Download - Heat Exchanger

Transcript
Page 1: Heat Exchanger

Appendix F -63

Production of 100,000 MTA Hydrogen

F.10 SIZING AND COSTING FOR HEAT EXCHANGER

Heat Exchanger, X-5Heat exchanger type 2 shell and 4 tubesDesign type Split-ring floating headHeat exchanger orientation HorizontalTube inlet direction HorizontalNumber of parallel plate 1Tube side stream feed 1Tube side NgShell side SteamHeat duty (kW) 11666.670a) Equipment sizing

shell tubeStream Steam NG

617.60 330.86

579.55 607.25

344.10306.4057.71

334.10

R = ( eqn. 12.6 )= 0.138

S= ( eqn. 12.7 )= 0.964

Ft can be obtained from fig 12.19 ( vol. 6 ),

0.8900

Tin (K)

Tout (K)

T1(oC) = T2(oC) = t1(oC) = t2(oC) =

(T1-T2)/(t2-t1)

(t2-t1)/(T1-t1)

Ft =

T1 = inlet temperature to shellT2 = outlet temperature from shellt1 = inlet temperature to tubet2 = outlet temperature from tube

T2T1

t2

t1

Page 2: Heat Exchanger

Appendix F -64

Production of 100,000 MTA Hydrogen

( eqn. 12.4 )

74.9681

Therefore, the actual temperature difference is

66.7216

Assumption: (Table 12.1, 'Chem. Eng', Vol. 6)

U 454.264

Provisional area of heat exchanger, A can be obtained trough the formulae,

Provisional area, A 384.92164143.2620

b) Tube rating ( App.5.-2, Tranport Processes )Material Carbon steelBWG number 18

2.4419.0516.56

Material Thermal Conductivity ( W/m.K ) 16.3

0.1460

1.5718

Number of tube, Nt

2636

Tube pitch is the distance between tube centres and formulated as

DTlm can be calculated from the equation,

DTlm =

FtDTlm =

W/(C.m2)

m2

ft2

Length of tube Lt (m)Outer diameter, Dto (mm)Inner diameter, Dti (mm)

Heat transfer area of a tube, At

Area of one tube, At (m2)

(ft2)

Number of tube, Nt

ΔT lm=(T 1−t 2 )−(T2−t1 )

ln(T1−t 2 )(T2−t 1 )

Q=UA ΔTalignl ¿ lm ¿¿¿

A t=Lt πDalignl ¿ to ¿ ¿¿

A=Q

UΔT lm

N t=AA t

Page 3: Heat Exchanger

Appendix F -65

Production of 100,000 MTA Hydrogen

23.8125

From Table 12.4, Chemical Engineering , Vol. 6 ( 1st Edition )

0.249( 2 passes ) n 2.207

( eqn. 12.3b )

1269.1683

From Chemical Engineering , Vol. 6 (figure 12.10)Shell bundle clearance (mm) 72

For Split-ring floating head, Ds = Db + shell bundle clearance

1.3412

c) Tube side coefficient

Mean temperature (K)

Mean temperature (K) 469.0550

215.4105

659

0.1420

Tube pitch, Pt (mm)

Triangular pitch K1

The bundle diameter, Db

Bundle diameter, Db (mm)

Shell internal diameter, Ds (m)

Tmean =(Tc.in +Tc,out)/2

Tube cross-sectional area, At

Tube cross-sectional area, At

Tube cross-sectional area, At mm2

Tube per pass = Nt

Total flow area (m2), AT

Total flow area (m2), AT

Pt=1 . 25×D to

Db=D to( N t / K1 )1 /n

A t=πDti2

¿4 ¿¿

¿

AT=N t A t

Page 4: Heat Exchanger

Appendix F -66

Production of 100,000 MTA Hydrogen

Mass flow rate (inside tube), m 10.1183 kg/s

71.2794

Physical properties of the tube side fluidPhysical properties of Water

1015.2654

7.94E-044.17172369041347 kJ/kg.K

0.09488828968 W/m.K

Linear velocity, u

Reynold number, Re

Prandtl number, Pr

linear velocity, u (m/s) 0.0702Reynold number, Re 1486.072Prandtl number, Pr 34.9211

147.3430

From figure 12.23, Chemical Engineering, Vol. 6

0.0035

( eqn. 12.15 )

96.26738( assuming viscosity of the fluid is identical at the wall and of the bulk fluid )

d) Tube side pressure drop

From figure 12.24 'Chemical Engineering'. Vol. 6

Fluid velocity, nf

mass velocity, nf kg/m2.s

water density, rt kg/m3

Viscosity of water, mtL Ns/m2

Heat capacity, Ctp

Thermal conductivity, ktf

L/Dti

Heat transfer factor, jh

Tube side heat transfer coefficient, hi

Tube side heat transfer coefficient, hi W/m2.C

v f=m / AT

u=v f / ρ

Re=ρuDti

μ

Pr=Cp μ

k f

hi=k f jh RePr0 . 33

Dti ( μμw )

0 .14

Page 5: Heat Exchanger

Appendix F -67

Production of 100,000 MTA Hydrogen

0.0030

( eqn. 12.20 )where m = 0.25 for laminar flow, Re<2100 m = 0.14 for turbulent flow, Re>2100

0.0302 kPa (acceptable)

e) Shell side coefficient1.3412 m Baffle

diameter

1.2071 mBaffle Diameter 1.3396 m

23.8125 mm

( eqn. 12.21 )

0.3238

204583 kg/hr

175.5206

( eqn. 12.23 )

friction factor, jf

Tube side pressure drop, DPt

Np = number of tube side passes

Tube side pressure drop,

DPt

Shell diameter, Ds

Baffle spacing, lB

Tube pitch, Pt

Cross flow area, As

Cross flow area, As m2

Shell side mass velocity, Gs

Mass flow (inside shell), Ws

Shell side mass velocity, Gs kg/s.m2

Shell side equivalent diameter, De

ΔPs=N p [ 8 jf ( L/ Dti )(μ

μw)−m+2. 5 ]

ρus2

2

Baffle Diameter=D s−0 . 0016

Baffle Spacing , lB=0 .9∗Ds

A s=( p t−Dto )D s lB

pt

sss AwG /

De=1 .1Dto

( pz2−0.971 Dto

2 )

