Transcript
Page 1: References - Springer978-94-007-6383-8/1.pdfBendat, J., & Piersol, A. (1971). Random data: Analysis and measurement procedures. New York: Wiley-Interscience. 4. Bendat, J., & Piersol,

References

1. Asami, T., Nishihara, O., & Baz, A. M. (2002, April). Analytical solutions to H1 and H2

optimization of dynamic vibration absorbers attached to damped linear systems. ASMEJournal of Vibration and Acoustics, 124, 284–295.

2. Bathe, K. J., & Wilson, E. L. (1976). Numerical methods in finite element analysis.Englewood Cliffs: Prentice-Hall.

3. Bendat, J., & Piersol, A. (1971). Random data: Analysis and measurement procedures. NewYork: Wiley-Interscience.

4. Bendat, J., & Piersol, A. (1980). Engineering applications of correlation and spectralanalysis. New York: Wiley-Interscience.

5. Blevins, R. D. (1979). Formulas for natural frequency and mode shape. New York: VanNostrand Reinhold.

6. Bourcier de Carbon, Ch. (1947). Perfectionnement à la suspension des véhicules routiers.Amortisseur relaxation. Comptes Rendus de l’Académie des Sciences de Paris, 225, 722–724(Juillet-Déc).

7. Bracewell, R. N. (1978). The Fourier transform and its applications. New York: McGraw-Hill.

8. Cannon, R. H. (1967). Dynamics of physical systems. New York: McGraw-Hill.9. Cartwright, D. E., & Longuet-Higgins, M. S. (1956). The statistical distribution of the

maxima of a random function. Proceedings of the Royal Society of London Series A.Mathematical and Physical Sciences, 237, 212–232.

10. Chalasani, R. M. (1984, Dec.). Ride performance potential of active suspension systems, Part1: Simplified analysis based on a quarter-car model. Anaheim, CA: ASME Symposium onSimulation and Control of Ground Vehicles and Transportation Systems.

11. Clough, R. W., & Penzien, J. (1975). Dynamics of structures. New York: McGraw-Hill.12. Craig, R. R. (1981). Structural dynamics. New York: Wiley.13. Craig, R. R., & Bampton, M. C. C. (1968). Coupling of substructures for dynamic analyses.

AIAA Journal, 6(7), 1313–1319.14. Crandall, S. H., & Mark, W. D. (1963). Random vibration in mechanical systems. New York:

Academic Press.15. Crandall, S. H., Karnopp, D. C., Kurtz, E. F, Jr, & Pridmore-Brown, D. C. (1968). Dynamics

of mechanical and electromechanical systems. New York: McGraw-Hill.16. Crandall, S. H. (1970). The role of damping in vibration theory. Journal of Sound and

Vibration, 11(1), 3–18.17. Davenport, A. G. (1961, August). The application of statistical concepts to the wind loading

of structures. In ICE Proceedings (Vol. 19, No. 4, pp. 449–472).18. Davenport, A.G. (1964). Note on the distribution of the largest value of a random function

with application to gust loading. In ICE Proceedings (Vol. 28, No. 2, pp. 187–196).

A. Preumont, Twelve Lectures on Structural Dynamics,Solid Mechanics and Its Applications 198, DOI: 10.1007/978-94-007-6383-8,� Springer Science+Business Media Dordrecht 2013

297

Page 2: References - Springer978-94-007-6383-8/1.pdfBendat, J., & Piersol, A. (1971). Random data: Analysis and measurement procedures. New York: Wiley-Interscience. 4. Bendat, J., & Piersol,

19. Davenport, A. G. (1966). The treatment of wind loading on tall buildings: Proceedings of thesymposium on Tall Buildings: University of Southampton. London: Pergamon Press.

20. Den Hartog, J. P. (1985). Mechanical vibrations (4th ed.). New York: Dover.21. Denman, H. H. (1992). Tautochronic bifilar pendulum torsion absorbers for reciprocating

engines. Journal of Sound and Vibration, 159(2), 251–277.22. Elishakoff, I. (1982). Probabilistic methods in the theory of structures. New York: Wiley.23. Ewins, D. J. (1984). Modal testing: Theory and practice. New York: Wiley.24. Fung, Y. C. (1969). An introduction to the theory of aeroelasticity. New York: Dover.25. Gawronski, W. K. (2004). Advanced structural dynamics and active control of structures.

