Transcript
Page 1: U1. Transient circuits response - UAHagamenon.tsc.uah.es/Personales/philip/pagina_files/teaching/ac/docs/unit1.pdf · Circuit Analysis / Transient circuits response / Transient responses

1

U1. Transient circuits

response

Circuit Analysis, Grado en Ingeniería de Comunicaciones

Curso 2016-2017

Philip Siegmann ([email protected])

Departamento de Teoría de la Señal y Comunicaciones

Page 2: U1. Transient circuits response - UAHagamenon.tsc.uah.es/Personales/philip/pagina_files/teaching/ac/docs/unit1.pdf · Circuit Analysis / Transient circuits response / Transient responses

Index

• Recall

• Goals and motivation

• Linear differential equation (Recall)

• The homogeneous solution

• 1st and 2nd order linear differential equations

• Examples of 2nd order circuits

• Initial conditions

• Transient responses (example on 2nd order circuit)

• Cause of the transient responses

• Analysis using Laplace transform

Page 3: U1. Transient circuits response - UAHagamenon.tsc.uah.es/Personales/philip/pagina_files/teaching/ac/docs/unit1.pdf · Circuit Analysis / Transient circuits response / Transient responses

Recall

• Relation between i(t) and v(t) for the

passive elements R,L,C

– For R:

– For C:

– For L:

• Energy in these elements:

– Dissipated in R:

– Stored in C and L:

Circuit Analysis / Transient circuits response / Recall

)()( tRitv

dt

tdvCtitCvtq C

CC

)()()()(

dt

tdiLtv L

L

)()(

)(tiL

L vL(t)

)(tiC

C vC(t)

)(tiR

R vR(t)

2)(2

1)( tvCtW CC 2)(

2

1)( tiLtW LL

dttiRtW RR )()( 2

dt

tdqti

dq

tdWtv

)()(,

)()(

Page 4: U1. Transient circuits response - UAHagamenon.tsc.uah.es/Personales/philip/pagina_files/teaching/ac/docs/unit1.pdf · Circuit Analysis / Transient circuits response / Transient responses

Goals

• We want to solve circuits for whatever applied

source (not only DC and Sinusoidal Steady

State)

– Direct resolution in the time domain

– Resolution using Laplace transforms

• In particular we want to understand what

happens when an abrupt change takes place in

the circuit, which will produce the transient

response.

4

Circuit Analysis / Transient circuits response / Goals

Page 5: U1. Transient circuits response - UAHagamenon.tsc.uah.es/Personales/philip/pagina_files/teaching/ac/docs/unit1.pdf · Circuit Analysis / Transient circuits response / Transient responses

Motivation

• Signal transmission

Transient response

Circuit Analysis / Transient circuits response / Motivation

S.S.S.

Page 6: U1. Transient circuits response - UAHagamenon.tsc.uah.es/Personales/philip/pagina_files/teaching/ac/docs/unit1.pdf · Circuit Analysis / Transient circuits response / Transient responses

6

Examples of 2nd order circuits

• RLC-serial (http://en.wikipedia.org/wiki/RLC_circuit )

• RLC-parallel

dt

tde

Lti

LCdt

tdi

L

R

dt

tid

tetqCdt

tdiLtRi

tetvtvtv

g

g

gCLR

)(1)(

1)()(

)()(1)(

)(

)()()()(

2

2

dt

tdi

Ctv

LCdt

tdv

RCdt

tvd

dt

tdi

dt

tvdCtv

Ldt

tdv

R

titititidt

d

g

g

gCLR

)(1)(

1)(1)(

)()()(

1)(1

)()()()(

2

2

2

2

(Energy conservation)

(Charge conservation)

Circuit Analysis / Transient circuits response / Example 2nd order circuits

Page 7: U1. Transient circuits response - UAHagamenon.tsc.uah.es/Personales/philip/pagina_files/teaching/ac/docs/unit1.pdf · Circuit Analysis / Transient circuits response / Transient responses

7

Transient response

• Response of a circuit (voltage or current) when

an abrupt change happens (e.g. switching)

• Time evolution until achieving a new equilibrium

• The transition function follows exponential

variations (decreasing or increasing, fluctuating

or no fluctuating)