Page 6: Heat Exchanger

Appendix F -68

Production of 100,000 MTA Hydrogen

13.5265 mm

Mean temperature (C)

Mean temperature (C) 598.5750

Physical properties of shell fluid (light hydrocarbon)

Physical properties

3.9318

3.3589E-052.60682510137189 kJ/kg.K

0.1718 W/m.K

Reynold number, Re( eqn. 12.24 )

Reynold number, Re 2989.010Prandtl number, Pr 0.5096

Selecting 15% for baffle cutFrom figure 12.29, Chemical Engineering, Vol. 6

0.0100

( eqn. 12.25 )

303.966

f) Shell side pressure drop

44.6413 m/s

From figure 12.30 'Chemical Engineering'. Vol. 6

0.0800

Shell side equivalent diameter, De

Tmean = (Tshell.in +Tshell.out)/2

Fluid density, rs kg/m3

Viscosity, msL Ns/m2

Heat capacity, Csp

Thermal conductivity, ksf

Heat Transfer Factor, jh

Shell side heat transfer coefficient, hs

Shell side heat transfer coefficient, hs W/m2.C

Linear velocity, us

Linear velocity, us

friction factor, jf

Re=Gs De /μ

hs=k f jh RePr1/3

De ( μμw )

0 .14

us=Gs / ρ

Page 7: Heat Exchanger

Appendix F -69

Production of 100,000 MTA Hydrogen

( eqn. 12.26 )

Shell side presure drop, 26979084.0816 Pa (acceptable)

26979.0841 kPa

g) Overall Coefficient

303.966

96.26738

5000

5500

16.30.01656

0.01905

Overall heat transfer coefficient can be calculated by using the formula

( eqn. 12.1 )Therefore,

0.0157305122079733

63.5707208245343

1

Shell side presure drop, DPs

DPs

Outside fluid film coefficient, hs, W/m2.oC

Inside fluid film coefficient, hi, W/m2.oC

Outside dirt coefficient (fouling factor), hod, W/m2.oC

Inside dirt coefficient, hid, W/m2.oC (from Table 12.2, vol. Six )

Thermal conductivity of the tube wall material, kw, W/m.oCTube inside diameter, Dti, m

Tube outside diameter, Dto, m

1/Uo =

Uo = W/m2.C

h) Number of baffle, Nb

Number of baffle, Nb

Nbaffle

hs=k f jh RePr1/3

De ( μμw )

0 .14

1Uo

= 1hs

+ 1hod

+d to ln (d to /d ti)

2k w+

d to

d ti× 1

hid+

d to

dti× 1

hi

Nb=( L/ lB)−1

Page 8: Heat Exchanger

Appendix F -70

Production of 100,000 MTA Hydrogen

Costing

Type Shell and tube

384.9216Material Carbon SteelFeed Pressure 5.07bar

With reference to costing method proposed by L.T. Biegler,Base Cost, C

Bare Module Cost, BMC For 100<S<10000 ft2,Co 5000So 400

Materials and Pressure Correction Factor, MPF a 0.65UF 3.219048

Total area (ft2) 4143.26Base cost, C ($) 22850.9134Modular factor, MF 3.29Design factor, Fd 1.0 (Floating head)Pressure factor, Fp 0Material factor, Fm 1 (CS/CS)MPF 1Bare module cost ($) 242,006.407Bare module cost (RM) 919,624.348

Area (m2)

C=C0( S/ S0 )α

BMC=BC (C )×MF

MPF=Fm( F p+Fd)

Page 9: Heat Exchanger

Appendix F -71

Production of 100,000 MTA Hydrogen

Heat Exchanger, X-11

Heat exchanger type 1 shell and 2 tubesDesign type Split-ring floating headHeat exchanger orientation HorizontalTube inlet direction HorizontalNumber of parallel plate 1Tube side stream feed 1Tube side organic solventsShell side methanolHeat duty (kW) 3321.390

a) Equipment sizingshell tube

Stream methanol organic solvent300.15 284.15

294.15 289.79

R = ( eqn. 12.6 )R= 1.064

S= ( eqn. 12.7 )S= 0.353

Ft can be obtained from fig 12.19 ( vol. 6 ),

0.9800

Tin (K)

Tout (K)

(T1-T2)/(t2-t1)

(t2-t1)/(T1-t1)

Ft =

DTlm can be calculated from the equation,

ΔT lm=(T 1−t2 )−(T2−t1 )

ln(T1−t 2 )(T2−t 1 )

T1 = inlet temperature to shellT2 = outlet temperature from shellt1 = inlet temperature to tubet2 = outlet temperature from tube

T2

T1

t2

t1

Page 10: Heat Exchanger

Appendix F -72

Production of 100,000 MTA Hydrogen

( eqn. 12.4 )

10.1789Therefore, the actual temperature difference is

9.9754

Assumption: (Table 12.1, 'Chem. Eng', Vol. 6)

U 900

Provisional area of heat exchanger, A can be obtained trough the formulae,

Provisional area, A 369.95493972.9842

b) Tube rating ( App.5.-2, Tranport Processes )Material Carbon steelBWG number 18

2.4419.0516.56

Material Thermal Conductivity ( W/m.K ) 16.3

0.1460

1.5718Number of tube, Nt

2533

Tube pitch is the distance between tube centres and formulated as

23.8125

DTlm =

FtDTlm =

W/(C.m2)

m2

ft2

Length of tube Lt (m)Outer diameter, Dto (mm)Inner diameter, Dti (mm)

Heat transfer area of a tube, At

Area of one tube, At (m2)

(ft2)

Number of tube, Nt

Tube pitch, Pt (mm)

ΔT lm=(T 1−t2 )−(T2−t1 )

ln(T1−t 2 )(T2−t 1 )

Q=UA ΔTalignl¿ lm ¿¿¿

A t=Lt πDalignl ¿ to ¿ ¿¿

A=Q

UΔT lm

N t=AA t

Pt=1 . 25×D to

Page 11: Heat Exchanger

Appendix F -73

Production of 100,000 MTA Hydrogen

From Table 12.4, Chemical Engineering , Vol. 6 ( 1st Edition )

0.249( 2 passes ) n 2.207

( eqn. 12.3b )

