Transcript
Page 1: Multimedia y QoS - moodle2019-20.ua.es

Multimedia y QoSClases de aplicaciones multimedia

Redes basadas en IP y QoS

Page 2: Multimedia y QoS - moodle2019-20.ua.es

2

¿Qué es multimedia?

� Definición de multimedia

� Es difícil encontrar una única definición

� En general, multimedia es una integración de textos, gráficos, imágenes fijas y en movimiento, animaciones, sonidos y cualquier otro medio donde cada tipo de información puede ser representada, almacenada, transmitida y procesada digitalmente

� Características de multimedia

� Digital – concepto clave

� Integración de muchos tipos de medios, habitualmente incluyendo vídeo y/o audio

� Puede ser interactivo o no interactivo

Page 3: Multimedia y QoS - moodle2019-20.ua.es

3

Varios Tipos de Medios

� Texto, gráficos, imágenes, vídeo, animación, sonido, etc.

� Distintas clasificaciones de tipos de medios:

� Capturados vs. sintetizados

� Medios capturados (natural) : información capturada del mundo real

– Ejemplo: imagen fija, vídeo, audio

� Medios sintetizados (artificial) : información sintetizada por una computadora

– Ejemplo: texto, gráficos, animación

� Discretos vs. continuos

� Medios discretos: basados en el espacio, únicamente dimensión espacial únicamente

– Texto, Imagen, Gráficos

� Medios continuos: basados en el tiempo, ambas dimensiones espacial y temporal

– Video, Sonido, Animación

Page 4: Multimedia y QoS - moodle2019-20.ua.es

4

Clasificación de Tipos de Medios

SonidoSonido VídeoVídeo

ImagenImagen

AnimaciónAnimación

TextoTexto GráficosGráficos

Capturado Del mundo real

Sintetizado Por computador

Discreto Discreto

Continuo Continuo

Page 5: Multimedia y QoS - moodle2019-20.ua.es

5

Texto

� Texto plano

� Sin formatear

� Caracteres codificados en formato binario

� Código ASCII

� Todos los caracteres tienen el mismo estilo y fuente

� Texto enriquecido

� Formateado

� Contiene información del formato además de códigos y caracteres

� Ningún estándar predominante

� Caracteres de varios tamaños, formas y estilos, p.e. negrita, color

Page 6: Multimedia y QoS - moodle2019-20.ua.es

6

Texto Plano vs. Texto Enriquecido

Ejemplo de Texto Plano Ejemplo de Texto Enriquecido

Page 7: Multimedia y QoS - moodle2019-20.ua.es

7

Gráficos

� Documento revisable que mantiene su información estructural

� Consta de objectos como líneas, curvas, círculos, etc

� Habitualmente generados por programas editores de gráficos por computador

-4-2

02

4

-4

-2

0

2

4-10

-5

0

5

10

Ejemplo de gráfico por computador

Page 8: Multimedia y QoS - moodle2019-20.ua.es

8

Imágenes

� Matriz 2D de píxeles

� Píxel—Menor elemento de resolución de la imagen

� Un píxel se representa por una cantidad de bits

� Profundidad de píxel–El número de bits disponible para codificar el píxel

� No tiene información estructural

� Dos categorías: escaneado vs. imagen fija sintetizada

SoftwareSoftware

Captura y conversión A/D

Captura y conversión A/D

Imagen fija digitalImagen fija digital

Imagen sintetizada

Imagenescaneada

Cámara

Page 9: Multimedia y QoS - moodle2019-20.ua.es

9

Imágenes (cont.)

� Ejemplos de imágenes

� Imagen binaria – profundidad de píxel 1

� Escala de grises – profundidad de píxel 8

� Imagen en color – – profundidad de píxel 24

Imagen binaria

Imagen escala de grises

Page 10: Multimedia y QoS - moodle2019-20.ua.es

10

Imágenes (cont.)

� Ejemplos de imágenes

� Imagen binaria – profundidad de píxel 1

� Escala de grises – profundidad de píxel 8

� Imagen en color – – profundidad de píxel 24

Imagen binaria

Imagen escala de grisesImagen en color

Page 11: Multimedia y QoS - moodle2019-20.ua.es

11

Vídeo vs. Animación

� Tanto las imágenes como los gráficos pueden mostrarse como sucesión de vistas las cuales crean la sensación de movimiento

� Vídeo – Imágenes o dibujos en movimiento

� Capturados o Sintetizados

� Consisten en una sucesión de imágenes

� Cada imagen es un frame (muestra)

� Tasa de frames: la velocidad de reproducción del vídeo (frames por segundo)

� Animación – gráficos en movimiento

� Generados mediante software (herramientas de creación de animaciones)

� Consisten en un conjunto de objectos

� Los movimientos de los objectos se calculan y la vista se actualiza en vivo

Page 12: Multimedia y QoS - moodle2019-20.ua.es

12

Sonido

� Señal 1-D función del tiempo

� Sonido hablado vs. no hablado

� Hablado – soporta lenguaje hablado y tiene contenido semántico

� No hablado – no es semántico, en general

� Natural vs. sonido estructurado

� Sonido natural – Onda de sonido grabado/generado representada como una señal digital

� Ejemplo: Audio en CD, ficheros WAV

� Sonido estructurado – Sonido sintetizado de manera simbólica

� Ejemplo: Fichero MIDI

0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0- 0 . 2

- 0 . 1 5

- 0 . 1

- 0 . 0 5

0

0 . 0 5

0 . 1

0 . 1 5

0 . 2

Page 13: Multimedia y QoS - moodle2019-20.ua.es

13

Multimedia en red

� Multimedia local vs. en red

� Local: Almacenamiento y presentación de información multimedia en computadoras

� Aplicación de ejemplo: DVD

� En red: Incluye transmisión y distribución de información multimedia por la red

� Aplicación de ejemplo: videoconferencia, difusión de vídeo en la web ,etc.

InternetServidor de Vídeo

Servidor de ImágenesEscenario de multimedia en red

Page 14: Multimedia y QoS - moodle2019-20.ua.es

14

Consideraciones Multimedia en red

� Requerimientos de las aplicaciones multimedia en red

� Típicamente sensibles al retardo

� Retardo end-to-end

� Jitter del retardo:

– Jitter es la variabilidad de los retardos de los paquetes en el mismo stream

� Requerimientos de calidad

� Calidad de presentación satisfactoria

� Requerimiento de sincronización

� Requerimiento de continuidad

� Tolerancia a cierto grado de pérdida de información

Page 15: Multimedia y QoS - moodle2019-20.ua.es

15

Tecnologías Multimedia en red

� Desafíos multimedia en red

1. Compromiso entre tamaño y la limitación de ancho de banda de la red

2. Compromiso entre los requerimientos de los usuarios de la aplicación multimedia y la red best-effort

3. ¿Cómo conseguir satisfacer los distintos requerimientos y usuarios?

� Compresión – Reduce el volumen de datos

Responde al desafío 1

� Compresión de imagen

� Compresión de vídeo

� Compresión de audio

� Tecnologías de transmisión multimedia

Responden a los desafío 2 y 3

� Protocolos para transmisión en tiempo real

� Control de tasa / congestión

� Control de errores

Page 16: Multimedia y QoS - moodle2019-20.ua.es

16

Sistemas Multimedia en red

� Sistemas de transmisión en directo

� Captura, comprime y transmite al vuelo

� Sistemas envío de material almacenado por red

� Media se pre-comprime y almacena en el servidor. Estos sistemas distribuyen tanto a uno como a múltiples receptores

� Diferencias entre ambos sistemas

� Distribución en vivo:

� Captura en tiempo real, es necesario soporte hardware

� Compresión en tiempo real – la velocidad es importante

� Procedimiento de compresión ajustable a las condiciones de la red

� Distribución material grabado:

� Compresión off-line – conseguir una compresión mejor es importante

� La compresión no se puede ajustar durante la transmisión

Page 17: Multimedia y QoS - moodle2019-20.ua.es

17

Clases de aplicaciones multimedia

� Streaming de audio y vídeo grabado

� Streaming de audio y vídeo en directo

� Audio y vídeo en tiempo real e interactivo

Page 18: Multimedia y QoS - moodle2019-20.ua.es

18

Streaming Multimedia Grabado: ¿Cómo funciona?