Berlin: Springer.26. Gawronski, W. K. (1998). Dynamics and control of structures-A modal approach. Berlin:

Springer.27. Genta, G. (2005). Dynamics of rotating systems. Berlin: Springer.28. Geradin, M., & Rixen, D. (1997). Mechanical vibrations, theory and application to structural

dynamics (2nd ed.). New York: Wiley.29. Goldstein, H. (1980). Classical mechanics (2nd ed.). Reading: Addison-Wesley.30. Hagedorn, P. (1981). Non-linear oscillations. Oxford: Clarendon Press.31. Hrovat, D. (1997). Survey of advanced suspension developments and related optimal control

applications. Automatica, 33(10), 1781–1817.32. Hughes, P. C. (1974, March). Dynamics of flexible space vehicles with active attitude control.

Celestial Mechanics Journal, 9, 21–39.33. Hughes, P. C. (1987). Space structure vibration modes: how many exist? which ones are

important? IEEE Control Systems Magazine, 7(1), 22–28.34. Hughes, T. J. R. (1987). The finite element method: Linear static and dynamic finite element

analysis. Englewood Cliffs: Prentice-Hall.35. Ikegami, R. & Johnson, D. W. (1986). The design of viscoelastic passive damping treatments

for satellite equipment support structures: Proceedings of DAMPING’86, AFWAL-TR-86-3059.

36. Inman, D. J. (1989). Vibration, with control, measurement, and stability. Englewood Cliffs:Prentice-Hall.

37. Inman, D. J. (2006). Vibration with control. New York: Wiley.38. Jeffcott, H. H. (1919). The lateral vibration of loaded shafts in the neighborhood of a whirling

speed. Philosophical Magazine, 6(37), 304–314.39. Jones, D. I. G. (2001). Handbook of viscoelastic vibration damping. New York: Wiley.40. Junkins, J. L., & Kim, Y. (1993). Introduction to dynamics and control of flexible structures.

AIAA Education Series.41. Kailath, T. (1980). Linear systems. Englewood Cliffs: Prentice-Hall.42. Karnopp, D. C., & Trikha, A. K. (1969). Comparative study of optimization techniques for

shock and vibration isolation. Transaction of the ASME, Journal of Engineering for Industry,Series B, 91, 1128–1132.

43. Krenk, S. (2005). Frequency analysis of the tuned mass damper. Journal of AppliedMechanics, 72, 936–942.

44. Krysinski, T. & Malburet, F. (2003). Origine et contrôle des vibrations mécaniques, méthodespassives et actives, Hermes-science, 2003.

45. Lalanne, M. & Ferraris, G. (1998). Rotordynamics prediction in engineering (2nd ed.). NewYork: Wiley.

46. Leissa, A. W. (1969). Vibration of Plates, NASA SP-160.47. Lin, Y. K. (1967). Probabilistic theory of structural dynamics. New York: McGraw-Hill.48. Meirovitch, L. (1980). Computational methods in structural dynamics. Alphena/d Rijd:

Sijthoff & Noordhoff.49. Meirovitch, L. (1990). Dynamics and control of structures. New York: Wiley.50. Meirovitch, L. (1970). Methods of analytical dynamics. New York: McGraw-Hill.

298 References

Page 3: References - Springer978-94-007-6383-8/1.pdfBendat, J., & Piersol, A. (1971). Random data: Analysis and measurement procedures. New York: Wiley-Interscience. 4. Bendat, J., & Piersol,

51. Miu, D. K. (1991). Physical interpretation of transfer function zeros for simple controlsystems with mechanical flexibilities. ASME Journal Dynamic Systems Measurement andControl, 113, 419–424.

52. Miu, D. K. (1993). Mechatronics–Electromechanics and contromechanics. Berlin: Springer.53. Miles, J. W. (1954). On structural fatigue under random loading. Journal of Aeronautical

Sciences, 21, 753–762.54. Nayfeh, A. H., & Mook, D. T. (1979). Nonlinear oscillations. New York: Wiley.55. Nelson, F. C. (2003). A brief history of early rotor dynamics. Sound and Vibration, 37(6),

8–11.56. Newmark, N. M., & Rosenblueth, E. (1971). Fundamental of earthquake engineering.