1246.5656

From Chemical Engineering , Vol. 6 (figure 12.10)Shell bundle clearance (mm) 78

For Split-ring floating head, Ds = Db + shell bundle clearance

1.3246

c) Tube side coefficient

Mean temperature (K)

Mean temperature (K) 286.9700

215.4105

633

0.1364

Mass flow rate (inside tube), m 166.1064 kg/hr

Triangular pitch K1

The bundle diameter, Db

Bundle diameter, Db (mm)

Shell internal diameter, Ds (m)

Tmean =(Tc.in +Tc,out)/2

Tube cross-sectional area, At

Tube cross-sectional area, At

Tube cross-sectional area, At mm2

Tube per pass = Nt

Total flow area (m2), AT

Total flow area (m2), AT

Fluid velocity, nf

Db=D to( N t / K1 )1 /n

A t=πDti2

¿4 ¿¿

¿

AT=N t A t

Page 12: Heat Exchanger

Appendix F -74

Production of 100,000 MTA Hydrogen

1217.4888

Physical properties of the tube side fluidPhysical properties

838.4112

5.15E-043.5453121354088 kJ/kg.K

0.57972579598 W/m.K

Linear velocity, u

Reynold number, Re

Prandtl number, Pr

linear velocity, u (m/s) 1.4521Reynold number, Re 39166.029Prandtl number, Pr 3.1481

147.3430

From figure 12.23, Chemical Engineering, Vol. 6

0.0037

( eqn. 12.15 )

7406.777( assuming viscosity of the fluid is identical at the wall and of the bulk fluid )

d) Tube side pressure drop

From figure 12.24 'Chemical Engineering'. Vol. 6

0.0034

mass velocity, nf kg/m2.s

density, rt kg/m3

Viscosity, mtL Ns/m2

Heat capacity, Ctp

Thermal conductivity, ktf

L/Dti

Heat transfer factor, jh

Tube side heat transfer coefficient, hi

Tube side heat transfer coefficient, hi W/m2.C

friction factor, jf

Tube side pressure drop, DPt

v f=m / AT

u=v f / ρ

Re=ρuDti

μ

Pr=Cp μk f

hi=k f jh RePr0 . 33

Dti ( μμw )

0 .14

Page 13: Heat Exchanger

Appendix F -75

Production of 100,000 MTA Hydrogen

( eqn. 12.20 )where m = 0.25 for laminar flow, Re<2100 m = 0.14 for turbulent flow, Re>2100

11.5054 kPa (acceptable)

e) Shell side coefficient1.3246 m Baffle

diameter

1.1921 mBaffle Diameter 1.3230 m

23.8125 mm

( eqn. 12.21 )

0.3158

720925.4752 kg/hr

634.1155

( eqn. 12.23 )

13.5265 mm

Mean temperature (C)

Np = number of tube side passes

Tube side pressure drop,

DPt

Shell diameter, Ds

Baffle spacing, lB

Tube pitch, Pt

Cross flow area, As

Cross flow area, As m2

Shell side mass velocity, Gs

Mass flow (inside shell), Ws

Shell side mass velocity, Gs kg/s.m2

Shell side equivalent diameter, De

Shell side equivalent diameter, De

ΔPs=N p [ 8 jf ( L/ Dti )(μμw

)−m+2. 5 ]ρus

2

2

Baffle Diameter=D s−0 . 0016

Baffle Spacing , lB=0 . 9∗Ds

A s=( p t−Dto )D s lB

pt

sss AwG /

De=1 . 1Dto

( pz2−0. 971 Dto

2 )

Page 14: Heat Exchanger

Appendix F -76

Production of 100,000 MTA Hydrogen

Mean temperature (C) 297.1500

Physical properties of shell fluid

Physical properties

799.8603

5.1581E-043.69813443294356 kJ/kg.K

0.6155 W/m.K

Reynold number, Re( eqn. 12.24 )

Reynold number, Re 16662.361Prandtl number, Pr 3.0990

Selecting 15% for baffle cutFrom figure 12.29, Chemical Engineering, Vol. 6

0.0055

( eqn. 12.25 )

6057.223

f) Shell side pressure drop

0.7928 m/s

From figure 12.30 'Chemical Engineering'. Vol. 6

0.0630

Tmean = (Tshell.in +Tshell.out)/2

Fluid density, rs kg/m3

Viscosity, msL Ns/m2

Heat capacity, Csp

Thermal conductivity, ksf

Heat Transfer Factor, jh

Shell side heat transfer coefficient, hs

Shell side heat transfer coefficient, hs W/m2.C

Linear velocity, us

Linear velocity, us

friction factor, jf

Shell side presure drop, DPs

Re=Gs De /μ

hs=k f jh RePr1/3

De ( μμw )

0 .14

us=Gs / ρ

hs=k f jh RePr1/3

De ( μμw )

0 .14

Page 15: Heat Exchanger

Appendix F -77

Production of 100,000 MTA Hydrogen

( eqn. 12.26 )

Shell side presure drop, 1495229.0275 Pa (acceptable)

1495.2290 kPa

g) Overall Coefficient

6057.223

7406.777

5000

5500

16.30.01656

0.01905

Overall heat transfer coefficient can be calculated by using the formula

( eqn. 12.1 )Therefore,

0.00081141584494073

1232.41369543757

1

DPs

Outside fluid film coefficient, hs, W/m2.oC

Inside fluid film coefficient, hi, W/m2.oC

Outside dirt coefficient (fouling factor), hod, W/m2.oC

Inside dirt coefficient, hid, W/m2.oC (from Table 12.2, vol. Six )

Thermal conductivity of the tube wall material, kw, W/m.oCTube inside diameter, Dti, m

Tube outside diameter, Dto, m

1/Uo =

Uo = W/m2.C

h) Number of baffle, Nb

Number of baffle, Nb

Nbaffle

hs=k f jh RePr1/3

De ( μμw )

0 .14

1Uo

= 1hs

+ 1hod

+d to ln (d to /d ti)

2k w+

d to

d ti× 1

hid+

d to

dti× 1

hi

Nb=( L/ lB)−1

C=C 0(S/S0)α

BMC= BC(C)×MF

MPF= Fm(Fp+Fd)