1. videograbado

2. videoenviado

3. video recibido y mostrado al cliente

streaming: en un tiempo determinado, elcliente visualiza la parte inicial del vídeo, mientras el servidor áun está enviando laparte final del vídeo

retardored

tiempo

t>0

100%

Page 19: Multimedia y QoS - moodle2019-20.ua.es

19

Streaming vs. Descarga de Contenidos Multimedia Grabados

� Descarga: Recepción de la totalidad del contenido antes de comenzar la visualización

� Gran retardo de inicio ya que el contenido será también grande

� ~ 4GB para una película de 2 horasen MPEG II

� Streaming: Reproducción de los ficheros de contenidos mientras se está recibiendo

� Retardo de inicio razonable

� Tasa de recepción >= Tasa de reproducción

Page 20: Multimedia y QoS - moodle2019-20.ua.es

20

Streaming de Contenidos Multimedia Grabados: Interactividad

Funcionalidad similar a reproductor VHS: El cliente puede poner en pausa, rebobinar, Fast Forward, …

� Retardo inicial de 10 seg. OK

� 1-2 seg ejecución de la orden OK

� RTSP habitual (mayores tiempos)

Restricción temporal para transmisión: A tiempo para visualización.

Page 21: Multimedia y QoS - moodle2019-20.ua.es

Transmisión de vídeoa tasa constante de bits

tiempo

Retardode red

variable

Recepción de video en el

cliente

Reproducción de vídeo a tasa constante de bits

Retardo de reproducción en el cliente

Buf

fer

de

video

Streaming MultimediaBuffering en el Cliente

� Buffering en el cliente: El retardo de reproducción compensa el retardo añadido por la red y el jitter

Page 22: Multimedia y QoS - moodle2019-20.ua.es

22

Streaming MultimediaBuffering en el cliente

� Buffering en el cliente: El retardo de reproducción compensa el retardo añadido por la red y el jitter

Video enbuffer

Tasa de rellenovariable, x(t)

Tasaconstantede salida, d

Page 23: Multimedia y QoS - moodle2019-20.ua.es

23

Multimedia en tiempo real e interactivo

Aplicaciones: Telefonía IP, vídeoconferencia, mundos virtuales interactivos distribuidos

� Requerimientos retardo end-end:

� Audio: < 150 mseg bien, < 400 mseg OK

� Incluye retardos de red a nivel cde aplicación (paquetización)

� Retardos mayores se notan, dificultan la interactividad

� Inicio de sesión

� ¿Cómo un usuario anuncia su dirección IP, número de puerto y algoritmos de codificación?

Page 24: Multimedia y QoS - moodle2019-20.ua.es

24

Internet multimedia: aproximación más sencilla

audio, video sin streaming:

� no “pipelining,” ¡retardos enormes hasta la reproducción!

� Audio y/o vídeo almacenados en un fichero

� Ficheros transferidos como un objecto HTTP

� Recibidos completos en el cliente y

� Entonces pasados al reproductor

Page 25: Multimedia y QoS - moodle2019-20.ua.es

25

Descarga Progresiva

� Navegador web GETs metafichero

� Navegador web lanza reproductor, pasándole el metafichero

� El reproductor contacta con el servidor

� El servidor descarga audio/vídeo al reproductor

Page 26: Multimedia y QoS - moodle2019-20.ua.es

26

Streaming desde un servidor de streaming

� Esta arquitectura permite protocolos no-HTTP entre el servidor y el reproductor

� También puede utilizar UDP en lugar de TCP.

Page 27: Multimedia y QoS - moodle2019-20.ua.es

27

Multimedia en Internet actual

� TCP/UDP/IP: servicio “best-effort”

� No garantiza retardos ni pérdidas

� Las aplicaciones multimedia precisan de QoS y un mínimo de rendimiento para ser efectivas

� Las aplicaciones multimedia en Internet actual utilizan técnicas a nivel de aplicación para mitigar (lo mejor posible) los efectos del retardo y las pérdidas

Page 28: Multimedia y QoS - moodle2019-20.ua.es

28

Streaming Multimedia: ¿UDP o TCP?

UDP

� El servidor envía a una tasa apropiada para el cliente

� A menudo, tasa de envío = tasa de codificación = tasa constante

� A continuación, tasa de relleno = tasa constante – pérdidas paquete

� Pequeño retardo reproducción (2-5 segundos) para compensar el jitter del retardo en la red

� Recuperación de errores: Si la temporización lo permite

TCP

� Envío a la tasa máxima posible bajo TCP

� Tasa de relleno varía debido al control de congestión TCP

� Mayor retardo reproducción

� HTTP/TCP pasan más fácilmente a través de firewalls

Page 29: Multimedia y QoS - moodle2019-20.ua.es

29

Multimedia, Quality of Service: ¿Qué es?

Aplicaciones multimedia: audio y video en red

La red proporciona a la aplicación el nivel de rendimiento necesario para que funcione la aplicación

QoS

Page 30: Multimedia y QoS - moodle2019-20.ua.es

30

Mejorando la QoS en redes IP

� “Hacer algo más que el best effort”

� Futuro: Próxima generación de Internet que garantice QoS

� RSVP: señalización para reserva de recursos

� Differentiated Services: Reservas diferenciales

� Integrated Services: Reservas en firme

� Un modelo simple para estudiar la congestión y compartición:

Page 31: Multimedia y QoS - moodle2019-20.ua.es

31

Principios de la reserva para QoS

� Ejemplo: Teléfono IP a 1Mbps y FTP comparten enlace a 1.5 Mbps

� Ráfagas FTP pueden congestionar el router, causando pérdidas de audio

� Se querría asignar prioridades al audio sobre el FTP

Marcado de los paquetes para que el router distinga Marcado de los paquetes para que el router distinga Marcado de los paquetes para que el router distinga Marcado de los paquetes para que el router distinga

entre las diferentes clases y una nueva política en el entre las diferentes clases y una nueva política en el entre las diferentes clases y una nueva política en el entre las diferentes clases y una nueva política en el

router para tratar los paquetes en consecuenciarouter para tratar los paquetes en consecuenciarouter para tratar los paquetes en consecuenciarouter para tratar los paquetes en consecuencia

Principio 1Principio 1Principio 1Principio 1

Page 32: Multimedia y QoS - moodle2019-20.ua.es

32

Principios de la reserva para QoS (más)

� ¿Qué pasa si las aplicaciones no se comportan como se esperaba? (audio envía más que la tasa declarada)

� Políticas: Asegurar que las fuentes de tráfico se ajustan a las asignaciones de ancho de banda realizadas

� Marcado y aplicación de políticas en los extremos de la red.