• They are solutions of linear differential equations

Circuit Analysis / Transient circuits response / Introduction

Page 8: U1. Transient circuits response - UAHagamenon.tsc.uah.es/Personales/philip/pagina_files/teaching/ac/docs/unit1.pdf · Circuit Analysis / Transient circuits response / Transient responses

8

General solution

),()()(

),()(...)()(

01

1

1

tytyty

tgtyadt

tyda

dt

tyd

ph

n

n

nn

n

yh(t) is the solution for g(t)=0: the Complementary, natural or homogeneous

solution. Gives the transient behavior of the circuit due to the passive elements.

It is dependent of the initial conditions.

yp(t) is a particular solution for the given source or forcing function g(t). The

particular solution looks like the forcing function, e.g.:

- If g(t) is constant, then yp(t) is constant

- If g(t) is sinusoidal, then yp(t) is sinusoidal (i.e. the S.S.S.)

The homogeneous solution decreases exponentially so that

y(t) yp(t)

Linear differential equation of order n:

Circuit Analysis / Transient circuits response / Linear differential equation

Page 9: U1. Transient circuits response - UAHagamenon.tsc.uah.es/Personales/philip/pagina_files/teaching/ac/docs/unit1.pdf · Circuit Analysis / Transient circuits response / Transient responses

9

The homogeneous solution

yh(t) is the solution for g(t)=0 (external energy

supply =0)

The solution has the form: yh(t)=A·exp(st) (“Ansatz”)

Circuit Analysis / Transient circuits response / The homogeneous solution

stkst

k

k

AsAdt

dee :since

n

k

ts

k

ts

n

tsts

h

n

n

n

n

kn AAAAty

ssss

asas

1

21

21

0

1

1

ee...ee)(

},...,,{

equation polynomial sticcharacteri ,0...

21

A1, A2, … are obtained with the initial (and/or boundary) conditions

characteristic polynomial equation

(“Eigenwerte”)

Page 10: U1. Transient circuits response - UAHagamenon.tsc.uah.es/Personales/philip/pagina_files/teaching/ac/docs/unit1.pdf · Circuit Analysis / Transient circuits response / Transient responses

10

1st and 2nd order linear

differential equations

2

0

1

012

2

2

),()()()(

n

n

a

a

tgtyadt

tdya

dt

tyd

is called the damping ratio (accounts for the energy loss)

n is called the natural frequency (maximum energy storage)

(http://en.wikipedia.org/wiki/Damping)

1

),()()(

0

0

a

tgtyadt

tdy

is a time constant (how fast yh(t) decreases)

Circuit Analysis / Transient circuits response / 1st nd 2nd order differential equations

1st order

2nd order

For circuits containing

one energy storage

element (C or L)

For circuits containing

two independent energy

storage element

Page 11: U1. Transient circuits response - UAHagamenon.tsc.uah.es/Personales/philip/pagina_files/teaching/ac/docs/unit1.pdf · Circuit Analysis / Transient circuits response / Transient responses

11

Example of 2º orden circuits

• RLC-serial (http://en.wikipedia.org/wiki/RLC_circuit )

• RLC-parallel

L

R

LC

dt

tde

Lti

LCdt

tdi

L

R

dt

tid

n

n

g

2,

1

)(1)(

1)()(2

2

CRLC

dt

tdi

Ctv

LCdt

tdv

RCdt

tvd

n

n

g

2

1,

1

)(1)(

1)(1)(2

2

Circuit Analysis / Transient circuits response / Ejemplos circuitos 2º orden

Page 12: U1. Transient circuits response - UAHagamenon.tsc.uah.es/Personales/philip/pagina_files/teaching/ac/docs/unit1.pdf · Circuit Analysis / Transient circuits response / Transient responses

12

Initial conditions

• For each energy storage element we need an

initial condition (at t=t0):

– For C: vC(t=t0) = V0

– For L: iL(t=t0) = I0

Circuit Analysis / Transient circuits response / Initial conditions

2)(2

1)( tiLtW LL 2)(

2

1)( tvCtW CL

vC(t) iL(t)