Englewood Cliffs: Prentice Hall.57. Papoulis, A. (1962). The Fourier integral and its applications. New York: McGraw-Hill.58. Ormondroyd, J., & Den Hartog, J. P. (1928). The theory of the damped vibration absorber.

Transactions of the ASME, Journal of Applied Mechanics, 50, 7.59. Preumont, A. (1994). Random vibration and spectral analysis. Dordrecht: Kluwer.60. Preumont, A. (2006). Mechatronics, dynamics of electromechanical and Piezoelectric

systems. Berlin: Springer.61. Preumont, A. (2011). Vibration control of active structures, an introduction (3rd ed.). Berlin:

Springer.62. Preumont, A., & Seto, K. (2008). Active control of structures. New York: Wiley.63. Reddy, J. N. (1984). Energy and variational methods in applied mechanics. New York:

Wiley.64. Shaker, F. J. (1975, Dec.). Effect of axial load on mode shapes and frequencies of beams,

NASA Technical Note TN D-8109.65. Spector, V. A., & Flashner, H. (1989). Sensitivity of structural models for noncollocated

control systems. ASME, Transactions, Journal of Dynamic Systems, Measurement, andControl, 111(4), 646–655.

66. Strang, G. (1988). Linear algebra and its applications (3rd ed.). San Diego: Harcourt BraceJovanovich.

67. Swanson, E., Powell, C. D., & Weissman, S. (2005, May). A practical review of rotatingmachinery critical speeds and modes. Sound and Vibration, 10–17.

68. von Karman, Th, & Biot, M. (1940). Mathematical methods in engineering. New York:McGraw-Hill.

69. Wang, Y. Z., & Cheng, S. H. (1989). The optimal design of dynamic absorber in the timedomain and the frequency domain. Applied Acoustics, 28, 67–87.

70. Wiberg, D. M. (1971). State space and linear systems McGraw-Hill Schaum’s Outline Seriesin Engineering.

71. Wildheim, S. J. (1979, Dec.). Excitation of rotationally periodic structures. Transaction of theASME, Journal of Applied Mechanics, 46, 878–882.

72. Williams, J. H, Jr. (1996). Fundamentals of applied dynamics. New York: Wiley.73. Zienkiewicz, O. C., & Taylor, R. L. (1989). The finite element method (4th ed.,). New York:

McGraw-Hill.

References 299

Page 4: References - Springer978-94-007-6383-8/1.pdfBendat, J., & Piersol, A. (1971). Random data: Analysis and measurement procedures. New York: Wiley-Interscience. 4. Bendat, J., & Piersol,

Index

AAccelerated fatigue test, 215Accelerogram, 206Active damping, 290Active mass damper (AMD), 281Active strut, 287Active suspension, 280Active truss, 286Active vibration control, 275Angular rate sensor, 243Anisotropic shaft, 238

stability, 241unbalance response, 240

Anisotropic support (rotor), 236Anti-resonance, 32, 251, 276Assembly, 138Assumed modes method, 114, 135Asymptotic method, 88Asynchronous force, 232Autocorrelation, 170Autocovariance, 170

BBackward whirl, 221, 229, 234Bar, 94, 116

finite element, 137Beam

Euler-Bernoulli, 78, 119finite element, 140free-free, 87free vibration, 83prestress, 82, 122simply supported, 85

Beat phenomenon, 10Bending stiffness, 79Beta controller, 293

Bode plots, 7, 34Boundary layer noise, 188Buckling, 72

beam, 96clamped-free beam, 98critical load, 97simply supported beam, 97

CCampbell diagram, 62, 229, 235Cantilever rotor, 245Car on a random road, 191Car suspension

active, 280passive, 271

Cascade analysis, 167Causality, 184Central frequency, 179Central limit theorem, 174Centrifugal pendulum, 76, 271Centrifugal Pendulum Vibration Absorber, 76,

