Transcript
Page 1: SET EJERCICIOS CANALES DE GILES COLECCION SCHAUN

“UNIVERSIDAD NACIONAL DE SAN CRISTOBAL DE HUAMANGA”

ESCUELA DE FORMACION PROFESIONAL DE

INGENIERIA AGRICOLA

HIDRAULICA

(CURSO: RH-441)

TEMA: “SOLUCIONARIO DE PROBLEMAS ENCARGADOS – COLECCIÓN SCHAUM - GILES”

PROFESOR: Ing. PASTOR WATANABE, JORGE

ALUMNOS: HUAMÁN CHIPANA, JOSSIMAR

AYACUCHO – PERU

2011

Page 2: SET EJERCICIOS CANALES DE GILES COLECCION SCHAUN

10.61: Designado por YN la profundidad de la figura. Deducir una expresión para el flujo laminar a lo largo de una placa de anchura infinita. Considerando el volumen libre con anchura unidad.

Equilibrio de fuerzas:

Pero la tensión cortante:

es igual a dv

La velocidad media es:

De aquí tenemos teniendo en cuenta u=densidad.viscosidad cinematica y despejando

Page 3: SET EJERCICIOS CANALES DE GILES COLECCION SCHAUN

b

2b

DATOSQ=2.1m3/sV=1.3m/s

y = ba = 2b

10.63: Demostrar que la velocidad media V puede expresarse como:

V=0. 321n

R1

6(V ¿ )1

2

Solución:

10.66: Se quiere transportar un caudal de 2.1 m3/s en un canal abierto a una velocidad de 1.3m/s. determinar las dimensiones de la sección recta y la pendiente si la sección recta es; a) rectangular con una profundidad igual a su anchura; b) semicircular y c) trapezoidal con una profundidad igual a su anchura de la solera del canal y con pendiente de los lados 1/1 utilice n=0.020.

Solución:

Donde: A=Q

V De donde A=b×2b

Área hidráulica:A=2 . 1

1 .3=1. 615 m2

1 .615m2=2b2

b2=0 . 8077b= y=0. 90ma=2 y=1 .80m

Perímetro hidráulico:

V ¿=√τ∘

ρ

V=1n

R2

3 S1

2

S=τ∘

γ ´ R

V=1n

R2

3(τ∘

γ ´ R)1

2

γ= ρg

V=0. 321n

R1

6(V ¿ )1

2

Page 4: SET EJERCICIOS CANALES DE GILES COLECCION SCHAUN

1.80

3.052.44

2.44

1.22

3.15

P=2 y+b⇒P=1 .80+0 .9P=2 .70 m

Radio hidráulico:

RH= AP

=1. 6152. 70

=0 .6

Por formula de Manning.

Q=1n

R2/3 S1/2 A

S=(V ×n )

R2/3 ⇒

( (1.3×0 .020 )0. 62/3 )

2

=S

S= 0.0013b)

A=QV ⇒

2.11.3

=1 .6154=πr 2

2⇒ r=1. 014m

12

(3 b+b )×b=1 .654

b=0 .90y=0. 90

R=1 .6543 .446

=0.4688

S=1 .3×0 .02

0. 46882/3→S=0 .00185

10.67: Con que pendiente se trazaría el canal representado para transportar 14.79m3/s? (C = 55).

Q=14.79m3

A=12

(1. 22+3 .05 )×2 . 44=5.21 m2

P=1 .22+3. 05+3 .15=7 . 32 m

RH=5 .217 .32

=0 .712 m

QA

=C√ RS

S=( QAC×√ R )

2

=0 . 00374

Page 5: SET EJERCICIOS CANALES DE GILES COLECCION SCHAUN

1.22

6.10

T

1

1

10.68: El canal representado se traza con una pendiente de 0,00016 cuando llega a un terraplén de una vía de tren, el flujo se transporta mediante dos tuberías de hormigón (n=0.012) trazadas con una pendiente de 2,5m sobre 1000m ¿Qué dimensiones deberán tener las tuberías?