(t)

E(t)

Page 13: U1. Transient circuits response - UAHagamenon.tsc.uah.es/Personales/philip/pagina_files/teaching/ac/docs/unit1.pdf · Circuit Analysis / Transient circuits response / Transient responses

13

Condiciones iniciales

• When an abrupt change happens at t=t0 in a

circuit, there is always continuity in the

variation of the energies in C and L

– There is continuity in the voltage at C:

– There is continuity in the current trough L:

Circuit Analysis / Transient circuits response / Initial conditions

)()( 00

tvtv CC

)()( 00

titi LL

Justo después de t0 Justo antes de t0

(not so for the current iC(t))

(not so for the voltage vL(t))

Page 14: U1. Transient circuits response - UAHagamenon.tsc.uah.es/Personales/philip/pagina_files/teaching/ac/docs/unit1.pdf · Circuit Analysis / Transient circuits response / Transient responses

14

Example of transient response

01

:equationsticCharacteri

,e)(

form theof solutionsth equaion wi free) (source Homogeneus

,0)(1)()(

,0)(

)(1

)(

0For

)0(

0)0(

:0atconditionsInitial

2

2

LCs

L

Rs

Ati

tiLCdt

tdi

L

R

dt

tid

dt

tdiLtq

CtRi

t

Ev

i

t

2

st

gC

Discharge of the capacitor

Characteristic equation:

Circuit Analysis / Transient circuits response / Transient responses

dt

tdiLtRitvtvtv LRC

)()()()()(

Once i(t) is known we can obtain vC(t):

For t ≥0

Page 15: U1. Transient circuits response - UAHagamenon.tsc.uah.es/Personales/philip/pagina_files/teaching/ac/docs/unit1.pdf · Circuit Analysis / Transient circuits response / Transient responses

15

Type of solutions of the

homogeneous equation

.

)(

ee)()(

)0()0(

ee)(0)0(

Overdamped:ee)(

)1(,4If

)s :(units ,12

4

1,2being,0

21

21

1

0

121

21

0

2

1

1-20

2

11

2,1

2

0101

2

21

21

21

ssL

Eti

ssL

EAE

dt

tdiLRiv

AtiAAi

AAti

aa

aaas

LCa

L

Raasas

tsts

g

g

g

t

C

tsts

tsts

nn

nn

Overdamped

s2+a1s +a0= 0

Circuit Analysis / Transient circuits response / Transient responses

0 2 4 6

x 10-3

-0.025

-0.02

-0.015

-0.01

-0.005

0

t (s)

i(t

), (

A)

0 0,002 0,004 0.006

t (s)

vc(t

), (

V)

Eg

The voltage at C decreases. The

current first increases (in opposite

direction) then decreases to zero

because of the energy dissipated in R.

Page 16: U1. Transient circuits response - UAHagamenon.tsc.uah.es/Personales/philip/pagina_files/teaching/ac/docs/unit1.pdf · Circuit Analysis / Transient circuits response / Transient responses

16

Type of solutions of the

homogeneous equation

.2

4sine

4

2)(

4

2)(0)0(

,...π2,π,00sin)0(

frequency natural undamped theis 2

4: here

dUnderdampe:2

4sine)(

)1(,4If

2

102

2

102

10

1

0

1

2

10

d

2

1021

210

2

1

1

1

taa

aaL

Eti

aaL

EAE

dt

tdiLv

Ai

aa

taa

Ati

ssaa

ta

gg

g

t

C

ta

damped natual frequency

Underdamped

Circuit Analysis / Transient circuits response / Transient responses

The oscillation is a consequence of the

energy exchange between C and L. First

it moves from C to L, on the way some

energy is dissipated by R. Once the

remaining energy is stored in L it moves

back to C dissipating again some energy

in R and so on until all the energy is

dissipated by R.