270Co-spectrum, 188Coherence function, 182Collocated control, 276, 278Collocated system, 32Complex coordinates, 220Conical mode, 234Conservation laws, 64Conservation of energy, 50, 66Conservative force, 49Consistent mass matrix, 142Constitutive equation

active strut, 287linear elastic material, 70plane stress, 100

A. Preumont, Twelve Lectures on Structural Dynamics,Solid Mechanics and Its Applications 198, DOI: 10.1007/978-94-007-6383-8,� Springer Science+Business Media Dordrecht 2013

301

Page 5: References - Springer978-94-007-6383-8/1.pdfBendat, J., & Piersol, A. (1971). Random data: Analysis and measurement procedures. New York: Wiley-Interscience. 4. Bendat, J., & Piersol,

Constrained system, 34, 149, 153, 277Convection velocity, 189Convergence, 145Convolution integral, 5, 175Coriolis force, 243Correlation

function, 170, 188integral, 175matrix, 185, 187

Covariance matrix, 214Craig-Bampton reduction, 153Critical speed, 220, 230, 231Cross-correlation, 170

role of-, 193Cumulative mean square response, 173

DD’Alembert principle, 49Damping, 23, 24, 121

modal, 23Rayleigh, 24rotating, 221, 224

Davenport spectrum, 190Degree of freedom (d.o.f.), 45, 114Den Hartog, 251Difference equation, 36Discretization, 113Disk, 232Dissipation function, 55Dynamic amplification, 7, 26Dynamic flexibility matrix, 25Dynamic mass, 159, 166Dynamic Vibration Absorber (DVA), 248

EEffective force, 49Effective modal mass, 160Elastic support, 232Envelope (narrow band process), 181Epicycloid, 271Equal peak design (DVA), 251ESP, 243Euler

Bernoulli beam, 78critical buckling load, 97, 123theorem on homogeneous functions, 65

FFast Fourier Transform (FFT), 172Fatigue, 202

random-, 211

Feedthrough, 12, 27Finite elements, 135First-crossing problem, 203Flexural rigidity (plate), 100Forward whirl, 219, 221, 229, 234Fourier transform, 9Fraction of critical damping, 2Fraction of modal strain energy, 290Frahm, 248Frequency Response

Function (FRF), 8FRF estimation, 182

GGaussian process, 174Generalized coordinates, 44, 53, 136Generalized momentum, 66Geometric stiffness matrix, 72, 122

planar beam element, 147Geometric strain energy, 68, 71Gradient height, 190Gradient velocity, 190Gravity loads, 128Green strain tensor, 68Guyan

mass matrix, 154, 165reduction, 147stiffness matrix, 154

Gyroscopic effect, 53, 60, 224Gyroscopic forces, 61

HHalf power bandwidth, 177Hamilton’s principle, 50High-cycle fatigue, 202Holonomic constraint, 45, 64Homogeneous (random field), 187Homogeneous functions, 65

IIgnorable coordinate, 66Impulse response, 3Integral force feedback, 290Interlacing, 33, 276, 291Isolator

by kinematic coupling, 268corner frequency, 266linear-, 260passive-, 261relaxation-, 263six-axis-, 266

302 Index

Page 6: References - Springer978-94-007-6383-8/1.pdfBendat, J., & Piersol, A. (1971). Random data: Analysis and measurement procedures. New York: Wiley-Interscience. 4. Bendat, J., & Piersol,

JJacobi integral, 64Jeffcott rotor, 60, 218Jitter, 265

KKanai-Tajimi spectrum, 179, 199Kinematic constraint, 44Kirchhoff plate, 99Kronecker delta, 21

LLagrange multipliers, 63Lagrange’s equation, 53

with constraints, 63Lagrangian, 51, 52Lagrangian dynamics, 44Laplacian D

Cartesian coordinates, 101polar coordinates, 104

Laval, 220Lead compensator, 277Linear damage theory, 211Linear oscillator

Bode plots, 7dynamic amplification, 7free response, 1impulse response, 3Nyquist plot, 8quality factor, 8random response, 176state space form, 11

Localization matrix, 139Long rotor, 232Lumped mass matrix, 142

MMass matrix

bar, 117bar element, 138beam, 119lumped, 142planar beam element, 141

Master-slave (d.o.f.), 148Maxwell unit, 263Mean square (MS), 170, 171, 192

mass averaged-, 193Memory, 4

Modaldamping, 23decomposition, 23, 91mass, 21, 91participation factor, 159participation matrix, 164truncation, 24