Proporcionar protección (Proporcionar protección (Proporcionar protección (Proporcionar protección (aislamientoaislamientoaislamientoaislamiento) de una ) de una ) de una ) de una

clase a las otrasclase a las otrasclase a las otrasclase a las otras

Principio 2Principio 2Principio 2Principio 2

Page 33: Multimedia y QoS - moodle2019-20.ua.es

33

Principios de la reserva para QoS (más)

� Asignación fija (no-compartible) de ancho de banda: uso ineficiente del ancho de banda cuando los flujos no utilizan su asignación

Además de proporcionar aislamiento, sería deseable utilizar los recursos de la manera más eficiente posible

Principio 3Principio 3Principio 3Principio 3

Page 34: Multimedia y QoS - moodle2019-20.ua.es

34

Principios de la reserva para QoS (más)

� Hecho básico: No se puede soportar demandas de tráfico por encima de la capacidad del enlace

Admisión de peticiones: cada flujo declara sus necesidades, la red puede bloquear su petición (p.e., señal de ocupado) si no puede atenderla

Principio 4Principio 4Principio 4Principio 4

Page 35: Multimedia y QoS - moodle2019-20.ua.es

35

Resumen de los principios de la QoS

Page 36: Multimedia y QoS - moodle2019-20.ua.es

Calidad de Servicio QoS

Page 37: Multimedia y QoS - moodle2019-20.ua.es

Sumario

� Concepto de Calidad de Servicio

� Calidad de Servicio en Internet � Octeto ToS en IPv4

� Modelo IntServ y protocolo RSVP

� Prioridad y etiqueta de flujo en IPv6

� Modelo DiffServ

� Calidad de servicio en LANs

� Control de congestión en Internet

Page 38: Multimedia y QoS - moodle2019-20.ua.es

Calidad de Servicio (QoS)

� Decimos que una red o un proveedor ofrece ‘Calidad de Servicio’ o QoS (Quality of Service) cuando garantiza un valor límite (máximo o mínimo) de alguno de los parámetros de QoS.

� Si el proveedor no se compromete en ningún parámetro decimos que lo que ofrece un servicio ‘best effort’.

� El contrato que especifica los valores acordados entre el proveedor y el usuario (cliente) se denomina SLA (Service Level Agreement). Ej.:� Ancho de banda ≥ 2 Mb/s� Retardo ≤ 80 ms� Jitter ≤ 20 ms� Tasa de pérdidas ≤ 0,01 %

Page 39: Multimedia y QoS - moodle2019-20.ua.es

Congestión y Calidad de Servicio

� Con ancho de banda suficiente se resuelven ‘casi’ todos los problemas.

� Sería muy fácil dar Calidad de Servicio si las redes nunca se congestionaran. Para ello habría que sobredimensionar todos los enlaces, cosa no siempre posible o conveniente.

� Para dar QoS con congestión es preciso tener mecanismos que permitan dar un trato distinto al tráfico preferente y cumplir el SLA (Service Level Agreement).

Page 40: Multimedia y QoS - moodle2019-20.ua.es

Carga

Ren

dim

ient

o

SinCongestión

CongestiónFuerte

CongestiónModerada

Efectos de la congestión en eltiempo de servicio y el rendimiento

SinCongestión

CongestiónFuerte

CongestiónModerada

Tiem

po d

e S

ervi

cio

Carga

QoS útil y viable

QoS inútil QoS inviableQoS útil y viable

QoS inútil QoS inviable

Page 41: Multimedia y QoS - moodle2019-20.ua.es

Parámetros de Calidad de Servicio

Parámetro Unidades Significado

Ancho de Banda (bandwidth)

Kb/s Indica el caudal máximo que se puede transmitir

Retardo (delay) o latencia (latency)

ms El tiempo medio que tardan en llegar los paquetes

Jitter ms La fluctuación que se puede producir en el retardo

Tasa de pérdidas (loss rate)

% Proporción de paquetes perdidos respecto de los enviados

Page 42: Multimedia y QoS - moodle2019-20.ua.es

Jitter

RetardoLos datagramas que llegan

después del retardo máximo se consideran

perdidos

Retardomínimo

El retardo mínimo depende de las características físicas de la red

Relación entre la probabilidad de llegada de los datagramas y los parámetros de QoS

Pro

babi

lidad

Tiempo

Retardomáximo

Page 43: Multimedia y QoS - moodle2019-20.ua.es

Fluctuación del retardo—“Jitter”

t

t

Emisor Transmite

Receptor Recibe

AA BB CC

AA BB CC

50 ms

Emisor Receptor

Red

50 ms 90 ms

Congestión

Retardo: 70 ms ±±±± 20 ms (retardo: 70 ms, jitter: 40 ms)Red vacía

Page 44: Multimedia y QoS - moodle2019-20.ua.es

Reducción del Jitter� El jitter puede reducirse si el receptor retrasa la

reproducción (buffer ‘anti-jitter’).

� Por ejemplo en VoIP lo habitual es enviar un paquete de voz cada 20 ms. Si el receptor reproduce los paquetes tal cual le llegan cualquier fluctuación en la entrega afectará la calidad. Si en vez de eso retrasa 40 ms la reproducción podrá compensar fluctuaciones de hasta 40 ms en el tiempo de entrega.

� En algunas aplicaciones (vídeo o audio unidireccional) se llegan a introducir retardos de hasta 30 segundos. Pero en estos casos no existe interacción receptor-emisor.

Page 45: Multimedia y QoS - moodle2019-20.ua.es

Requerimientos de Calidad de Servicio de las aplicaciones

Tipo de aplicación Ancho de Banda

Retardo Jitter Tasa de Pérdidas

Interactivo (telnet, www) Bajo Bajo Medio/alto Media1

Batch (e-mail, ftp) Alto Alto Alto Alta1

Telefonía Bajo Bajo Bajo Baja

Vídeo interactivo Alto Bajo Bajo Baja

Vídeo unidireccional (streaming)

Alto Medio/alto Bajo Baja

Frágil (ej.: emulación de circuitos)

Bajo Bajo Medio/alto Nula

1 En realidad la aplicación requiere pérdida nula, pe ro esto lo garantiza el protocolo de transporte TCP.

Page 46: Multimedia y QoS - moodle2019-20.ua.es

Ejemplo: Necesidad QoS en VoIP (Telefonía sobre Internet)

� VoIP requiere misma calidad que teléfono tradicional.

� Los usuarios de aplicaciones de VoIP, necesitan obtener lamisma calidad de transmisión que la recibida hastaentonces mediante la red telefónica básica. Esto implicaalta calidad en las transmisiones de voz.

Muy Sensible a retardos, y necesita unancho de banda garantizado .� Las aplicaciones de VoIP tienen una gran sensibilidad ante

los retardos, y necesitan un mínimo ancho de banda garantizado.

Page 47: Multimedia y QoS - moodle2019-20.ua.es

Pérdida de paquetes < 1%

Retraso extremo-extremo < 150 ms� La especificación de la ITU G.114 recomienda menos de 150 ms

de retraso máximo entro los nodos extremos(bordes de la red),para tráfico en tiempo real, como la voz.

Los paquetes de VoIPdeben recibir untrato especial.

� El codec por defecto G.729 requiere que el número de paquetesperdidos sea menor del 1% para evitar errores perceptibles.Idealmente no debe de producirse perdida de paquetes.

Ejemplo: Necesidad QoS en VoIP(Telefonía sobre Internet)

Page 48: Multimedia y QoS - moodle2019-20.ua.es

¿Qué es QoS (para Cisco)?� Diseñada para permitir el transporte de cierto tráfico con ciertos

requerimientos

� Se utiliza fundamentalmente para aplicaciones en tiempo real (Voice and Video)

� DiffServ vs IntServ vs Best Effort

� NBAR (Network Based Application Recognition)

� Permite identificación inteligente y clasificación de las aplicaciones:

� Use el MQC-CLI

� Modular Quality of Service Command Line Interface

Page 49: Multimedia y QoS - moodle2019-20.ua.es

Configuración de QoS

� Crear un class map para ‘marcar’ el tráfico.

� Crear una política paradeterminar cómo manejar el tráfico.

� Aplicar la política al interfazapropriado.

Page 50: Multimedia y QoS - moodle2019-20.ua.es

� Hay que asegurarse de que el marcado QoS está activado:

� Es la opción por defecto.

� Ajustar el filtro de eventos visibles

� Crear una llamada VoIP entre dos teléfonos (por ejemplo, Phone# 1000 y Phone# 2000)

� Fijarse en la “marca” que se coloca en el paquete H.323 segúnpasa por el router.