Page 16: Heat Exchanger

Appendix F -78

Production of 100,000 MTA Hydrogen

Costing

Type Shell and tube

369.9549Material Carbon SteelFeed Pressure 24 bar

With reference to costing method proposed by L.T. Biegler,Base Cost, C

For 100<S<10000 ft2,Co 5000

Bare Module Cost, BMC So 400a 0.65UF 3.219048

Materials and Pressure Correction Factor, MPF

Total area (ft2) 3972.98Base cost, C ($) 22236.0146Modular factor, MF 3.29Design factor, Fd 1.0 (Floating head)Pressure factor, Fp 0Material factor, Fm 1 (CS/CS)MPF 1Bare module cost ($) $235,494Bare module cost (RM) 894,878

Area (m2)

C=C0( S/ S0 )α

BMC=BC (C )×MF

MPF=Fm( F p+Fd)

Page 17: Heat Exchanger

Appendix F -79

Production of 100,000 MTA Hydrogen

Heat Exchanger, X-13

Heat exchanger type 1 shell and 2 tubesDesign type Split-ring floaring headHeat exchanger orientation HorizontalTube inlet direction HorizontalNumber of parallel plate 1Tube side stream feed 1Tube side Methanol recoveredShell side Light HydrocarbonHeat duty (kW) 3057.170

a) Equipment sizingshell tube

Stream Light Hydrocarbon Methanol573.15 290.15

548.97 295.97

R = ( eqn. 12.6 )R= 4.155

S= ( eqn. 12.7 )S= 0.021

Ft can be obtained from fig 12.19 ( vol. 6 ),

1.0000

( eqn. 12.4 )

267.8952

Therefore, the actual temperature difference is

Tin (K)

Tout (K)

(T1-T2)/(t2-t1)

(t2-t1)/(T1-t1)

Ft =DTlm can be calculated from the equation,

DTlm =

ΔT lm=(T 1−t2 )−(T2−t1 )

ln(T1−t2 )(T2−t1 )

T1 = inlet temperature to shellT2 = outlet temperature from shellt1 = inlet temperature to tubet2 = outlet temperature from tube

T2

T1

t2

t1

Page 18: Heat Exchanger

Appendix F -80

Production of 100,000 MTA Hydrogen

267.8952

Assumption: (Table 12.1, 'Chem. Eng', Vol. 6)

U 400

Provisional area of heat exchanger, A can be obtained trough the formulae,

Provisional area, A 28.5295307.0894

b) Tube rating ( App.5.-2, Tranport Processes )Material Carbon steelBWG number 14

2.4419.0514.83

Material Thermal Conductivity ( W/m.K ) 16.3

0.1460

Number of tube, Nt

195

Tube pitch is the distance between tube centres and formulated as

23.8125

From Table 12.4, Chemical Engineering , Vol. 6 ( 1st Edition )

0.249( 2 passes ) n 2.207

FtDTlm =

W/(C.m2)

m2

ft2

Length of tube Lt (m)Outer diameter, Dto (mm)Inner diameter, Dti (mm)

Heat transfer area of a tube, At

Area of one tube, At (m2)

(ft2)

Number of tube, Nt

Tube pitch, Pt (mm)

Triangular pitch K1

Q=UA ΔTalignl¿ lm ¿¿¿

A t=Lt πDalignl ¿ to ¿ ¿¿

A=Q

UΔT lm

N t=AA t

Pt=1 . 25×D to

Page 19: Heat Exchanger

Appendix F -81

Production of 100,000 MTA Hydrogen

( eqn. 12.3b )

390.3703

From Chemical Engineering , Vol. 6 (figure 12.10)Shell bundle clearance (mm) 57

For Split-ring floating head, Ds = Db + shell bundle clearance

0.4474

c) Tube side coefficient

Mean temperature (C)

Mean temperature (K) 293.0600

172.7542

49

0.0084

Mass flow rate (inside tube), m 142.3730 kg/s

16873.2532

The bundle diameter, Db

Bundle diameter, Db (mm)

Shell internal diameter, Ds (m)

Tmean =(Tc.in +Tc,out)/2

Tube cross-sectional area, At

Tube cross-sectional area, At

Tube cross-sectional area, At mm2

Tube per pass = Nt

Total flow area (m2), AT

Total flow area (m2), AT

Fluid velocity, nf

Methanol mass velocity, nf kg/m2.s

Db=D to( N t / K1 )1 /n

A t=πDti2

¿4 ¿¿

¿

AT=N t A t

v f=m / AT

Page 20: Heat Exchanger

Appendix F -82

Production of 100,000 MTA Hydrogen

Physical properties of the tube side fluidPhysical properties of Water

803.3824

5.11E-043.68951132359407 kJ/kg.K

0.60890216686 W/m.K

Linear velocity, u

Reynold number, Re

Prandtl number, Pr

E.G. linear velocity, u (m/s) 21.0028Reynold number, Re 489687.564Prandtl number, Pr 3.0963

164.5314

From figure 12.23, Chemical Engineering, Vol. 6

0.0030

( eqn. 12.15 )

87584( assuming viscosity of the fluid is identical at the wall and of the bulk fluid )

d) Tube side pressure drop

From figure 12.24 'Chemical Engineering'. Vol. 6

0.0021

( eqn. 12.20 )

Methanol density, rt kg/m3

Viscosity of Methanol, mtL Ns/m2

Heat capacity, Ctp

Thermal conductivity, ktf

L/Dti

Heat transfer factor, jh

Tube side heat transfer coefficient, hi

Tube side heat transfer coefficient, hi (W/m2.C)

friction factor, jf

Tube side pressure drop, DPt

u=v f / ρ

Re=ρuDti

μ

Pr=Cp μ

k f

hi=k f jh RePr0 . 33

Dti ( μμw )

0 .14

ΔPs=N p [ 8 jf ( L/ Dti )(μ

μw)−m+2. 5 ]

ρus2

2

Page 21: Heat Exchanger

Appendix F -83

Production of 100,000 MTA Hydrogen

where m = 0.25 for laminar flow, Re<2100 m = 0.14 for turbulent flow, Re>2100

1865.5276 kPa (acceptable)

e) Shell side coefficient0.4474 m

Baffle diameter

0.4026 mBaffle Diameter 0.4458 m

23.8125 mm

( eqn. 12.21 )

0.0360

204584.6683 kg/hr

1577.4795

( eqn. 12.23 )