Modal density, 104Modal spread, 268Mode shape, 19Moment-curvature relationship, 100Multi-axis excitation, 162Multiple natural frequencies, 21

NN-storey building, 36, 167

AMD, 281DVA design, 256random response, 195random response with DVA, 258seismic response, 155

Nabla rCartesian coordinates, 101

Narrow band process, 181Natural boundary conditions, 82Natural frequency, 19Nodal

circles, 107, 108diameters, 107, 108lines, 104

Non-conservative force, 51Non-holonomic

constraint, 45, 64Normal modes, 21Nyquist plot, 8, 34

OOperating Basis Earthquake, 208Orthogonal functions, 115Orthogonality, 20, 89

PPainlevé integral, 66Palmgren-Miner criterion, 211Parseval’s theorem, 9Participation factor, 159Peak factor, 202, 206Periodic structures, 108

Index 303

Page 7: References - Springer978-94-007-6383-8/1.pdfBendat, J., & Piersol, A. (1971). Random data: Analysis and measurement procedures. New York: Wiley-Interscience. 4. Bendat, J., & Piersol,

Phase plane, 181Plane truss, 136Plate

circular, 104Kirchhoff, 99rectangular, 102

Pole-zero pattern, 33, 276, 291Power spectral density, see PSDPrestress, 68, 82, 96, 122Principle of stationarity, 125Principle of virtual work, 47Projection matrix, 39PSD

definition, 171estimation, 172input-output (MIMO), 185input-output (SISO), 175matrix, 185, 187one sided-, 173

Pseudo-acceleration spectrum, 206Pseudo-velocity spectrum, 206

QQuality factor, 8, 26, 252Quarter-car model, 271Quasi-static correction, 27, 160

RRainflow, 212Random fatigue, 211Random vibration, 169Rankine’s model, 220Rayleigh

damping, 24distribution, 181Quotient, 21, 91, 124

Rayleigh-Ritz method, 113, 224Reduction

Craig-Bampton, 153Guyan, 147

Relaxation isolator, see IsolatorReliability, 203Residual mode, 27Resonance

frequency, 19linear oscillator, 2rotating force, 109, 110

Response spectrum, 206Rice formulae, 179Rigid body mode, 21, 28Root locus, 264, 277, 285, 291

Rotating force, 108Rotating mode, 107Rotor dynamics, 217Routh-Hurwitz stability, 224

SS-N curve, 211Safe Shut-down

Earthquake, 208Scleronomic constraint, 45Seismic excitation, 156Self-centering, 220Semi-positive definite (matrix), 16Shape function, 114, 135, 141Signal to noise ratio, 184Single axis excitation, 156Sky-hook damper, 280Slave (d.o.f.), 148Spatial coherence, 188Spectral moments, 179SRSS rule, 193, 209Stability, 224Standard deviation, 170State feedback, 281State variables, 12, 271, 280, 284Stationary process, 170Stiffness matrix

bar, 94bar element, 138beam, 120geometric, 122planar beam element, 142

Stodola-Green rotor, 245Strain energy density, 70, 100String, 92Strouhal number, 188Supercritical velocity, 220Support reaction, 159, 165

TTaipei 101, 253Tautochronic problem, 271Threshold crossing, 202Torsional stiffnessTransmissibility, 261, 264Traveling wave, 107, 109, 110Tuned Mass Damper (TMD), 248

UUnbalance response, 219, 231

304 Index

Page 8: References - Springer978-94-007-6383-8/1.pdfBendat, J., & Piersol, A. (1971). Random data: Analysis and measurement procedures. New York: Wiley-Interscience. 4. Bendat, J., & Piersol,

VVariance, 170Vibration isolation, 259Virtual displacement, 46Virtual work, 47von Mises stress, 213

WWhirl, 221, 229White noise

approximation, 177, 210band limited-, 178process, 174

Wind response, 189Wöhler curve, 211

ZZero (transmission-), 34, 250, 268, 276Zero-period acceleration (ZPA), 207

Index 305


Top Related