� Puede que sea necesario esperar y/o avanzar la simulación para que aparezca.

QoS en PT: Modo Simulación

Page 51: Multimedia y QoS - moodle2019-20.ua.es

� Tabla de colores “marcas” QoS

� Cálculo del valor de QoS:

� Buscar la PDU de salida en los detalles del paquete.

� Localizar el valor de DSCP.

� Convertir de hexadecimal a decimal.

� En Packet Tracer: Dividir el valor por 2 en 2 ocasiones (o por 4). Esto es debido a que en PT el valor de DSCP aparecedesplazado 2 bits a la izquierda si estráfico no generado por ping o por Traffic Generator.

� B8 = 184 / 2 = 92 / 2 = 46 (EF)

QoS en PT: Modo Simulación

Page 52: Multimedia y QoS - moodle2019-20.ua.es

Calidad de Servicio: ¿Reserva o Prioridad?

� Existen dos posibles estrategias para dar trato preferente a un usuario o una aplicación en una red:� Carril BUS: Reservar capacidad para su uso

exclusivo. A veces se denomina ‘QoS hard’. Ej.: VCsATM con categoría de servicio CBR.

� Ambulancia: Darle mayor prioridad que a otros usuarios. A veces se denomina ‘QoS soft’. Ejemplo: LANs 802.1p.

� Cada estrategia tiene ventajas e inconvenientes.

Page 53: Multimedia y QoS - moodle2019-20.ua.es

¿Reserva o Prioridad?

Ventajas Inconvenientes

Reserva •Da una garantía casi total•Los paquetes no necesitan llevar ninguna marca que indique como han de ser tratados, la información la tienen los routers

•Requiere mantener información de estado sobre cada comunicación en todos los routers por lo que pasa•Se requiere un protocolo de señalización para informar a los routers y efectuar la reserva en todo el trayecto

Prioridad •Los routers no necesitan conservar información de estado.

•Los paquetes han de ir marcados con la prioridad que les corresponde•La garantía se basa en factores estadísticos, es menos segura que la reserva de recursos (puede haber overbooking)

Page 54: Multimedia y QoS - moodle2019-20.ua.es

Sumario

� Concepto de Calidad de Servicio

� Calidad de Servicio en Internet� Octeto ToS en IPv4

� Modelo IntServ y protocolo RSVP

� Prioridad y etiqueta de flujo en IPv6

� Modelo DiffServ

� Calidad de servicio en LANs

� Control de congestión en Internet

Page 55: Multimedia y QoS - moodle2019-20.ua.es

Calidad de Servicio en Internet

� La congestión y la falta de QoS es el principal problema de Internet actualmente.

� IP fue diseñado para dar un servicio ‘besteffort’. Sin embargo hoy en día se utiliza para aplicaciones sensibles que no toleran redes sin QoS. Ej.: videoconferencia, telefonía VoIP (Voice Over IP), etc.

� Estas aplicaciones no pueden funcionar en una red ‘best effort’ congestionada.

� Se han hecho modificaciones a IP para que pueda ofrecer QoS a las aplicaciones.

Page 56: Multimedia y QoS - moodle2019-20.ua.es

“El Santo Grial de las redes de computadores es diseñar una red que

tenga la flexibilidad y el bajo costo de la Internet, pero que ofrezca las garantías de calidad de servicio extremo a extremo de

la red telefónica.”

S. Keshav: 'An Engineering Approach to Computer Networking‘, 1997

Calidad de Servicio en Internet

Page 57: Multimedia y QoS - moodle2019-20.ua.es

Sumario

� Concepto de Calidad de Servicio

� Calidad de Servicio en Internet � Octeto ToS en IPv4

� Modelo IntServ y protocolo RSVP

� Prioridad y etiqueta de flujo en IPv6

� Modelo DiffServ

� Calidad de servicio en LANs

� Control de congestión en Internet

Page 58: Multimedia y QoS - moodle2019-20.ua.es

Octeto ToS (Type of Service)

� En la definición original de la cabecera IPv4 se incluyó un octeto que tenía dos partes:

� Tres bits para indicar una prioridad (llamada precedencia). Los routers debían enviar antes los paquetes con mayor precedencia.

� Varios bits que actuaban de ‘flags’ para indicar que tipo de ruta prefiere el paquete:

�Mínimo retardo.

�Máximo rendimiento.

�Máxima fiabilidad.

�Mínimo costo.

Page 59: Multimedia y QoS - moodle2019-20.ua.es

Version Lon.Cab. TOS Longitud total Identificación X D

F M F

Desplazamiento fragmento

Tiempo de vida Protocolo Checksum Dirección de origen Dirección de destino

Opciones

Cabecera IPv4 (RFC 791, 1981)

� Precedencia: Prioridad (ocho niveles). Mayor es mejor.

� D,T,R,C: Flags para indicar la ruta que se quiere utilizar:

� D: Delay (mínimo retardo)

� T: Throughput (máximo rendimiento)

� R: Reliability (máxima fiabilidad)

� C: Cost (mínimo costo), RFC 1349

� X: Bit reservado.

PrecedenciaOcteto TOS: D T R C X

Page 60: Multimedia y QoS - moodle2019-20.ua.es

Significado del campo precedencia

Precedencia(decimal)

Precedencia(binario)

Nombre

7 111 Control de red

6 110 Control de interred

5 101 Crítico / ECP

4 100 Flash Override

3 011 Flash

2 010 Inmediato

1 001 Prioridad

0 000 Rutina

Reservados para tráfico de control

Disponibles para usuario

Page 61: Multimedia y QoS - moodle2019-20.ua.es

Inconvenientes del campo TOS

� Ocho niveles de prioridad (en la práctica seis) a veces es insuficiente.

� Solo es posible indicar prioridad de envío, no otros aspectos como prioridad de descarte.

� Los fabricantes han implementado de forma no consistente el campo precedencia y los flags DTRC. La interoperabilidad entre fabricantes e ISPs es muy limitada

� La precedencia se ha usado poco. Los flags DTRC no se han usado nada.

Page 62: Multimedia y QoS - moodle2019-20.ua.es

Sumario

� Concepto de Calidad de Servicio

� Calidad de Servicio en Internet � Octeto ToS en IPv4

� Modelo IntServ y protocolo RSVP

� Prioridad y etiqueta de flujo en IPv6

� Modelo DiffServ

� Calidad de servicio en LANs

� Control de congestión en Internet

Page 63: Multimedia y QoS - moodle2019-20.ua.es

Calidad de servicio en Internet

� Se han desarrollado y estandarizado dos modelos de QoS en Internet:� IntServ (Integrated Services), 1994. El usuario

solicita de antemano los recursos que necesita; cada router del trayecto ha de tomar nota y efectuar la reserva solicitada (modelo carril bus).

� DiffServ (Differentiated Services), 1998. El usuario marca los paquetes con una determinada etiqueta que marca la prioridad y el trato que deben recibir por parte de los routers; éstos no son conscientes de los flujos activos (modelo ambulancia).

� Ambos modelos son compatibles y coexisten.

Page 64: Multimedia y QoS - moodle2019-20.ua.es

Clasificación de las aplicaciones en IntServ (Integrated Services)

Tolerantes a pérdidas Intolerantes a pérdidas

Tolerantes a retardos (Elásticas)

Datos UDP: DNS, SNMP, NTP, etc.

Datos sobre TCP: FTP, Web,e-mail, etc.

No tolerantes a retardos (Tiempo Real)

Flujos Multimedia de todo tipo: vídeo ‘streaming’, videoconferencia, telefonía sobre Internet, etc.

Emulación de circuitos (simulación de líneas dedicadas)

Page 65: Multimedia y QoS - moodle2019-20.ua.es

IntServ y RSVP

� Para ofrecer QoS IntServ se basa en la reserva previa de recursos en todo el trayecto.

