Transcript

Structure and Modelingof Polyhedral Oligomeric Silsesquioxane

(POSS) Systemsby

Stanley Anderson (Westmont College) Michael Bowers (UCSB)

Erin Shammel Baker , Jennifer Gidden (UCSB) Shawn Phillips, Tim Haddad, Sandra Tomscak,

(Edwards Air Force Base)

AcknowledgmentsProf. Michael T. Bowers

Bowers’ Group:Erin Shammel Baker Dr. Thomas WyttenbachDr. Jennifer GiddenDr. John Bushnell

Edwards AFB POSS GroupShawn Phillips,Tim Haddad,Sandra Tomczyk, Joe Mabry

$$$$AFOSR

NRC/NAS Senior Associateship

Outline

• Introduction and Concepts

• Ion Mobility Experiment

• Modeling Structures with AMBER

• Some Examples of POSS Studies

Drift cell

E

p(He)

IonFelFfriction

v = const.v = K EK = ion mobility

Concepts

K = f (T, p, q, µ, σ)

T = temperaturep = pressureq = ion chargeµ = reduced massK = ion mobilityσ = collision cross section

σ = f ( )He–ion interactionIon shape

Ion Mobility Experiment

in out

Drift cell

E

1–5 torr He

IonSource

IonSource MS2MS2 DetectorDetectorMS1MS1 Drift

CellDriftCell

vd

Ion Mobility Experiment

in out

Drift cell

IonSource

IonSource MS2MS2 DetectorDetectorMS1MS1 Drift

CellDriftCell

vd

Source

TOFDrift Cell

Quadrupole

TOF DetectorGlassl = 20 cmp = ~1.5 torr He

Erin S. Baker, Jennifer Gidden, David P. Fee, Paul R. Kemper, Stanley E. Anderson, and Michael T. Bowers, Int. J. Mass Spectrom. 2003, 227, 205-216.

Time-of-Flight (TOF) Mass SpectrometryTOF Mode

TOFDrift Cell

TOF Detector

Quadrupole

Time-of-Flight (TOF) Mass SpectrometryTOF Mode

m/z

Mass SpectrumSource

TOFDrift Cell

Detector

Source

Quadrupole

Time-of-Flight (TOF) Mass SpectrometryIon Mobility Mode

Glass, l = 20 cmp = ~1.5 torr HeE = 100 - 300 v

Single Structure

Multiple Structures

Arrival Time Distributions

Source

+ -

Experiment versus Theory

Experimental Method

ATD Mobility (K)

Time (s)

Inte

nsi

ty oAd tt

lEKv−

=•=

Experiment versus Theory

Experimental Method

ATD Reduced Mobility (Ko)

Time (s)

Inte

nsi

ty oAd tt

lEKv−

=•=

273760 T

pKK o=

lVE =

Experiment versus Theory

Experimental Method

ATD Reduced Mobility (Ko)

Time (s)

Inte

nsi

ty oAd tt

lEKv−

=•=

273760 T

pKK o=

lVE =

oo

A tVp

TKlt +

=

27376012

Experiment versus Theory

Experimental Method

p/V (torr/V)

0.0 0.005 0.01

t A(µ

s)

1000

500

1500

2000

2500

Reduced Mobility (Ko)

oo

A tVp

TKlt +

=

27376012

TKlslope

o

27376012

=

Experiment versus Theory

Experimental Method

Collision Cross-Section (σ)Reduced Mobility (Ko)

obo KTkNe 12

163

2/1

=

µπσ

TslopelKo

27376012

=

)1,1(Ω≈σ

AMBER(Annealing/Energy Minimization)

Experiment versus Theory

Theoretical Method

Molecular Mechanics/Dynamics Structures

AMBER(Annealing/Energy Minimization)

Dynamics simulations for 30 ps at 600-1400K

Cool structures to 50K using 10 ps dynamics

Energy minimize the structure

Use final structure as initial structure for next cycle

Experiment versus Theory

Theoretical Method

Molecular Mechanics/Dynamics Structures

Experiment versus Theory

Theoretical Method

Structures Collision Cross-Sections (σ)

Relative Energy (kcal/mol)

-5 0 10 15 20 25220

240

260

280

Cro

ss-S

ecti

on

2 )

SIGMA

5

Experiment versus Theory

Molecular Mechanics/Dynamics Structures Collision Cross-Sections (σ)

ATDs Mobilities (K) Collision Cross-Sections (σ)

Compare

Experimental Method:

Theoretical Method:

Examples of Bower’s Group Research Projects

Silicon-Oxygen Cage (POSS) Monomer and Polymer Characterization

Polyvinylene Polymers

Structure of Silver Clusters Deposited on Surfaces

Structure of DNA Double-Helix Oligomers

Structure of Oxytocin and the Role of Metal Ions

Beta-Amyloid (Alzeimer’s) Protein Structures

Examples of Bower’s Group Research Projects

Silicon-Oxygen Cage (POSS) Monomer and Polymer Characterization

Polyvinylene Polymers

Structure of Silver Clusters Deposited on Surfaces

Structure of DNA Double-Helix Oligomers

Structure of Oxytocin and the Role of Metal Ions

Beta-Amyloid (Alzeimer’s) Protein Structures

Why Study Silicon-Based Materials?