Page 17: U1. Transient circuits response - UAHagamenon.tsc.uah.es/Personales/philip/pagina_files/teaching/ac/docs/unit1.pdf · Circuit Analysis / Transient circuits response / Transient responses

17

Type of solutions of the

homogeneous equation

.1

sin)()(0)0(

,...π2,π,00sin)0(

Undamped:sin)(

)0(,0If

.e)()(0)0(

e)(0)0(

damped Critically:e)(

22)1(,4If

0

1

0

1

01

1

2

2

0

21

21

1210

2

1

1

1

1

tLCL

CEti

aL

EAE

dt

tdiLv

Ai

taAti

a

tL

Eti

L

EAE

dt

tdiLv

tAtiAi

tAAti

L

Rassaa

gg

g

t

C

ta

g

g

g

t

C

ts

ts

n

Undamped

Critically damped

Circuit Analysis / Transient circuits response / Transient responses

undamped natual frequency

Page 18: U1. Transient circuits response - UAHagamenon.tsc.uah.es/Personales/philip/pagina_files/teaching/ac/docs/unit1.pdf · Circuit Analysis / Transient circuits response / Transient responses

18

Type of solutions of the

homogeneous equation

Discharge of the capacitor

Circuit Analysis / Transient circuits response / Transient responses

Page 19: U1. Transient circuits response - UAHagamenon.tsc.uah.es/Personales/philip/pagina_files/teaching/ac/docs/unit1.pdf · Circuit Analysis / Transient circuits response / Transient responses

19

Cause of the transient respinse

• RLC-serie. The resulting damping ratio is:

• RLC-parallel. The resulting damping ratio is:

L

R

n

2

CR n

2

1

Circuit Analysis / Transient circuits response / Causa of the transient response

L C

)(ti

R

v(t)

Is proportional to R

because the energy

dissipated in R increases

with R:

)(ti L C R

Is inversely proportional

to R since the energy

dissipated in R decreases

with R:

R

tvtRitp RR

)()()(

22

)()( 2 tRitpR

Page 20: U1. Transient circuits response - UAHagamenon.tsc.uah.es/Personales/philip/pagina_files/teaching/ac/docs/unit1.pdf · Circuit Analysis / Transient circuits response / Transient responses

20

Transient circuit’s analysis

using Laplace transforms

• By using Laplace transforms the circuits

can be solved much easily:

– No differential equation has to be obtained

– We will solve algebraic instead of differential

equations

– No need to perform the tedious operations to

calculate the constants (A1,A2,…) of the

solution

Circuit Analysis / Transient circuits response / Analysis using Laplace transform

Page 21: U1. Transient circuits response - UAHagamenon.tsc.uah.es/Personales/philip/pagina_files/teaching/ac/docs/unit1.pdf · Circuit Analysis / Transient circuits response / Transient responses

21

Laplace transform (L )

• The solutions are superposition's of

exponential decreasing functions starting from the initial instant (t=0)

• The Laplace transform (L) allows to transform

the differential equation into an algebraic

equation with coefficients A(s)

0

e)()()( dttytysA stL

n

ts

nnAty e)(

Circuit Analysis / Transient circuits response / Analysis using Laplace transform

Page 22: U1. Transient circuits response - UAHagamenon.tsc.uah.es/Personales/philip/pagina_files/teaching/ac/docs/unit1.pdf · Circuit Analysis / Transient circuits response / Transient responses

22

Some properties of L

L is lineal, F(s)= L[f(t)]

L of a derivation

Time translation

Translation in s domain

Theorem of the final and initial value

)()()()()()( 213213 sbFsaFsFtbftaftf

)0(...)0(')0()()( )1(21)( nnnnn ffsfstfstf LL

0)(if,)(e)( 000

ttftfttf

st LL

)(e)( tfasF taL

.)(lim)(lim

,)(lim)(lim

0

0

ssFtf

ssFtf

st

st

Circuit Analysis / Transient circuits response / Analysis using Laplace transform

Ohm’s and Kirchhoff law’s are still valid in L-domain

Differential equation are transformed into algebraic equations

Page 23: U1. Transient circuits response - UAHagamenon.tsc.uah.es/Personales/philip/pagina_files/teaching/ac/docs/unit1.pdf · Circuit Analysis / Transient circuits response / Transient responses