� Para esa reserva se emplea el protocolo RSVP (Resource reSerVation Protocol), parte esencial del modelo IntServ.

� La reserva garantiza la QoS solicitada. Si no quedan recursos suficientes se rechaza la petición, es decir se ejerce control de admisión o CAC (Connection Admission Control).

� Normalmente la reserva se realiza para una secuencia de datagramas relacionados entre si, que es lo que llamamos un flujo.

Page 66: Multimedia y QoS - moodle2019-20.ua.es

Concepto de flujo

� Flujo: dícese de una secuencia de datagramas que se produce como resultado de una acción del usuario y que requiere la misma QoS.

� Un flujo es la entidad más pequeña a la que los routers pueden aplicar una determinada QoS.

� Un flujo es simplex (unidireccional).

� Ejemplo: Una videoconferencia estaría formada por cuatro flujos, audio y vídeo de ida, audio y vídeo de vuelta.

Page 67: Multimedia y QoS - moodle2019-20.ua.es

Identificación de flujos� Un flujo se identifica por los siguientes

cinco parámetros:� Dirección IP de origen

� Puerto de origen

� Dirección IP de destino

� Puerto de destino

� Protocolo de transporte utilizado (TCP o UDP)

� Los flujos pueden agruparse en clases; todos los flujos dentro de una misma clase reciben la misma QoS.

Page 68: Multimedia y QoS - moodle2019-20.ua.es

A147.156.135.22

B158.42.35.13

Flujo vídeo A->B: 147.156.135.22:2056 -> 158.42.35. 13:4065Flujo audio A->B: 147.156.135.22:3567 -> 158.42.35. 13:2843Flujo vídeo B->A: 158.42.35.13:1734 -> 147.156.135. 22:6846Flujo audio B->A: 158.42.35.13:2492 -> 147.156.135. 22:5387

Flujos en una videoconferencia

Page 69: Multimedia y QoS - moodle2019-20.ua.es

¿Que es RSVP?

� Un protocolo que reserva la capacidad solicitada por un flujo en todos los routers del camino.

� Realmente es un protocolo de señalización pues crea información de estado en los routers (como al establecer SVCs en ATM).

� Aunque se utilice en IP es un servicio orientado a conexión.

� Está pensado principalmente para tráfico multicast.

� No es un protocolo de routing (de eso se ocupará OSPF, IS-IS, PIM-SM, etc.).

Page 70: Multimedia y QoS - moodle2019-20.ua.es

RSVP (Cont.)

� RSVP reserva la capacidad solicitada en todos los routers del camino.

� Cada router ha de mantener el detalle de todas las conexiones activas que pasan por él, y los recursos que cada una ha reservado. El router mantiene información de estado sobre cada flujo que pasa por él.

� Si no se pueden asegurar las condiciones pedidas se rechaza la llamada (control de admisión).

Page 71: Multimedia y QoS - moodle2019-20.ua.es

Emisor

(flujo de 1,5 Mb/s)

Receptor Receptor Receptor

Funcionamiento de RSVP en Multicast

� Las reservas se agregan a medida que ascienden en el árbol multicast.

� Así se optimiza el uso de la red (sólo se hace la reserva una vez en cada tramo).

Reserva1,5 Mb/s

A

B

C

D E F

1: F pide a C que reserve 1,5 Mb/s del caudal descendente

para el flujo que le va a enviar A. C propaga la petición a B quien a su

vez la propaga a A.

Reserva1,5 Mb/s

Reserva1,5 Mb/s

Reserva1,5 Mb/s

Reserva1,5 Mb/s

2: Cuando más tarde E y D realizan sus peticiones no son propagadas

hacia arriba por C o B, pues ya no es

necesario.

Page 72: Multimedia y QoS - moodle2019-20.ua.es

Tipos de servicio en IntServ

Servicio Características Equivalenciaen ATM

Garantizado •Garantiza un caudal mínimo y un retardo máximo•Cada router del trayecto debe dar garantías•A veces no puede implementarse por limitaciones del medio físico (Ej. Ethernet compartida

CBRVBR-rt

Carga Controlada(‘Controlled Load’)

•Calidad similar a la de una red de datagramas poco cargada•Se supone que el retardo es bajo, pero no se dan garantías

VBR-nrt

‘Best Effort’ •Ninguna garantía (como antes sin QoS) UBR

Page 73: Multimedia y QoS - moodle2019-20.ua.es

Servicio Garantizado(máxima prioridad)

Servicio de Carga controlada(prioridad intermedia)

Servicio ‘Best Effort’(mínima prioridad)

Cau

dal

→→ →→

Reparto de recursos en IntServ

Tiempo →→→→

Page 74: Multimedia y QoS - moodle2019-20.ua.es

Problemas de IntServ/RSVP

� RSVP produjo una euforia inicial (1996-1997) que luego dió paso a la decepción.

� La razón principal fueron problemas de escalabilidad debidos a la necesidad de mantener información de estado en cada router. Esto hace inviable usar RSVP en grandes redes, por ejemplo en el ‘core’ de Internet.

Page 75: Multimedia y QoS - moodle2019-20.ua.es

Problema de escalabilidad de RSVP

Estos routers han de mantener información sobre muchos flujos y por

tanto mucha información de estado

‘Core’ deInternet

Page 76: Multimedia y QoS - moodle2019-20.ua.es

Problemas de IntServ/RSVP� Los fabricantes de routers no han

desarrollado implementaciones eficientes de RSVP, debido al elevado costo que tiene implementar en hardware los algoritmos necesarios para mantener gran cantidad de información de estado.

� Sin embargo recientemente se han desarrollado mejoras en RSVP que resuelven algunos de estos inconvenientes.

� Además también ha resurgido el interés por RSVP para aplicarlo en MPLS (Multi Protocol Label Switching). En estos casos el número de flujos no suele ser muy grande.

Page 77: Multimedia y QoS - moodle2019-20.ua.es

Sumario

� Concepto de Calidad de Servicio

� Calidad de Servicio en Internet � Octeto ToS en IPv4

� Modelo IntServ y protocolo RSVP

� Prioridad y etiqueta de flujo en IPv6

� Modelo DiffServ

� Calidad de servicio en LANs

� Control de congestión en Internet

Page 78: Multimedia y QoS - moodle2019-20.ua.es

QoS en IPv6

� Al desarrollar IPv6 estaba claro que los flags del octeto ToS no eran útiles. En cambio la precedencia sí que tenía cierta aceptación entre los fabricantes y usuarios.

� Por otro lado la aparición del modelo IntServ por las mismas fechas llevó a diseñar en IPv6 algún mecanismo que simplificara la identificación de los flujos.

Page 79: Multimedia y QoS - moodle2019-20.ua.es

Versión Prior. Etiqueta de flujo Longitud de carga útil Sig. Cabecera Límite saltos

Dirección de origen

(16 bytes)

Dirección de destino (16 bytes)

Cabecera IPv6 (RFC 1883, 1995)

� Prioridad (4 bits): Hasta 16 niveles posibles. Mayor esmejor.

� Etiqueta de flujo (24 bits): El host emisor incluye aquíuna etiqueta que identifica de forma única cada flujoque genera. Esto permite a los routers distinguir másfácilmente los paquetes que pertenencen al mismo flujo(no tienen que inspeccionar tantos campos).

� Aun no se han desarrollado aplicaciones que hagan usodel campo ‘etiqueta de flujo’.

Page 80: Multimedia y QoS - moodle2019-20.ua.es

Sumario

� Concepto de Calidad de Servicio

� Calidad de Servicio en Internet � Octeto ToS en IPv4

� Modelo IntServ y protocolo RSVP

� Prioridad y etiqueta de flujo en IPv6

� Modelo DiffServ

� Calidad de servicio en LANs

� Control de congestión en Internet

Page 81: Multimedia y QoS - moodle2019-20.ua.es

Modelo DiffServ (Differentiated Services)

� Intenta evitar los problemas de escalabilidad que plantea IntServ/RSVP.