• A wide range of application from polymer modifiers to lubricants

• Improves physical and thermal properties of polymer systems

• Addition of silicon-oxygen substituentsgives polymers with– extended temperature ranges– reduced flammability– lower thermal conductivity– reduced viscosity– resistance to atomic oxygen– low density

• Major interest and funding by the Air Force!

Si

Si

O

O

Si

Si

Si

Si

O

O

O

O

SiO

Si

O

OO

OO

R R

R

R

R

R

R X

Anatomy of a Polyhedral OligomericSilsesquioxane (POSS®) Molecule

May possess one or more reactive groups suitable forpolymerization or grafting.

Thermally and chemically robust hybrid (organic-inorganic) framework.

Nanoscopic in size with an Si-Sidistance of 0.5 nmand a R-R distance of 1.5 nm.

Nonreactive organic (R) groups for solubilization and compatibilization.

Precise three-dimensional structure for molecular levelreinforcement of polymer segments and coils.

PAS-03-082

Si

Si

O

O

Si

Si Si

O

O

OH

OH

SiO

Si

O

OO

O OH

R R

R

R

R

R

R

R = i-Butyl, Et

T8T10

T12

Si

Si

O

O

Si

Si

Si

Si

O

O

O

O

SiO

Si

O

OO

OO

R R

R

R

R

R

R R

R = Me, Et, i-Bu, Cp, Cy, i-Octyl, Ph

POSS®: Versatile Structures

Closed Cage Open Cage

PAS-03-082

T8 =

Goals of POSS Work

• Understand how structure and functionality of POSS monomers affects polymer structure and properties

• Interact with synthetic chemists to characterize products and reaction intermediates

• Create materials with tailored properties.

Application Of Ion Mobility to POSS Characterization

3-D Structural Information

Ion Mobility Molecular Modeling

Cross-Sectional Areas

Structural differences withdifferent “R” groups

Identify MixtureDistributions

Structures ofIntermediates

“impurities” insynthesis

How structure changeswith size

(POSS oligomers)How POSS attachesto polymers

AMBER Modifications for POSS Modeling

• New parameters for all Si bonds, angles, dihedrals, and torsions (adapted from Si and Si-X parameters obtained from polysiloxane work).

Ref: H.Sun and D. Rigby, Spectrochimica Acta A, 1997, 53, 1301.Krueger, Et. al.,

• Atom charges for Si and O obtained from Gaussian calculations on model systems and x-ray structures; adjusted using AMBER RESP protocol.

• Starting structures generated in Hyperchem and imported into AMBER.

POSS Cross-Sections (Å2)

168162167Ph4D4(OH)4

153157154Cp4D4(OH)4

216216212Vi12T12

192193Vi10T10

258252Cy8T8(OH)2

248Cy7T7(OH)3

215222Cy6T6(OH)2

222225224Cy6T6

Theory (Na+) ♦

MALDI -TOF(Na+) *

x-ray∆POSS System

∆ from Tim Haddad at ERC Inc., Air Force Research Laboratory

∗ similar values for H+ ♦ similar values for neutral

Ref: J. Gidden, P.R. Kemper, E. Shammel, D.P. Fee, S Anderson, M.T. Bowers, Int. J. Mass Spectrom. 222 (2003) 63.

Ref: Erin S. Baker, Jennifer Gidden, David P. Fee, Paul R. Kemper, Stanley E. Anderson, and Michael T. Bowers, Int. J. Mass Spectrom. 2003, 227, 205-216.

0 100 200 300 400 500 600 700 800 900 100011001200130014000.0

0.2

0.4

Na+Sty8T8

(Matrix Peaks)

MALDI-TOF Mass Spectrum of Na+Sty8T8In

tens

ity (a

rb. u

nits

)

m/z

Spectrum of Na+Sty8T8

Na+Sty8T8

Arrival Time Distribution

Mass / charge

Experiment Complements Theory!

TheoreticalStructures

Cross-Sections (σ)

Relative Energy (kcal/mol)

Cro

ss-S

ecti

on

2 )

Experiment Complements Theory!

TheoreticalStructures

Cross-Sections (σ)

Relative Energy (kcal/mol)

Cro

ss-S

ecti

on

2 )

Experiment Complements Theory!

TheoreticalStructures

Cross-Sections (σ)

Relative Energy (kcal/mol)

Cro

ss-S

ecti

on

2 )

Experiment Complements Theory!