13.5265 mm

Mean temperature (C)

Np = number of tube side passes

Tube side pressure drop,

DPt

Shell diameter, Ds

Baffle spacing, lB

Tube pitch, Pt

Cross flow area, As

Cross flow area, As m2

Shell side mass velocity, Gs

Mass flow (inside shell), Ws

Shell side mass velocity, Gs kg/s.m2

Shell side equivalent diameter, De

Shell side equivalent diameter, De

Tmean = (Tshell.in +Tshell.out)/2

ΔPs=N p [ 8 jf ( L/ Dti )(μ

μw)−m+2. 5 ]

ρus2

2

Baffle Diameter=D s−0 . 0016

Baffle Spacing , lB=0 . 9∗Ds

As=( p t−Dto )D s lB

pt

sss AwG /

De=1 .1Dto

( pz2−0. 971 Dto

2 )

Page 22: Heat Exchanger

Appendix F -84

Production of 100,000 MTA Hydrogen

Mean temperature (C) 561.0600

Physical properties of shell fluid (light hydrocarbon)

Physical properties

8.3574

1.2178E-052.95453136063117 kJ/kg.K

0.1169 W/m.K

Reynold number, Re( eqn. 12.24 )

Reynold number, Re 41756.754Prandtl number, Pr 0.3079

Selecting 15% for baffle cutFrom figure 12.29, Chemical Engineering, Vol. 6

0.0040

( eqn. 12.25 )

978.2222

f) Shell side pressure drop

188.7524 m/sFrom figure 12.30 'Chemical Engineering'. Vol. 6

0.0590

( eqn. 12.26 )

Fluid density, rs kg/m3

Viscosity, msL Ns/m2

Heat capacity, Csp

Thermal conductivity, ksf

Heat Transfer Factor, jh

Shell side heat transfer coefficient, hs

Shell side heat transfer coefficient, hs (W/m2.C)

Linear velocity, us

Linear velocity, us

friction factor, jf

Shell side presure drop, DPs

Re=Gs De /μ

hs=k f jh RePr1/3

De ( μμw )

0 .14

us=Gs / ρ

hs=k f jh RePr1/3

De ( μμw )

0 .14

Page 23: Heat Exchanger

Appendix F -85

Production of 100,000 MTA Hydrogen

Shell side presure drop, 1794482930.0673 Pa (acceptable)

1794482.9301 kPa

g) Overall Coefficient

978.2222

87584

5000

5000

16.30.01483

0.01905

Overall heat transfer coefficient can be calculated by using the formula

( eqn. 12.1 )Therefore,

0.00164017232653821

609.692032855247

5

Costing

Type Shell and tube

28.5295Material Carbon SteelFeed Pressure 24 bar

DPs

Outside fluid film coefficient, hs, W/m2.oC

Inside fluid film coefficient, hi, W/m2.oC

Outside dirt coefficient (fouling factor), hod, W/m2.oC

Inside dirt coefficient, hid, W/m2.oC (from Table 12.2, vol. Six )

Thermal conductivity of the tube wall material, kw, W/m.oCTube inside diameter, Dti, m

Tube outside diameter, Dto, m

1/Uo =

Uo = W/m2.C (acceptable)

h) Number of baffle, Nb

Number of baffle, Nb

Nbaffle

Area (m2)

hs=k f jh RePr1/3

De ( μμw )

0 .14

1Uo

= 1hs

+ 1hod

+d to ln(d to /d ti)

2k w+

d to

d ti× 1

hid+

d to

dti× 1

hi

Nb=( L/ lB)−1

Page 24: Heat Exchanger

Appendix F -86

Production of 100,000 MTA Hydrogen

With reference to costing method proposed by L.T. Biegler,Base Cost, C

For 100<S<10000 ft2,Co 5000

Bare Module Cost, BMC So 400a 0.65UF 3.219048

Materials and Pressure Correction Factor, MPF

Total area (ft2) 307.09Base cost, C ($) 4210.6888Modular factor, MF 3.29Design factor, Fd 1.0 (Floating head)Pressure factor, Fp 0Material factor, Fm 1 (CS/CS)MPF 1Bare module cost ($) $44,594Bare module cost (RM) 169,457

C=C0( S/ S0 )α

BMC=BC (C )×MF

MPF=Fm( F p+Fd )

Page 25: Heat Exchanger

Appendix F -87

Production of 100,000 MTA Hydrogen

Heat Exchanger, X-16

Heat exchanger type 1 shell and 2 tubesDesign type Split-ring floating headHeat exchanger orientation HorizontalTube inlet direction HorizontalNumber of parallel plate 1Tube side stream feed 1Tube side WaterShell side light hydrocarbonHeat duty (kW) 12112.210

a) Equipment sizingshell tube

Stream Light HC Water548.97 364.25

453.15 373.15

R = ( eqn. 12.6 )R= 10.766

S= ( eqn. 12.7 )S= 0.048

Ft can be obtained from fig 12.19 ( vol. 6 ),

1.0000

( eqn. 12.4 )

Tin (K)

Tout (K)

(T1-T2)/(t2-t1)

(t2-t1)/(T1-t1)

Ft =

DTlm can be calculated from the equation,

ΔT lm=(T 1−t 2 )−(T2−t1 )

ln(T1−t 2 )(T2−t 1 )

T1 = inlet temperature to shellT2 = outlet temperature from shellt1 = inlet temperature to tubet2 = outlet temperature from tube

T2

T1

t2

t1

Page 26: Heat Exchanger

Appendix F -88

Production of 100,000 MTA Hydrogen

127.4583Therefore, the actual temperature difference is

127.4583

Assumption: (Table 12.1, 'Chem. Eng', Vol. 6)

U 500

Provisional area of heat exchanger, A can be obtained trough the formulae,

Provisional area, A 190.05762045.7633

b) Tube rating ( App.5.-2, Tranport Processes )Material Carbon steelBWG number 18

2.4419.0516.56

Material Thermal Conductivity ( W/m.K ) 16.3

0.1460

1.5718

Number of tube, Nt

1302

Tube pitch is the distance between tube centres and formulated as

23.8125

From Table 12.4, Chemical Engineering , Vol. 6 ( 1st Edition )