23

L of some functions • Step function displaced in time

• Slope

• Rec function

• Dirac delta function

• Periodic functions with period T

stst

s

AtuAttAu 00 e)(e)( 0

LL

stst

s

AttuAttuttA 00 e)(e)()(

200

LL

stst

s

AtuA

s

AttutuA 00 e1)(e)()( 0

LL

ststttt 00 e1)(e)( 0

LL

Ts

nTs

n

tgtgtf

e1

)(e)()(

LLL

)()()()(,)()( TtututftgnTtgtfn

Circuit Analysis / Transient circuits response / Analysis using Laplace transform

t0

A

t0 0

A

t0

t0

Page 24: U1. Transient circuits response - UAHagamenon.tsc.uah.es/Personales/philip/pagina_files/teaching/ac/docs/unit1.pdf · Circuit Analysis / Transient circuits response / Transient responses

24

L of some functions

• Exponential

• Sine

• Cosine

• In practice we will use a table with the most common inverse Laplace transforms (L-1) used for the resolution of the proposed problems

as

at

1

eL

22

cosas

sat

L

22

sinas

aat

L

Circuit Analysis / Transient circuits response / Analysis using Laplace transform

Page 25: U1. Transient circuits response - UAHagamenon.tsc.uah.es/Personales/philip/pagina_files/teaching/ac/docs/unit1.pdf · Circuit Analysis / Transient circuits response / Transient responses

25

Resolution using Laplace

• The circuits will be solved in the Laplace

domain:

– Draw the circuit in the transformed domain, for this

the initial conditions are deeded:

– The transformed circuit is then solved using the

known methods, thus, by applying the Kirchhoff laws

to the transformed currents and voltages:

– Ones you know the Laplace transformed voltage or

current, the inverse Laplace transform is applied to

get the currents and voltages in the time domain

)()(,)()( 11 sVtvsIti LL

).0(),0( CL vi

).(),( sVsI

(*): Convention: Laplace transformed variables in capital letters

(*)

Circuit Analysis / Transient circuits response / Analysis using Laplace transform

Page 26: U1. Transient circuits response - UAHagamenon.tsc.uah.es/Personales/philip/pagina_files/teaching/ac/docs/unit1.pdf · Circuit Analysis / Transient circuits response / Transient responses

26

L transform of the inductor

.)0(

)()(

)()(

)],([)(

)],([)(

00

s

isILsdte

dt

tdiLdtetvsV

tvsV

tisI

LL

stLst

LL

LL

LL

L

L

L

Circuit Analysis / Transient circuits response / Analysis using Laplace transform

Page 27: U1. Transient circuits response - UAHagamenon.tsc.uah.es/Personales/philip/pagina_files/teaching/ac/docs/unit1.pdf · Circuit Analysis / Transient circuits response / Transient responses

27

L transform of the capacitor

.)0(

)(1

)(1)0(1

)(1

)()(

)],([)(

)],([)(

00

s

vsI

sC

sIss

q

Cdtetq

CdtetvsV

tvsV

tisI

CC

C

stst

CC

CC

CC

L

L

L

Circuit Analysis / Transient circuits response / Analysis using Laplace transform

Page 28: U1. Transient circuits response - UAHagamenon.tsc.uah.es/Personales/philip/pagina_files/teaching/ac/docs/unit1.pdf · Circuit Analysis / Transient circuits response / Transient responses

28

L transform of the generator

• After the switching:

For example:

• If the switching happens at t00, perform a time translation by defining: t’=t-t0. This has to be taken into account by performing the inverse transform.

L

Circuit Analysis / Transient circuits response / Analysis using Laplace transform

G(s)

t=t0

22

cosas

sat

L

L sinat

a

s2 a2,

L E

E

s,

Page 29: U1. Transient circuits response - UAHagamenon.tsc.uah.es/Personales/philip/pagina_files/teaching/ac/docs/unit1.pdf · Circuit Analysis / Transient circuits response / Transient responses

29

Initial conditions

• The initial condition we need are:

– The currents trough each of the coils just after

the switching takes place: iL(t0+)

– The voltages at the terminals of the capacitors

after the switching takes place: vC(t0+)

• If they are not known, then they have to be

calculated by a previous (before the

switching) resolution of the circuit,

– Remember: iL(t0+)=iL(t0

), vC(t0+)=vC(t0

)

Circuit Analysis / Transient circuits response / Analysis using Laplace transform

Page 30: U1. Transient circuits response - UAHagamenon.tsc.uah.es/Personales/philip/pagina_files/teaching/ac/docs/unit1.pdf · Circuit Analysis / Transient circuits response / Transient responses

30

Resolution in the L-domain

• The transformed circuit is solved by applying the mesh or nod methods of the transformed voltages or the currents which depend on the variable s.