Figura 10.18

Solución:

S=0.00016

n=0.020

T=6.10+1.22=7.32m

A=( 6.10+7.322 )∗1.22=8.186 m2

P=1.22+6.10+1.22√2=9.045 m

R= AP

=8.1869.045

=0.905 m

Q= R2 /3∗S1/2∗An

=0.9052 /3∗0.000161 /2∗8.1860.020

=4.84 m3 /s

Ahora en la tubería

Numero de tuberías = 2

Por tanto el caudal de divide en dos

Q=2.42m 3/s

Page 6: SET EJERCICIOS CANALES DE GILES COLECCION SCHAUN

n=0.012

S=2.5/1000

A=π∗D2

4

P=π∗D

R=D4

2.42= R2 /3∗S1/2∗A0.012

=

( D4 )

2 /3

∗0.00251/2

0.012∗π

4∗D2

D=1.26 m

10.70: Circula agua a una profundidad de 1.90m en un canalrectangular de 2.44m de ancho.la velocidad media es de 0.579m/s ¿con que pendiente probable ewstara trazado el canal si C=55?

SOLUCION.

CANALRECTANGULAR

DATOS:B=2.44mV=0.579m/s

Page 7: SET EJERCICIOS CANALES DE GILES COLECCION SCHAUN

C=55S=?

P=B+2Y=2.44+2*(1.90)=6.24m

A=B*Y=2.44*1.90=4.636m

R=AP

=4.6366.24

=0.7429 m

EMPLEANDOLAFORMULA DE CHEZY PARA ELCALCULO DE LA PENDIENTE (S)

V=C √RSV 2=C2 RS

V 2

RC 2 =S

V 2

RC 2 =S

0.5792

0.7429∗552=S

RESPUESTA:

0.000149=S

10.72: ¿cuál es el caudal de agua en una tubería de alcantarillado vitrificado nueva de 61cm de diámetro, estando la tubería semillena y teniendo una pendiente de de 0.0025?

DATOS:Alcantarillado vitrificado nueva

Q=?D=61cmS=0.0025

SOLUCION

Page 8: SET EJERCICIOS CANALES DE GILES COLECCION SCHAUN

DE LA TABLA Nº 09 SE TIENE

(n=0.013 ; m=0.29)

p=π r❑

P=π∗0.305 mP=0.95819m

A= πD2

4∗2

A=π∗0.612

4∗2

A=0.1461237 m2

R= AP

=¿

R=0.14612370.95819

=0.1525 m

Por la ecuación de Manning se tiene:

v=R2/3∗S2

n

v=0.15252/3∗0.00251/2

0.013

V=1.098m/s

Q=A*V

Q=0.1461237*1.098m3/s

Q=0.1604m3/s

Page 9: SET EJERCICIOS CANALES DE GILES COLECCION SCHAUN

b

zy zy

Y

n = 0.013S=0.0004Q=2.55m3/s

10.74: Que profundidad tendrá el flujo de agua en una acequia en v con un Angulo de 90 grados n=0.013, trazado con una pendiente de 0.0004, si transporta 2.55m3/

b=2 zy ; Tg 45= zy

y=z→

1=z

b=2 y

A=zy2= y2

P=2 y √1+z2=2 . 828 y

RH=AP

= y2

2. 828 y=0 .35355 y

formula de maning

Q=1n

R2/3 S1/2 A

2 .55=10 . 013

(0 .353554 )2/3(0 .0004 )1/2∗ y2

(0 .353554 )2/3 y2=1 . 6575

y2/3 y2=3 .31502

Page 10: SET EJERCICIOS CANALES DE GILES COLECCION SCHAUN

b

zy zy

Y

?

y=1 . 5674→ y=1 .57 rpsta.