� Se basa en marcar los paquetes con una etiqueta y acordar con todos los routers un tratamiento según la etiqueta:� No hay reserva de recursos por flujo (los

routers no ‘ven’ los flujos).� No hay protocolo de señalización.� No hay información de estado en los

routers.� Las garantías de calidad de servicio no son tan

estrictas como en IntServ, pero en muchos casos son suficientes.

� Puesto que los paquetes se clasifican en ‘clases’ a veces a esto se le denomina CoS (Class of Service).

Page 82: Multimedia y QoS - moodle2019-20.ua.es

DiffServ (II)� A cada clase le corresponde un SLA (Service

Level Agreement). Los usuarios pueden contratar unos determinados valores de los parámetros QoS para cada clase.

� El número de clases posibles es limitado e independiente del número de flujos o usuarios; por tanto la complejidad es constante, no proporcional al número de usuarios. La información se puede sumarizar fácilmente, la arquitectura es escalable.

� La información de QoS viaja ‘montada’ en los datagramas en un campo nuevo llamado DS.

� Los routers sólo han de saber qué tratamiento deben dar a cada clase. Esto lo saben por configuración (no es información de estado).

Page 83: Multimedia y QoS - moodle2019-20.ua.es

Campo DS (RFC 2474)

� DSCP: Differentiated Services CodePoint. Seis bits que indican el tratamiento que debe recibir este paquete en los routers.

� CU: Currently Unused (reservado). Este campo se utiliza actualmente para control de congestión (ECN, RFC 3168).

DSCP CUCampo DS

Clase

Page 84: Multimedia y QoS - moodle2019-20.ua.es

Versión DS Etiqueta de flujo Longitud de carga útil Sig. Cabecera Límite saltos

Dirección de origen

(16 bytes)

Dirección de destino (16 bytes)

Cabecera IPv6 con DiffServ

Version Lon.Cab. DS Longitud total Identificación X D

F M F

Desplazamiento fragmento

Tiempo de vida Protocolo Checksum Dirección de origen Dirección de destino

Opciones

Cabecera IPv4 con DiffServ

Page 85: Multimedia y QoS - moodle2019-20.ua.es

DSCP CU

Precedencia D T R C X

Prioridad Etiq. de Flujo (1-4)

IPv4Antes

IPv6Antes

IPv4 e IPv6Ahora

Aparición del campo DS en IPv4 e IPv6

El significado de los tres primeros bits es compatible en los tres casos

Clase

Page 86: Multimedia y QoS - moodle2019-20.ua.es

Campo DSCP

� 6 bits = 64 categorías de tráfico posibles.

� De momento se han dividido en 3 grupos:

Codepoint Valores Uso

cccyy0 32 Estándar

xxxx11 16 Local/experimental

xxxx01 16 Reservado

En el grupo estándar los tres primeros bits (ccc) indican la clase.

Page 87: Multimedia y QoS - moodle2019-20.ua.es

Tipos de Servicio en DiffServ

Servicio Características Equivalenciaen ATM

‘Expedited Forwarding’ o ‘Premium’

•Es el que da más garantías. Equivale a una línea dedicada.•Lo garantiza todo: Caudal, tasa de pérdidas, retardo y jitter.

CBRVBR-rt

‘Assured Forwarding’

•Asegura un trato preferente, pero sin fijar garantías (no hay SLA).•Se definen cuatro clases y en cada una tres niveles de descarte de paquetes..

VBR-nrt

‘Best Effort’ •Ninguna garantía, obtiene solo las migajas. UBR

Page 88: Multimedia y QoS - moodle2019-20.ua.es

Significado de las clases del DSCP

Rango(decimal)

Valor(binario)

Significado Equivalenteprecedencia

56-63 111xxx Control de la red 7

48-55 110xxx Control de la red 6

40-47 101xxx Expedited Forwarding 5

32-39 100xxx Assured Forwarding clase 4 4

24-31 011xxx Assured Forwarding clase 3 3

16-23 010xxx Assured Forwarding clase 2 2

8-15 001xxx Assured Forwarding clase 1 1

0-7 000xxx Best effort (default) 0

Page 89: Multimedia y QoS - moodle2019-20.ua.es

Servicio EF (Expedited Forwarding) o ‘Premium’

� Es el que da mayor seguridad (‘virtual leased line’).

� Ofrece un SLA (Service Level Agreement) que lo garantiza todo:� Ancho de banda mínimo.� Tasa máxima de pérdida de paquetes.� Retardo máximo.� Jitter máximo.

� Se garantiza el caudal, pero no se toleranexcesos.

� Le corresponde el DSCP ‘101110’ (46 en decimal).

Page 90: Multimedia y QoS - moodle2019-20.ua.es

Servicio AF (Assured Forwarding)

� El nombre es engañoso pues no ‘asegura’ el envío. Asegura un trato preferente(respecto al Best Effort y los AF de claseinferior), pero no garantiza parámetros (no hay SLAs).

� Se definen cuatro clases: 4, 3, 2, 1 (más esmejor).

� En los routers se pueden asignar recursos(ancho de banda y espacio en buffers) independientemente para cada clase.

� En cada clase se definen tres categorías de descarte de paquetes: alta, media y baja.

� Le correspoden 12 diferentes DSCP: ‘cccdd0’ (ccc = clase, dd = descarte).

Page 91: Multimedia y QoS - moodle2019-20.ua.es

Codepoints del Servicio AF (‘cccdd0’)

Precedencia de descarte ‘dd’

Clase ‘ccc’

Alta ’11’

Media ’10’

Baja ’01’

4 ‘100’

100110AF43

38

100100AF42

36

100010AF41

34

3 ‘011’

011110AF33

30

011100AF32

28

011010AF31

26

2 ‘010’

010110AF23

22

010100AF22

20

010010AF21

18

1 ‘001’

001110AF13

14

001100AF12

12

001010AF11

10

Mayor prioridad

Menor prioridad

Menor probabilidadde descarte

Mayor probabilidadde descarte

Mientras que en la clase ‘más es

mejor’ en la probabilidad de descarte ‘mas

es peor’ Binario

Nombre

Decimal

Page 92: Multimedia y QoS - moodle2019-20.ua.es

Traffic Policing en Servicio AF

� En el servicio AF el usuario puede contratar con el ISP un caudal para cada clase.

� El ISP puede aplicar ‘traffic policing’ sobre el tráfico del usuario y si se excede jugar con los bits de precedencia de descarte, usándolos de forma parecida al bit DE de Frame Relay o al CLP de ATM.

� Existen tres niveles de prioridad de descarte, el ISP puede utilizar uno u otro en función de lo ‘gorda’ que sea la infracción. Normalmente se utiliza el algoritmo del pozal agujereado (‘leaky bucket’).

Page 93: Multimedia y QoS - moodle2019-20.ua.es

Traffic Policing en el Servicio AF

dd=10

Bc

Be1

dd=01CAR

EAR1

Paquetes enviados

por el host

Paquetes que desbordan la capacidad del pozal B c

Descartar

Be2

dd=11EAR2

Paquetes que desbordan la capacidad del pozal B e1

Paquetes que desbordan la capacidad del pozal B e2

CAR = Committed Access Rate

Page 94: Multimedia y QoS - moodle2019-20.ua.es

Dec. Binario Significado

62 111110 Reserv.

60 111100 Reserv.

58 111010 Reserv.

56 111000 Preced. 7 (routing y control)

54 110110 Reserv.

52 110100 Reserv.

50 110010 Reserv.