• The following expression for the voltage or current has to be obtained:

where the denominator is the characteristic equation:

From which the roots (s1 and s2) are obtained, these allows: – Predict the kind of solution

– Find the inverse in the Laplace transform table

01

2

)()(

asas

sfsY

0

2

112,101

2 42

10 aaasasas

Circuit Analysis / Transient circuits response / Analysis using Laplace transform

Page 31: U1. Transient circuits response - UAHagamenon.tsc.uah.es/Personales/philip/pagina_files/teaching/ac/docs/unit1.pdf · Circuit Analysis / Transient circuits response / Transient responses

31

Predicting of the kind of solution

• If the roods are real and different

• For equal and real roots

• For complex conjugated roots: s1,2=pjq

• Imaginary roots: s1,2=jq

tsts

AAtyssss

sf

asas

sfsY 21

1

ee)()()(

)( 11

2101

2

L

qtAetyqps

sf

asas

sfsY pt sin)(

)()()(

1

22

01

2

L

ts

tAAtyss

sf

asas

sfsY 1

1

e)()()(

)( 212

101

2

L

qtAtyqs

sf

asas

sfsY sin)(

)()()(

1

22

01

2

L

Circuit Analysis / Transient circuits response / Analysis using Laplace transform

Page 32: U1. Transient circuits response - UAHagamenon.tsc.uah.es/Personales/philip/pagina_files/teaching/ac/docs/unit1.pdf · Circuit Analysis / Transient circuits response / Transient responses

32

Inverse Laplace transform (L-1)

• The roots of the characteristic equation allows:

– To know beforehand the kind of solution

– It makes easier to find the inverse Laplace transform

in the inverse Laplace transform table.

• Do not forget: if there was a time shifting,

substitute t’ by t-t0 in the inverse transform.

• The obtained solution is defined for a time

interval after the switching.

• Check the initial condition.

Circuit Analysis / Transient circuits response / Analysis using Laplace transform

Page 33: U1. Transient circuits response - UAHagamenon.tsc.uah.es/Personales/philip/pagina_files/teaching/ac/docs/unit1.pdf · Circuit Analysis / Transient circuits response / Transient responses

33

Example 1

• In the circuit of the figure, the switcher is in position (1) since t = -. At t =/2 the switcher changes to position (2). Obtain the temporal evolution of iL(t).

Data: eg(t)=2cos2t V, R=2, L=1H, C=0.5F.

Circuit Analysis / Transient circuits response / Analysis using Laplace transform

Page 34: U1. Transient circuits response - UAHagamenon.tsc.uah.es/Personales/philip/pagina_files/teaching/ac/docs/unit1.pdf · Circuit Analysis / Transient circuits response / Transient responses

34

Example 2

• In the circuit of the figure, the switcher is in position (1) since t = -. At t =0 the switcher switches to position (2). Obtain the temporal evolution of vC(t).

Data: e(t)=10V, Rg=R1=1, R2=2, L=1H, C=2F.

Circuit Analysis / Transient circuits response / Analysis using Laplace transform

Page 35: U1. Transient circuits response - UAHagamenon.tsc.uah.es/Personales/philip/pagina_files/teaching/ac/docs/unit1.pdf · Circuit Analysis / Transient circuits response / Transient responses

35

Simulation with 5Spice

Circuit Analysis / Transient circuits response / Simulation

Page 36: U1. Transient circuits response - UAHagamenon.tsc.uah.es/Personales/philip/pagina_files/teaching/ac/docs/unit1.pdf · Circuit Analysis / Transient circuits response / Transient responses

36

Simulación con 5Spice

Circuit Analysis / Transient circuits response


Top Related