10.76:para construir una acequia de seccion triangualar se emplea madera serada. Cual devera ser el angulo en el vertice para poder transportar el maximo caudalcon una pendiente dada

b=2 zy ; Tg

θ2= zy

y=z→

tg

θ2=z

b=2 ySe sabe que para caudales máximos z=1 Entonces :

tgθ2=z

⇒ tg

θ2=1

θ2

=45 º

θ=90

10.78:una acequia desagua 1.19m3/s con una pendiente de 0.50m sobre1000m.La seccion es rectangulary el coeficiente de rugosidad es

Page 11: SET EJERCICIOS CANALES DE GILES COLECCION SCHAUN

b

Y

DATOSQ=1.19m3/sS=0.0005 n = 0.012yC=?bC=?

n=0.012 .Determinar las dimensiones optimas,es dicir,las dimensiones que dan el menor perimetro mojado

Sololucion

formula de maning

Q=1n

R2/3 S1/2 A

1 .19=10 .012

(y2

)2/3 (0 .0005 )1/2∗y2

y2/3 y2=0 . 6386

y8/3=1 . 0137

y=1 . 0051→ y=1 .00 mb=2 .01→b=2 m rpsta.

Page 12: SET EJERCICIOS CANALES DE GILES COLECCION SCHAUN

b = 4.88m

Y

DATOSQ=11.55m3/s

Y=0.863S=0.0002

n = ?

10.80: un canal rectangular revestido de 4.88mde anchura, trasporta un caudal de 11.55m3/s con una profundidad de0.863m.Hallar n si la pendiente del canal es de 1m sobre 497m (aplicar la formula de maninng)

SOLUCION.

A=b× yA=4 .88×0 .863=4 .21144 mP=b+2 yP=4 . 88+2(0 . 863)=6 .606 m

R=AP

R=4 . 211446 .606

=0. 6375

formula de maning

Q=1n

R2/3 S1/2 A

11. 55=1n

(0 .6375 )2/3(0 . 0002 )1 /2×4 .211442

n=0 .01207→n=0.0121 rpsta.

Page 13: SET EJERCICIOS CANALES DE GILES COLECCION SCHAUN

10.86. Diseñar el canal trapezoidal optimo para transportar 17m3/s a una velocidad máxima de 0.915m/s . Emplear n=0.025 y como pendiente de las paredes 1 vertical sobre 2 horizontal.

Solución: Datos:

Q=17m3

segVmax = 0.915m/sn=0.025Z=2:1

Desarrollando por M.E.H

R=Y2

≈ R=AP

M=√2√1+Z2−Z → M=√2√1+22−2 =1.57

A=QV

→ A=17

0.915=18.579m2

Y=1M

√A → Y=1

1.57√18.579 ¿2.74

b=AY

-ZY → b=18 .579

2.74-2(2.74) = 1.2897m

Page 14: SET EJERCICIOS CANALES DE GILES COLECCION SCHAUN

10.88: ¿cuál de los dos canales representados en la fig. 10.19 conducirá el mayor caudal si ambos están trazados con la misma pendiente?

Datos Q = ¿? m/s Q=¿?m/s Y=9m Y=6m n=0.012 n=0.010 b=20m b=20m

Para canal trapezoidal:

A=(b+ZY )Y =(20+1. 333 x6 )6→A=167 .988 m2

P=b+2 Y √(1+Z2)→P=20+2 x 6√ (1+1. 3332 )→P=39 .99 m

R= AP

=167 . 98839 .99

→R=4 .1997

Asumiendo una de 0.001

V=(10 . 010 )x 4 .199723 x0 . 001

12

V=8. 231541mseg

Q = V * A→ Q=8.231541*167.998=1382.8m3

s

Para canal rectangular:

A =b*y → A=20*9= 120m2

P=b +2y → P=20+2*9=38/m

Page 15: SET EJERCICIOS CANALES DE GILES COLECCION SCHAUN

R=AP

→ R=12038

= 3.1578m

V=(10 . 010 )x 3 .157823 x0 . 001

12

V=4 .54mseg

Q = V * A→ Q=4.54*120=544.53m3

s

Respuesta la sección trapezoidal

10.90 ¿Cual es el radio de la acequia semicircular B representada en la figura 10.21 si su pendiente S=0.0200 y C=50?

s1=65.242745

=0.0273 Q=0.2788∗c∗D2.63∗S0.5 c=50 s=0.0200

s2=73.633050

=0.0241

Q1+Q2=Q3…………………….1

Q1=0.2788∗100∗(61)2.63∗(0.0273)0.5 → Q1=212.86 ¿s ……2

Q2=0.2788∗110∗(76.2)2.63∗(0.0241)0.5 →Q2=423.87 ¿s ………32 y 3 en 1

Q1+Q2=Q3 →Q3=212.86+423.87=636.73 ¿s

s4=36.61220

0.0300

Q4=0.2788∗120∗(91.5)2.63∗(0.0300)0.5 →Q4=834.78 ¿s

198.05=0.2788∗50∗(2 r )2.63(0.0200)0.5

r2.63=0.197786r=0.5399 m

Page 16: SET EJERCICIOS CANALES DE GILES COLECCION SCHAUN

10.92 Una tubería de alcantarilla n=0.014 esta trazada con una pendiente de 0.00018 y por ella circula un caudal de 2.76m3/seg. Cuando la profundidad es el 80% de la profundidad total determinar el diámetro requerido en la tubería.

n=0.014 R= AP

=(∆ AOCE−∆ AOCDArco ABC )S= 0.0018Q=2.76 m3

s

cosθ=0.36d0.44d

→θ=38° 56’∆ AOCE=( 2 A

360 )∗( 14

π d2)=0.1699 d2

Area ABC=πd−( 2 A360 )∗πd=2.46192 d

Area∆ AOCD=2∗12

∗(0.35 d )∗¿

Page 17: SET EJERCICIOS CANALES DE GILES COLECCION SCHAUN

R=

π d2

4−[ ( 0.1699 d2 )−(0.09899 d2)]

2.46192 d=0.714488 d2

2.46192 d=0.2902 d

Q=1n∗R2/3∗S1 /2∗A

2.76= 10.014

∗0.29022 /3∗0.000181 /2∗0.714488 d2

d83=9.19217

d=2.31

10.94: Por una tubería de 1m de diámetro circula un caudal de agua de 0.40m3/s a

una velocidad de 0.80m/s. determinar la pendiente y la profundidad de la

corriente.

Solución

0.63 m

1m

AD 2

=0 . 5212=A(1)2

=0 . 5212

A=0 .5212

YD

=0 . 631

Page 18: SET EJERCICIOS CANALES DE GILES COLECCION SCHAUN

2839.0)1(

R

R=0.2839 ηConcuen

Por Manning

Q =

1n

xR2 /3 xS1/2 xA

0.40 =

10 .012

x(0 .2839 )2/3 xS1/ 2 x 0.52 x12

S= 4.55

10.96: Calcular la energía específica cuando circula un caudal de 8.78m3/s por un

canal trapezoidal cuya solera tiene 2,44m de ancho, las pendientes de las paredes 1

sobre y la profundidad 1.19m.

Q= 8.78 m3/seg

Q=VxA

A= (b+yz)y

qu=

Qb

=VxAb

=(b+ yz ) yxv

b

qu=

(2 . 44+1 .19 )1. 19 xV2. 44

qu= 1.77V

∴ qu=

8 .782. 44

=3 .59

Energía específica

E = Y+( q

1. 77 )2

x1

2 g

2839.0D

R

Page 19: SET EJERCICIOS CANALES DE GILES COLECCION SCHAUN

E = 1.19 + ( 3 .59

1. 77 )2 12 g

E = 1.4

10.98. En el problema 10.95. ¿Con que profundidades debe circular el caudal de 6,23 m3/s para que la energía específica sea 1.53 m.kp/kp? ¿Cual es la profundidad crítica?