DTlm =

FtDTlm =

W/(C.m2)

m2

ft2

Length of tube Lt (m)Outer diameter, Dto (mm)Inner diameter, Dti (mm)

Heat transfer area of a tube, At

Area of one tube, At (m2)

(ft2)

Number of tube, Nt

Tube pitch, Pt (mm)

Q=UA ΔTalignl ¿ lm ¿¿¿

A t=Lt πDalignl ¿ to ¿ ¿¿

A=Q

UΔT lm

N t=AA t

Pt=1 . 25×D to

Page 27: Heat Exchanger

Appendix F -89

Production of 100,000 MTA Hydrogen

0.249( 2 passes ) n 2.207

( eqn. 12.3b )

921.8256

From Chemical Engineering , Vol. 6 (figure 12.10)Shell bundle clearance (mm) 70

For Split-ring floating head, Ds = Db + shell bundle clearance

0.9918

c) Tube side coefficient

Mean temperature (C)

Mean temperature (C) 368.7000

215.4105

325

0.0701

Mass flow rate (inside tube), m 326.2381 kg/s

Triangular pitch K1

The bundle diameter, Db

Bundle diameter, Db (mm)

Shell internal diameter, Ds (m)

Tmean =(Tc.in +Tc,out)/2

Tube cross-sectional area, At

Tube cross-sectional area, At

Tube cross-sectional area, At mm2

Tube per pass = Nt

Total flow area (m2), AT

Total flow area (m2), AT

Db=D to( N t / K1 )1 /n

A t=πDti2

¿4 ¿¿

¿

AT=N t A t

Page 28: Heat Exchanger

Appendix F -90

Production of 100,000 MTA Hydrogen

4654.5408

Physical properties of the tube side fluidPhysical properties of Water

1015.2654

7.94E-044.1715617374329 kJ/kg.K

0.6155814452 W/m.K

Linear velocity, u

Reynold number, Re

Prandtl number, Pr

linear velocity, u (m/s) 4.5846Reynold number, Re 97040.408Prandtl number, Pr 5.3827

147.3430

From figure 12.23, Chemical Engineering, Vol. 6

0.0032

( eqn. 12.15 )

20116.7( assuming viscosity of the fluid is identical at the wall and of the bulk fluid )

Fluid velocity, nf

mass velocity, nf kg/m2.s

density, rt kg/m3

Viscosity, mtL Ns/m2

Heat capacity, Ctp

Thermal conductivity, ktf

L/Dti

Heat transfer factor, jh

Tube side heat transfer coefficient, hi

Tube side heat transfer coefficient, hi (W/m2.C)

v f=m / AT

u=v f / ρ

Re=ρuDti

μ

Pr=Cp μ

k f

hi=k f jh RePr0 .33

Dti ( μμw )

0 .14

Page 29: Heat Exchanger

Appendix F -91

Production of 100,000 MTA Hydrogen

d) Tube side pressure drop

From figure 12.24 'Chemical Engineering'. Vol. 6

0.0028

( eqn. 12.20 )where m = 0.25 for laminar flow, Re<2100 m = 0.14 for turbulent flow, Re>2100

123.7765 kPa (acceptable)

e) Shell side coefficient0.9918 m

Baffle diameter

0.8926 mBaffle Diameter 0.9902 m

23.8125 mm

( eqn. 12.21 )

0.1771

206584.6683 kg/hr

324.0801

friction factor, jf

Tube side pressure drop, DPt

Np = number of tube side passes

Tube side pressure drop,

DPt

Shell diameter, Ds

Baffle spacing, lB

Tube pitch, Pt

Cross flow area, As

Cross flow area, As m2

Shell side mass velocity, Gs

Mass flow (inside shell), Ws

Shell side mass velocity, Gs kg/s.m2

Shell side equivalent diameter, De

ΔPs=N p [ 8 jf ( L/ Dti )(μμw

)−m+2.5 ]ρus

2

2

Baffle Diameter=D s−0 . 0016

Baffle Spacing , lB=0 .9∗Ds

As=( p t−Dto )D s lB

pt

sss AwG /

Page 30: Heat Exchanger

Appendix F -92

Production of 100,000 MTA Hydrogen

( eqn. 12.23 )

13.5265 mm

Mean temperature (C)

Mean temperature (C) 501.0600

Physical properties of shell fluid (light hydrocarbon)

Physical properties

8.2657

1.7348E-052.36028628549583 kJ/kg.K

0.0933 W/m.K

Reynold number, Re( eqn. 12.24 )

Reynold number, Re 5518.890Prandtl number, Pr 0.4391

Selecting 15% for baffle cutFrom figure 12.29, Chemical Engineering, Vol. 6

0.0090

( eqn. 12.25 )

260.998

f) Shell side pressure drop

Shell side equivalent diameter, De

Tmean = (Tshell.in +Tshell.out)/2

Fluid density, rs kg/m3

Viscosity, msL Ns/m2

Heat capacity, Csp

Thermal conductivity, ksf

Heat Transfer Factor, jh

Shell side heat transfer coefficient, hs

Shell side heat transfer coefficient, hs (W/m2.C)

De=1 .1Dto

( pz2−0. 971 Dto

2 )

Re=Gs De /μ

hs=k f jh RePr1/3

De ( μμw )

0 .14

Page 31: Heat Exchanger

Appendix F -93

Production of 100,000 MTA Hydrogen

39.2078 m/s

From figure 12.30 'Chemical Engineering'. Vol. 6

0.0770

( eqn. 12.26 )

Shell side presure drop, 55360755.6653 Pa ((acceptable)

55360.7557 kPa

g) Overall Coefficient

260.998

20116.7

5000

5000

16.30.01656

0.01905

Overall heat transfer coefficient can be calculated by using the formula

( eqn. 12.1 )

Linear velocity, us

Linear velocity, us

friction factor, jf

Shell side presure drop, DPs

DPs

Outside fluid film coefficient, hs, W/m2.oC

Inside fluid film coefficient, hi, W/m2.oC

Outside dirt coefficient (fouling factor), hod, W/m2.oC

Inside dirt coefficient, hid, W/m2.oC (from Table 12.2, vol. Six )

Thermal conductivity of the tube wall material, kw, W/m.oCTube inside diameter, Dti, m

Tube outside diameter, Dto, m

us=Gs / ρ

hs=k f jh RePr1/3

De ( μμw )

