body in a Newtonian field of 

force, Arch. Mech. 49, 6, 1091-1101, 1997.

[37] Ismail, A. I., The motion of fast spinning rigid

 body about a fixed point with definite naturalfrequency, Aerospace Science and

Technology 3, 183-190, 1997.

[38] Ismail, A. I., The motion of a fast spinning

disc which comes out from the limiting

case 00   , Comput. Methods Appl. Mech.

Engrg. 161, 67-76, 1998.

Permanent Addresses:(1)

Mathematics Department, Faculty of Science, Tanta

University, Tanta 31527, Egypt.(2)

Mathematics Department, Faculty of Science, Al-

Azhar University, Nasr City 11884, Cairo, Egypt.(3)

Mathematics Department, Faculty of Science, Suez

Cana University, Egypt.(4)

Mathematics Department, Faculty of Science,

Minufiya University, Shebin El-Koum, Egypt.

Captions of Figures

Fig. 1

The graphical representation of the analytical solution

2 p via t  when

12 ..)320,310,0( smkg and  for the case

.C  B A  

Fig. 2

The graphical representation of the analytical solution

2 p via

t when

12 ..)350,340,330( smkg and  for the

case .C  B A  

Fig. 3

The graphical representation of the analytical solution

2  via t  when

12 ..)350,340,330( smkg and  for the

case .C  B A  

Fig. 4

The phase plane diagram of the analytical solution 2 p  

when12

..350

smkg  for the case

.C  B A  

Fig. 5

The phase plane diagram of the analytical solution 2   

when12..310

smkg  for the case

.C  B A  

Fig. 6

The graphical representation of the analytical solution

2 p via t  when 

12 ..)320,310,0( smkg and  for the case

.C  B A  

Fig. 7

The graphical representation of the analytical solution

2 p via t  when

12 ..)350,340,330( smkg and  for the

case .C  B A  

Fig. 8

The graphical representation of the analytical solution

2  via t  when

12 ..)350,340,330( smkg and  for the

case .C  B A  

Fig. 9

The phase plane diagram of the analytical solution 2 p  

when12 ..350

smkg  for the case

.C  B A  

Fig. 10

The phase plane diagram of the analytical solution 2   

when12..310

smkg  for the case

.C  B A  

Fig. 11

The graphical representation of the numerical solution

2 p via t  when

12 ..)320,310,0( smkg and  for the case

.C  B A  

Fig. 12

The graphical representation of the numerical solution

2 p via t  when

12 ..)350,340,330( smkg and  for the

case .C  B A  

Fig. 13

The graphical representation of the numerical solution

2  via t  when

12 ..)350,340,330( smkg and  for the

case .C  B A  

Fig. 14

The phase plane diagram of the numerical solution 2 p  

when12 ..350

smkg  for the case

.C  B A  

Page 17: Dq 35655671

7/27/2019 Dq 35655671

http://slidepdf.com/reader/full/dq-35655671 17/17

T. S. Amer et al. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.655-671

www.ijera.com 671 | P a g e

Fig. 15

The phase plane diagram of the numerical solution 2   

when12..310

smkg  for the case

.C  B A  

Fig. 16

The graphical representation of the numerical solution

2 p via t  when 

12 ..)320,310,0( smkg and  for the case

.C  B A  

Fig. 17

The graphical representation of the numerical solution

2 p via t  when

12 ..)350,340,330( smkg and  for the

case .C  B A  

Fig. 18

The graphical representation of the numerical solution

2  via t  when

12 ..)350,340,330( smkg and  for the

case .C  B A  

Fig. 19

The phase plane diagram of the numerical solution 2 p  

when12 ..350

smkg  for the case

.C  B A  

Fig. 20

The phase plane diagram of the numerical solution 2   

when12..310

smkg  for the case

.C  B A