Datos:Q=6.23 m3/sE=1.05 m.kp/kpb=3.05m

q=Qb

Calculo del caudal unitario:

q=6 .23m3 /seg3 . 05m

=2.04 m3 /seg

E=Y + 12g ( q

y )2

1 .53=Y + 119 . 62 ( 2. 04

y )2

y3−1 .53 y2=−0 . 212

Por aproximaciones sucesivas, encontraremos el valor de y:

Y=0.445,

yc=3 √ q2

g=3√ 2 . 042

9 . 81 =0.75m.

10.100. En un canal rectangular de 3.05 m de ancho el caudal es de 7.50 m3/s cuando la velocidad es de 2.44 m/s. Determinar la naturaleza del flujo.

Page 20: SET EJERCICIOS CANALES DE GILES COLECCION SCHAUN

B = T = 3.048 m

Yc = 0,981 m

b = 3.048 m

Q =

Q = V x A

Q=7 . 50 m3/ seg

V=2. 44 m /seg

yc=3√ q2

g

q=7 .503. 05

=2 .46 m3 /seg .ml

yc=0 . 85m

V c=√2 y c=1 .30m / sg

2 .44√9 . 81×0 . 85

=0. 84

0 .84∠1

Por lo tanto es un flujo sub. Crítico.

10.102: Para una profundidad critica de 0,981 m en un canal rectangular de 3,048 m de ancho, calcular el caudal.

DatosY= 0.981 m

Page 21: SET EJERCICIOS CANALES DE GILES COLECCION SCHAUN

1

Q= 20,04 m3/89

AH1

4,88 m

X= ZY

VC = ¿?

Z= 1

A.-Hallando el Área Hidráulica

AH1 = b x Yc = 3.048 m x 0,981 m = 2.990 m2

B.-Form. Marring: V = QA

= 1n

. R2/5 x 51/2

RH1 = by

b+2 y =

3.048 x 0.9813.048+2(0.981) = 0,597 m2

C. - Hallandolaε ° minima

YC2/3

= ε °Min E = YC+Q2

29 X Y C2

D. - Hallando el “qv”q = √2x 9.81 x (0.981)2(1.47−0,981)q = 3.04m3/S. ml

qu = Qb⟹ Q= qu x b

Q= 3.04 X 3.048 Q= 9.28 m3/S.

10.104: Un canal trapezoidal, cuyas paredes tienen una pendiente de 1 sobre 1, transporta un caudal de 20.04 m3/ s. para una anchura de solera de 4,88 m, calcular la velocidad critica.

Y

Page 22: SET EJERCICIOS CANALES DE GILES COLECCION SCHAUN

A.- Hallando al qv = ¿?

qv = Qb⟹ 20,04 m3

4,88 mx 89 = 4,11 m3/s. ml

B.- Hallando la Prof. Critica (YC)

YC = √ qv2

g = √¿¿¿ = 1,31 m

C.- Hallando la velocidad crítica (VC).

VC = √ gxY C

VC = √9.81 x1,31VC = 3,58 m/s..

10.106: un canal rectangular(n=0.016) trazado con una pendiente de 0.0064 transporta 17m3/seg. de agua en condiciones de flujo critico ¿que anchura deberá tener el canal?

n= 0.016s= 0.0064

Q= 17 m3

sb=?