48 110000 Preced. 6 (routing y control)

46 101110 EF (Premium)

44 101100 Config. Usuario

42 101010 Config. Usuario

40 101000 Preced. 5

38 100110 AF43

36 100100 AF42

34 100010 AF41

32 100000 Preced. 4

Dec. Binario Significado

30 011110 AF33

28 011100 AF32

26 011010 AF31

24 011000 Preced. 3

22 010110 AF23

20 010100 AF22

18 010010 AF21

16 010000 Preced. 2

14 001110 AF13

12 001100 AF12

10 001010 AF11

8 001000 Preced. 1

6 000110 Config. usuario

4 000100 Config. Usuario

2 000010 Config. Usuario

0 000000 Preced. 0 (Best Effort, default)

Valores del campo DSCP

Page 95: Multimedia y QoS - moodle2019-20.ua.es

Servicio ‘Expedited Forwarding’ o ‘Premium’

Servicios ‘Assured Forwarding’

Cau

dal

→→ →→

Reparto de recursos en DiffServ

Tiempo →→→→

Servicio ‘Best Effort’

Page 96: Multimedia y QoS - moodle2019-20.ua.es

Implementación de DiffServ� El DSCP (la clase) se asigna según alguna

característica del paquete: IP origen/destino o puerto origen/destino.

� Se puede incluso identificar y clasificar paquetes que pertenecen a protocolos que utilizan puertos dinámicos por el patrón de tráfico que generan (p. ej. peer-to-peer).

� El Traffic Policing sólo se ejerce en los routers de entrada a la red del ISP y en los que atraviesan fronteras entre ISPs (normalmente en las fronteras entre sistemas autónomos). Esto es lo que se conoce como un ‘Dominio DiffServ’.

� El router de ingreso al dominio DiffServ se encarga de marcar el campo DSCP (de acuerdo con la política de QoS). Los siguientes sólo han de realizar el tratamiento que corresponde según el DSCP.

Page 97: Multimedia y QoS - moodle2019-20.ua.es

Implantación de Diffserv

� El acuerdo de ‘peering’ entre dos ISPs puede, o no, incluir QoS.

� Si dos ISP acuerdan intercambiar tráfico manteniendo la QoS han de establecer si los DSCP se mantienen inalterados, o si se realiza una conversión de acuerdo con determinada equivalencia, para mantener la semántica.

� En la entrada de cada ‘DS domain’ un router frontera se encargará del marcado o remarcado de los paquetes, de acuerdo con la política de QoS.

Page 98: Multimedia y QoS - moodle2019-20.ua.es

Empresa X Empresa Y

ISP 1AS 234

ISP 2AS527

H.323

1: Dos usuarios establecen una vídeoconferencia

2: Los routers de salida asignan EF al audio y AF41 al vídeo (política de QoS). Realizan traffic shaping.

3: Los routers de ingreso de ISP realizan traffic policing sobre el tráfico entrante, por separado para cada clase.

4: Los routers frontera entre ISPs realizan traffic shaping sobre el tráfico saliente y traffic policing sobre el entrante (para cada clase). Opcionalmente remarcan paquetes.

5: Los routers interiores de ISP solo tienen que darle a cada paquete el trato que le corresponde según su DSCP, y pasar el valor inalterado.

Funcionamiento de DiffServ en Internet

Dominio DiffServ IDominio DiffServ II

Page 99: Multimedia y QoS - moodle2019-20.ua.es

Funciones QoS desempeñadas por los routers

Identificar y separar paquetes en las diferentes

clases.

Descartar paquetes que

exceden el SLA para garantizar la integridad de la

red.

Asignar a cada paquete el

DSCP que le corresponde.

Colocar cada paquete en la

cola que le corresponde. Descartar los

que superan el umbral

acordado de ocupación del

buffer.

Controlar (suavizar) ráfagas y

conformar tráfico para enviar por la interfaz.

Page 100: Multimedia y QoS - moodle2019-20.ua.es

DiffServ y Bandwidth Brokers

� La información necesaria para aplicar el Policy Control y Administrative Control es mantenida para toda la red por un elemento denominado Bandwidth Broker (BB).

� El BB es el encargado de realizar todos los controles administrativos y gestionar los recursos de red disponibles.

� El BB puede intercambiar información con otros BB de otras redes.

� Los ISPs pueden acordar políticas de intercambio mutuo.

Page 101: Multimedia y QoS - moodle2019-20.ua.es

Arquitectura DiffServ: Diferentes ISP

Router periférico (controlar, marcar flujos)

Router fronterizoentrante

(classificar, controlar, marcar aggregados)

Router fronterizosaliente

(dosificar agregados)

Routers‘core’

Routers‘core’

Bandwidth Brokers(control de admisión,

gestionar recursos de red, configurar routers periféricos y fronterizos)

BB BB

Origen Destino

Controlar = traffic policingDosificar = traffic shaping

ASISP 1

ASISP 2

Page 102: Multimedia y QoS - moodle2019-20.ua.es

IntServ vs DiffServ

� IntServ fue desarrollado con anterioridad a DiffServ. Sin embargo DiffServ se ha extendido más que IntServ.

� DiffServ permite agregar flujos, el modelo es escalable.

� Debido a estas diferencias muchos fabricantes de routers implementan versiones eficientes de DiffServ, pero no de IntServ.

� Actualmente muchos ISP implementan DiffServ.

� Qbone (red experimental de QoS en Internet 2) utiliza el modelo DiffServ.

Page 103: Multimedia y QoS - moodle2019-20.ua.es

Sumario

� Concepto de Calidad de Servicio

� Calidad de Servicio en Internet � Octeto ToS en IPv4

� Modelo IntServ y protocolo RSVP

� Prioridad y etiqueta de flujo en IPv6

� Modelo DiffServ

� Calidad de servicio en LANs

� Control de congestión en Internet

Page 104: Multimedia y QoS - moodle2019-20.ua.es

QoS en LANs� Desarrollada en 802.1p y 802.1Q.

� Campo prioridad de tres bits. Hasta ocho niveles o ‘clases’ posibles (modelo sin información de estado, similar a DiffServ).

� La prioridad va anotada en la etiqueta de VLAN. Consecuencia: Sólo puede utilizarse QoS en enlaces ‘trunk’.

� Interés limitado dada la posibilidad en la LAN de sobredimensionar a bajo costo.

� Normalmente la QoS de LAN va asociada a la QoS a nivel de red, haciendo una equivalencia de prioridades 802.1p a tipos de servicio IntServ o DiffServ (más fácil con DiffServ).

Page 105: Multimedia y QoS - moodle2019-20.ua.es

Dir. MACDestino

Dir.MAC Origen

Ethertype/Longitud Datos

Relleno(opcional) CRC

Etiquetado de tramas según 802.1Q

Dir. MACDestino

Dir.MAC Origen

X’8100’ Tag Ethertype/Longitud Datos

Relleno(opcional) CRC

Trama802.3

Trama802.1Q

Pri CFI VLANIdent.

El Ethertype X’8100’ indica ‘protocolo’ VLAN

Bits 13 12

Pri: Prioridad (8 niveles posibles)CFI: Canonical Format Indicator (indica formato de direcciones MAC)VLAN Ident.: Identificador VLAN (máximo 4096 en una misma red)

Page 106: Multimedia y QoS - moodle2019-20.ua.es

QoS: Implementación� Normalmente los conmutadores y routers

que soportan QoS tienen varias colas de salida por interfaz (a veces también de entrada) en las que pueden usar diferentes algoritmos.

� Las colas pueden implementarse por software o por hardware. Cuando son por hardware el número suele estar entre dos y cinco.

� Los mecanismos hardware son los mismos para nivel 2 (802.1q) que para nivel 3 (DiffServ).

� No hay reservas estrictas sino asignaciones aproximadas.