0 .14

1Uo

= 1hs

+ 1hod

+d to ln (d to /d ti)

2k w+

d to

d ti× 1

hid+

d to

dti× 1

hi

Page 32: Heat Exchanger

Appendix F -94

Production of 100,000 MTA Hydrogen

Therefore,

0.00440056025829428

227.243791995616

2

Costing

Type Shell and tube

190.0576Material Carbon SteelFeed Pressure 24 bar

With reference to costing method proposed by L.T. Biegler,Base Cost, C

For 100<S<10000 ft2,Co 5000

Bare Module Cost, BMC So 400a 0.65UF 3.219048

Materials and Pressure Correction Factor, MPF

Total area (ft2) 2045.76Base cost, C ($) 14443.9845Modular factor, MF 3.29Design factor, Fd 1.0 (Floating head)Pressure factor, Fp 0Material factor, Fm 1 (CS/CS)MPF 1Bare module cost ($) $152,971Bare module cost (RM) 581,291

1/Uo =

Uo = W/m2.C

h) Number of baffle, Nb

Number of baffle, Nb

Nbaffle

Area (m2)

Nb=( L/ lB)−1

C=C 0(S/S0)α

BMC= BC(C)×MF

MPF= Fm(Fp+Fd)

C=C0( S/ S0 )α

BMC=BC(C )×MF

MPF=Fm( F p+Fd )

Page 33: Heat Exchanger

Appendix F -95

Production of 100,000 MTA Hydrogen

Heat Exchanger, X-18

Heat exchanger type 1 shell and 2 tubesDesign type Split-ring floating headHeat exchanger orientation HorizontalTube inlet direction HorizontalNumber of parallel plate 1Tube side stream feed 1Tube side Light HydrocarbonShell side Light HydrocarbonHeat duty (kW) 333.960

a) Equipment sizingShell tube

Stream Light HC Light HC358.15 330.62

353.15 331.19

R = ( eqn. 12.6 )R= 8.772

S= ( eqn. 12.7 )S= 0.021

Ft can be obtained from fig 12.19 ( vol. 6 ),

0.9900

( eqn. 12.4 )

24.6788

Tin (K)

Tout (K)

(T1-T2)/(t2-t1)

(t2-t1)/(T1-t1)

Ft =DTlm can be calculated from the equation,

DTlm =

ΔT lm=(T 1−t 2 )−(T2−t1 )

ln(T1−t2 )(T2−t1 )

T1 = inlet temperature to shellT2 = outlet temperature from shellt1 = inlet temperature to tubet2 = outlet temperature from tube

T2

T1

t2

t1

Page 34: Heat Exchanger

Appendix F -96

Production of 100,000 MTA Hydrogen

Therefore, the actual temperature difference is

24.4320Assumption: (Table 12.1, 'Chem. Eng', Vol. 6)

U 300

Provisional area of heat exchanger, A can be obtained trough the formulae,

Provisional area, A 45.5632490.4386

b) Tube rating ( App.5.-2, Tranport Processes )Material Carbon steelBWG number 12

2.4419.0513.51

Material Thermal Conductivity ( W/m.K ) 16.3

0.1460

1.5718

Number of tube, Nt

312

Tube pitch is the distance between tube centres and formulated as

23.8125

From Table 12.4, Chemical Engineering , Vol. 6 ( 1st Edition )

0.249( 2 passes ) n 2.207

FtDTlm =

W/(C.m2)

m2

ft2

Length of tube Lt (m)Outer diameter, Dto (mm)Inner diameter, Dti (mm)

Heat transfer area of a tube, At

Area of one tube, At (m2)

(ft2)

Number of tube, Nt

Tube pitch, Pt (mm)

Triangular pitch K1

Q=UA ΔTalignl¿ lm ¿¿¿

A t=Lt πDalignl ¿ to ¿ ¿¿

A=Q

UΔT lm

N t=AA t

Pt=1 . 25×D to

Page 35: Heat Exchanger

Appendix F -97

Production of 100,000 MTA Hydrogen

( eqn. 12.3b )

482.6161

From Chemical Engineering , Vol. 6 (figure 12.10)Shell bundle clearance (mm) 58

For Split-ring floating head, Ds = Db + shell bundle clearance

0.5406

c) Tube side coefficient

Mean temperature (C)

Mean temperature (C) 330.9050

143.3695

78

0.0112

Mass flow rate (inside tube), m 165.3786 kg/s

14787.7565

The bundle diameter, Db

Bundle diameter, Db (mm)

Shell internal diameter, Ds (m)

Tmean =(Tc.in +Tc,out)/2

Tube cross-sectional area, At

Tube cross-sectional area, At

Tube cross-sectional area, At mm2

Tube per pass = Nt

Total flow area (m2), AT

Total flow area (m2), AT

Fluid velocity, nf

mass velocity, nf kg/m2.s

Db=D to( N t / K1 )1 /n

A t=πDti2

¿4 ¿¿

¿

AT=N t A t

v f=m / AT

Page 36: Heat Exchanger

Appendix F -98

Production of 100,000 MTA Hydrogen

Physical properties of the tube side fluidPhysical properties

838.8251

5.16E-043.54274740819102 kJ/kg.K

0.58032666372 W/m.K

Linear velocity, u

Reynold number, Re

Prandtl number, Pr

linear velocity, u (m/s) 17.6291Reynold number, Re 387037.550Prandtl number, Pr 3.1512

180.6070

From figure 12.23, Chemical Engineering, Vol. 6

0.0030

( eqn. 12.15 )

72842.92( assuming viscosity of the fluid is identical at the wall and of the bulk fluid )

d) Tube side pressure drop

From figure 12.24 'Chemical Engineering'. Vol. 6

0.0020

( eqn. 12.20 )

density, rt kg/m3

Viscosity, mtL Ns/m2

Heat capacity, Ctp

Thermal conductivity, ktf

L/Dti

Heat transfer factor, jh

Tube side heat transfer coefficient, hi

Tube side heat transfer coefficient, hi W/m2.C

friction factor, jf

Tube side pressure drop, DPt

u=v f / ρ

Re=ρuDti

μ

Pr=Cp μ

k f

hi=k f jh RePr0 .33

Dti ( μμw )