UTILIZANDO LA FORMULA DE MANING

Q=1n∗R2/3∗S1 /2∗A………… (1)A= by →P=2y+b RH= A

P= by

2 y+b…………….(2)(2) en (1)

Page 23: SET EJERCICIOS CANALES DE GILES COLECCION SCHAUN

Flujo critico → y= 1.63 m17=( 1

0.016 )∗( by2 y+b )

2/3

∗(0.0064)0.5∗by

17=62.5∗0.08∗( by2 y+b )

2 /3

∗by

1762.5∗0.08

=( 1.63 b2∗1.63+b )

2 /3

∗1.63b

3.4=( 1.63 b3.26+b )

2 /3

∗1.63 b

Despejando el valor de “b” esb=2.592

10.108: Un canal rectangular(n=0.012) de 3.05m de ancho y trazada con una pendiente de 0.0049 transporta 13.6m3/seg. De agua para producir un flujo critico el canal de contrae. ¿Qué anchura deberá tener la sección contraída para cumplir esta condición si se desprecia las pérdidas producidas en la gradual reducción de la anchura?

n= 0.012s= 0.0049

Q= 13.6 m3

sb= 3.05

Relación geométricaA1=b1+ y1

P=b1+2 y1

Por maning

Q=1n∗R2/3∗S1 /2∗A

13.6= 10.012

∗( AP )

2 /3

∗(0.0049)1 /2∗A

Page 24: SET EJERCICIOS CANALES DE GILES COLECCION SCHAUN

13.6= 10.012

∗( 3.05 y1

3.05+2 y1)

2/3

∗(3.05)1 /2∗y1

y1=1.049 m

Q1=Q2

S2=S1

SE PIDE FLUJO CRITICOy2=2.57 m

POR MANING

Q=1n∗R2/3∗S1 /2∗A

Q2=1

0.012∗( A2

P2)

2/3

∗(0.0049)1/2∗A2

13.6= 10.012

∗( b2∗2.57

2∗2.57+b2)

2 /3

∗(0.0049)1 /2∗2.57 b2

13.6(83.33∗0.07∗2.57)

=( b2∗2.57

2∗2.57+b2)

2/3

∗b2

0.9=( b2∗2.57

2∗2.57+b2)

2/3

∗b2

POR LO TANTO b2=1.3656 m

10.114: Demostrar la profundidad critica en un canal parabólico es 3/4 de la energía especifica mínima si las dimensiones del canal son Yc de profundidad y b’ de anchura de la superficie libre de agua.Solución:

Page 25: SET EJERCICIOS CANALES DE GILES COLECCION SCHAUN

VC=¿ √g × A

T¿

A=23

yc T

V C=√ 23

×√g× yc

V c2

2 g=

yc

3…………… ……………… ..(1)La ecuación de energía

Emin= yc +¿

V 22

2 g… …… …… … …… ….. (2)¿Reemplazando 1 en 2

Emin= yc +¿

yc

3¿

Emin=5 yc

3

yc=34

Emin

RptaEntonces se tiene la grafica

10.116: Para Un Canal Triangular Demostrar Que El Caudal Q=0.634(Emin)5/2 Se tiene la grafica

Solución: Si Q=A × V=12

× yc ×T ×√ 12

× g × yc

Page 26: SET EJERCICIOS CANALES DE GILES COLECCION SCHAUN

Q=12

× g2× T × yc

12

Q=( 12 )

3 /2

× g1/2× T × y c1 /2

Si Z=0.5 azud criticoT=2 × Z ×Y =2×0.5 × y c=¿T= ycReemplazando en la T

Q=( 12 )

3 /2

× g1/2× yc × yc1 /2

Q=( 12 )

3 /2

× g1/2× yc × yc1 /2

Q=( 12 )

32 × g1/2× yc

52

Q=( 12 )

3 /2

× 9.812 × yc5/2 …………………(1)

si yc=45

Emin……………………….(2)Reemplazamos 1 en 2Q=( 1

2 )32 × 9.811 /2×( 4

5Emin)

52

Q=0.634 × ( Emin)52 Rpta

Page 27: SET EJERCICIOS CANALES DE GILES COLECCION SCHAUN

Top Related