TheoreticalStructures

Cross-Sections (σ)

Relative Energy (kcal/mol)

Cro

ss-S

ecti

on

2 )

Na+Sty8T8 ATD

Na+Sty8T8 ATD

Na+Sty8T8 ATD

Na+Sty8T8 ATD

Arrival Time (µs)

Theory4 pairs

Theory3 pairs

Theory2 pairs

Ω = 320 Å2

ΩEXPT = 324 Å2

Ω = 328 Å2

ΩEXPT = 330 Å2

Ω = 338 Å2

ΩEXPT = 340 Å2

Theorycis impurities

Ω = 295, 307 Å2

ΩEXPT = 293, 310 Å2

POSS Aniline

Cp

Si

O

Si

Si

SiO

O

OSi

O

Si

Si

SiO

O

O

OO

OO

Cp Cp

Cp

Cp

Cp

Cp

NH2

Na+Cp7T8Aniline Mass Spectrum

m/z0 500 1000

Inte

nsi

ty

Na+

H+

Na+Cp7T8Aniline Mass Spectrum

m/z0 500 1000

Inte

nsi

ty

Na+

H+

σEXPT = 243 Å2

Na+Cp7T8Aniline Mass Spectrum

m/z0 500 1000

Inte

nsi

ty

Na+

H+

σEXPT = 243 Å2

Theoryσortho = 246 Å2

σmeta = 247 Å2

σpara = 247 Å2

Imidophenyl POSS

R =

SiO

Si O Si

O

SiO Si

O

OO

OSi

OO Si

OSiO

R

R

R

R

R

R

R

NO

O

Na+Cp7T8Imidophenyl Mass Spectrum

m/z0 400 800 1200

Inte

nsi

ty

Na+

H+

Na+Cp7T8Imidophenyl Mass Spectrum & ATD

m/z0 400 800 1200

Inte

nsi

ty

Na+

H+

σEXPT = 251 Å2

Na+ Cp7T8Imidophenyl Theoretical Structures

meta

σEXPT = 251 Å2

σTheory = 262 Å2

ortho

σEXPT = 251 Å2

σTheory = 252 Å2

para

σEXPT = 251 Å2

σTheory = 269 Å2

POSS Oligomers: Na+Cp7T8PMA

R =

SiO

Si O Si

O

SiO Si

O

OO

OSi

OO Si

OSiO

R

R

R

R

CH2

R

R

R

CH2

CH2

O

CH3

CH2

H

O nH

PMA = propyl-methacrylate

2000

Na+Cp7T8PMA Mass Spectrum

Mass / charge1400

Inte

nsi

ty

800 2600 3200

Na+ 2-mer Na+ 3-mer

Na+ 1-mer

Na+Cp7T8PMA Oligomer ATDs

Arrival Time (µs)

1200

Na+ 2-mer

Na+ 1-mer

Na+ 3-mer

1600 2000 2400 2800 3200

σ = 248 Å2

σ = 378, 402 Å2

σ = 539 Å2

Na+ Cp7T8PMA Monomer Theoretical Structure

Na+ 1-mer

σEXPT = 248 Å2

σTheory = 251 Å2

Na+ Cp7T8PMA Dimer Theoretical Structures

Na+ 2-mer

σEXPT = 378, 402 Å2

σTheory = 377 Å2

Na+ 2-mer

σEXPT = 378, 402 Å2

σTheory = 397 Å2

Na+ bonds to a Face Na+ bonds to Face and Backbone O’s

Na+ Cp7T8PMA Dimer Theoretical Structures

Na+ 2-mer

σEXPT = 378, 402 Å2

σTheory = 377 Å2

Na+ 2-mer

σEXPT = 378, 402 Å2

σTheory = 397 Å2

Na+ bonds to a Face Na+ bonds to Face and Backbone O’s

Na+ Cp7T8PMA Trimer Theoretical Structures

Na+ 3-mer

σEXPT = 539 Å2

σTheory = 549 Å2

Na+ Cp7T8PMA Trimer Theoretical Structures

Na+ 3-mer

σEXPT = 539 Å2

σTheory = 549 Å2

6-mers Comparison

PMMA

i-Bu7T8-PMA

POSS Summary and Future Directions• We think we understand monomer structure of a

variety of POSS’s – conformers, isomers and can model these successfully.

• We can analyze mixtures quantitatively and identify impurities

• Our knowledge of POSS structures are helping to understand how POSS can interact at the molecular level and result in property enhancements.

• What is the future direction? Want to be able to use what we’ve learned to understand how POSS is interacting in oligomers and polymers. We are working on higher oligomers of PMA as well as on polyimide polymers!

In conclusion

Thanks for coming….

http://bowers.chem.ucsb.edu


Top Related