Page 107: Multimedia y QoS - moodle2019-20.ua.es

Configuración QoS recomendada en conmutadores Catalyst 3560 para VoIP

Tipo de tráfico Etiqueta DSCP

Clase Prior.802.1p/Q

Colasalida

Caudalsalida

Tamaño buffer

Datos VoIP 46 (EF) 5 5 1(Priority) 10% 10%

Control Voz y vídeo

26 (AF31) 3 3

2 (WRR) 10 % 10%Prot. Routing 48 6 6

Spanning Tree 56 7 7

Vídeo t. real 34 (AF41) 4 43 (WRR) 60% 26%

Datos oro (1ª) 16 2 2

Datos plata (2ª) 8 1 1 4 (WRR) 20% 54%

Datos resto (3ª) 0 (BE) 0 0

WRR: Weighted Round Robin

Page 108: Multimedia y QoS - moodle2019-20.ua.es

Encolamiento de paquetes en routersy conmutadores (nivel 2 y 3)

Cola 1 (10%)

Cola 2 (10%)

Cola 3 (60%)

Cola 4 (20%)

PQ

WRRInterfaz de salida

� PQ: Priority Queue. Siempre va la primera, pero no recibe más de lo asignado.

� WRR: Weighted Round Robin. Cada cola obtendrá al menos su parte, y si hay caudal libre obtendrá más.

Algoritmos de encolamiento:

Page 109: Multimedia y QoS - moodle2019-20.ua.es

Referencias QoS

� ‘Quality of Service-Fact or Fiction?’ Geoff Huston, Internet Protocol Journal Vol. 3 Nº 1. http://www.cisco.com/warp/public/759/ipj_3-1/ipj_3-1_qos.html

� Intserv: http://www.ietf.org/html.charters/intserv-charter.html

� RSVP: http://www.ietf.org/html.charters/rsvp-charter.html . Ver también: http://www.isi.edu/rsvp/pub.html

� Diffserv: http://www.ietf.org/html.charters/diffserv-charter.html

� Grupo de Trabajo QoS Internet2: http://www.internet2.edu/qos/wg

� Qbone: http://qbone.internet2.edu� B. Teitelbaum: ‘Internet 2 Qbone: A Test Bed for

Differentiated Services’, http://www.isoc.org/inet99/proceedings/4f/4f_1.htm

� Proyecto Quantum: http://www.dante.net/quantum

Page 110: Multimedia y QoS - moodle2019-20.ua.es

Sumario

� Concepto de Calidad de Servicio

� Calidad de Servicio en Internet � Octeto ToS en IPv4

� Modelo IntServ y protocolo RSVP

� Prioridad y etiqueta de flujo en IPv6

� Modelo DiffServ

� Calidad de servicio en LANs

� Control de congestión en Internet

Page 111: Multimedia y QoS - moodle2019-20.ua.es

Control de congestión en Internet

� El mecanismo tradicional de control de congestión en IP es el control que ejerce TCP por medio del ‘slow-start’. Este mecanismo sólo actúa cuando ya se ha perdido algún paquete.

� Cuando los routers empiezan a descartar por llenado de buffers suelen descartar todos los paquetes que les llegan. Esto hace que todas las sesiones TCP ejecuten el ‘slow-start’ y se cae en un comportamiento oscilante. El rendimiento es malo.

� Se ha visto que el rendimiento global mejora si se descartan algunos paquetes (al azar) bastante antes de llenar los buffers. Esto obliga a algunas sesiones a realizar el slow-start, pero no todas a la vez. Esto se conoce como RED (Random Early Detect o Random Early Discard).

Page 112: Multimedia y QoS - moodle2019-20.ua.es

Mecanismos de Control de Congestión en Internet

Mecanismo Consiste en: Aplicado a nivel de:

Slow Start Cuando un host detecta pérdidas reduce el ritmo y se autocontrola.

Transporte (TCP)

RED (Random Early Detect)

Cuando los routers detectan congestión descartan paquetes al azar. Los hosts reducen el ritmo.

Red (IP)

ECN (Explicit Congestion Notification)

Cuando los routers detectan congestión notifican a los hosts para que reduzcan el ritmo.

Red (IP) y Transporte (TCP)

Page 113: Multimedia y QoS - moodle2019-20.ua.es

ECN en Internet

� El RFC 2481(1/1999) definió el uso de los dos bits libres del campo DS para el subcampo ECN (Explicit Congestion Notification). También se añadieron dos flags en la cabecera TCP. Se especificó como un protocolo ‘Experimental’.

� El RFC 3168 (7/2001) deja obsoleto al RFC 2481, eleva el ECN al status de ‘Standards Track’ y aclara algunos puntos.

� Ya hay algunas implementaciones de ECN (Linux).

Page 114: Multimedia y QoS - moodle2019-20.ua.es

DSCP

Campo ECN en IP (RFC 3168)

ECN

ECN Significado

00 El Host emisor no soporta ECN.

01 El Host emisor soporta ECN (caso alternativo).

10 El Host emisor soporta ECN (caso normal).

11 El Host soporta ECN. La red ha marcado congestión.

Page 115: Multimedia y QoS - moodle2019-20.ua.es

Long.Cabecera

Reservado CWR

ECE

URG

ACK

PSH

RST

SYN

FIN

Formato de los bytes 13 y 14 en la cabecera TCP

Antes de ECN:

Long.Cabecera

Reservado URG

ACK

PSH

RST

SYN

FIN

4 bits 6 bits

4 bits 4 bitsDespués de ECN:

CWR: Congestion Window ReducedECE: ECN Echo

6 bits

8 bits

Flags

Flags

Page 116: Multimedia y QoS - moodle2019-20.ua.es

1

1: A envía un paquete a B

IP: ECN = ’10’TCP: CWR = 0, ECE = 0

A 2

2: Router Y recibe el paquete, detecta

congestión y cambia ECNIP: ECN = ’11’

BX Y Z

3

3: B recibe el paquete y detecta que ha habido

congestión en el camino (ECN = ’11’)

44: TCP de B envía

paquete de aviso a AIP: ECN = ’10’

TCP: CWR = 0, ECE = 1

5

5: A recibe aviso de B (ECE = 1)

6

6: TCP de A reduce su ventana y envía confirmación a B

indicando que ha recibido el aviso

IP: ECN = ’10’TCP: CWR = 1, ECE = 0

7

7: B recibe confirmación (CWR = 1) y se queda

tranquilo (sabe que no ha de insistir con ECE = 1)

Funcionamiento de IP y TCP con ECN

Page 117: Multimedia y QoS - moodle2019-20.ua.es

1

1: A envía paquete a BIP: ECN = ’10’

TCP: CWR = 0, ECE = 0

A 2

2: Router X pone ECN = ’00’ y lo envía

BX Y Z

3

3: Router Z recibe paquete, pone ECN = ’10’

y lo envía a B

Host B nunca detecta congestión, por tanto nunca pone a 1 flag

ECE

ECN en una red que ‘engaña’ al host

Router frontera de ISP

Router frontera de ISP

Cuando router Y sufra congestión descartará

paquetes (nunca cambiará ECN pues la

red no lo soporta)

Red del ISP

Page 118: Multimedia y QoS - moodle2019-20.ua.es

ECN alternativo

� El caso alternativo funciona igual, salvo que el host pone el segundo bit y el router el primero.

� Con dos posibles maneras de marcar el soporte de congestión en el host resulta mucho más difícil para el ISP engañar al usuario.

� Por ejemplo en el caso anterior el router Z no sabe si ha de restaurar el ECN ’10’ o el ’01’. Para saberlo tendría que preguntar al router de entrada (X) y mantener ambos información de estado para cada conexión TCP activa.

Page 119: Multimedia y QoS - moodle2019-20.ua.es

Funcionamiento de ECN

�El bit de congestión de ECN equivale en IP a:

�El bit EFCI de ATM (bit intermedio del campo PTI, EFCI=Explicit Forward Congestion Indication).

�El bit FECN (Forward Explicit Congestion Notification) de Frame Relay.


Top Related