0 .14

ΔPs=N p [ 8 jf ( L/ Dti )(μ

μw)−m+2.5 ]

ρus2

2

Page 37: Heat Exchanger

Appendix F -99

Production of 100,000 MTA Hydrogen

where m = 0.25 for laminar flow, Re<2100 m = 0.14 for turbulent flow, Re>2100

1405.0723 kPa (acceptable)

e) Shell side coefficient0.5406 m Baffle

diameter

0.4866 mBaffle Diameter 0.5390 m

23.8125 mm

( eqn. 12.21 )

0.0526

95470.78911 kg/hr

504.1011

( eqn. 12.23 )

13.5265 mm

Mean temperature (C)

Mean temperature (C) 355.6500

Np = number of tube side passes

Tube side pressure drop,

DPt

Shell diameter, Ds

Baffle spacing, lB

Tube pitch, Pt

Cross flow area, As

Cross flow area, As m2

Shell side mass velocity, Gs

Mass flow (inside shell), Ws

Shell side mass velocity, Gs kg/s.m2

Shell side equivalent diameter, De

Shell side equivalent diameter, De

Tmean = (Tshell.in +Tshell.out)/2

ΔPs=N p [ 8 jf ( L/ Dti )(μ

μw)−m+2.5 ]

ρus2

2

Baffle Diameter=D s−0 . 0016

Baffle Spacing , lB=0 . 9∗Ds

A s=( p t−Dto )D s lB

pt

sss AwG /

De=1 .1Dto

( pz2−0. 971 Dto

2 )

Page 38: Heat Exchanger

Appendix F -100

Production of 100,000 MTA Hydrogen

Physical properties of shell fluid (light hydrocarbon)

Physical properties

8.3574

1.2178E-052.95453136063117 kJ/kg.K

0.1169 W/m.K

Reynold number, Re( eqn. 12.24 )

Reynold number, Re 13209.823Prandtl number, Pr 0.3079

Selecting 15% for baffle cutFrom figure 12.29, Chemical Engineering, Vol. 6

0.0057

( eqn. 12.25 )

440.9838

f) Shell side pressure drop

60.3179 m/s

From figure 12.30 'Chemical Engineering'. Vol. 6

0.0660

Fluid density, rs kg/m3

Viscosity, msL Ns/m2

Heat capacity, Csp

Thermal conductivity, ksf

Heat Transfer Factor, jh

Shell side heat transfer coefficient, hs

Shell side heat transfer coefficient, hs W/m2.C

Linear velocity, us

Linear velocity, us

friction factor, jf

Re=Gs De /μ

hs=k f jh RePr1/3

De ( μμw )

0 .14

us=Gs / ρ

Page 39: Heat Exchanger

Appendix F -101

Production of 100,000 MTA Hydrogen

( eqn. 12.26 )

Shell side presure drop, 172611790.8049 Pa (acceptable)

172611.7908 kPa

g) Overall Coefficient

440.9838

72842.92

5000

5000

16.30.01351

0.01905

Overall heat transfer coefficient can be calculated by using the formula

( eqn. 12.1 )Therefore,

0.00296983413601567

336.719141272179

4

Costing

Type Shell and tube

45.5632Material Carbon SteelFeed Pressure 24 bar

Shell side presure drop, DPs

DPs

Outside fluid film coefficient, hs, W/m2.oC

Inside fluid film coefficient, hi, W/m2.oC

Outside dirt coefficient (fouling factor), hod, W/m2.oC

Inside dirt coefficient, hid, W/m2.oC (from Table 12.2, vol. Six )

Thermal conductivity of the tube wall material, kw, W/m.oCTube inside diameter, Dti, m

Tube outside diameter, Dto, m

1/Uo =

Uo = W/m2.C

h) Number of baffle, Nb

Number of baffle, Nb

Nbaffle

Area (m2)

hs=k f jh RePr1/3

De ( μμw )

0 .14

1Uo

= 1hs

+ 1hod

+d to ln(d to /d ti)

2k w+

d to

d ti× 1

hid+

d to

dti× 1

hi

Nb=( L/ lB)−1

C=C 0(S/S0)α

BMC= BC(C)×MF

MPF= Fm(Fp+Fd)

Page 40: Heat Exchanger

Appendix F -102

Production of 100,000 MTA Hydrogen

With reference to costing method proposed by L.T. Biegler,Base Cost, C

For 100<S<10000 ft2,Co 5000

Bare Module Cost, BMC So 400a 0.65UF 3.219048

Materials and Pressure Correction Factor, MPF

Total area (ft2) 490.44Base cost, C ($) 5708.3554Modular factor, MF 3.29Design factor, Fd 1.0 (Floating head)Pressure factor, Fp 0Material factor, Fm 1 (CS/CS)MPF 1Bare module cost ($) $60,455Bare module cost (RM) 229,730

C=C0( S/ S0 )α

BMC=BC (C )×MF

MPF=Fm( F p+Fd )

Page 41: Heat Exchanger

Appendix F -103

Production of 100,000 MTA Hydrogen

Heat Exchanger, X-21

Heat exchanger type 1 shell and 2 tubesDesign type Split-ring floating headHeat exchanger orientation HorizontalTube inlet direction HorizontalNumber of parallel plate 1Tube side stream feed 1Tube side Organic SolventsShell side Light HydrocarbonHeat duty (kW) 18412.370

a) Equipment sizingshell tube

Stream Light HC organic solvent623.15 299.36

483.15 330.62

R = ( eqn. 12.6 )R= 4.479

S= ( eqn. 12.7 )S= 0.097

Ft can be obtained from fig 12.19 ( vol. 6 ),

0.9900

( eqn. 12.4 )

233.9635

Tin (K)

Tout (K)

(T1-T2)/(t2-t1)

(t2-t1)/(T1-t1)

Ft =DTlm can be calculated from the equation,

DTlm =

ΔT lm=(T 1−t 2 )−(T2−t1 )

ln(T1−t2 )(T2−t1 )

T1 = inlet temperature to shellT2 = outlet temperature from shellt1 = inlet temperature to tubet2 = outlet temperature from tube

T2

T1

t2

t1

Page 42: Heat Exchanger

Appendix F -104

Production of 100,000 MTA Hydrogen

Therefore, the actual temperature difference is

231.6238

Assumption: (Table 12.1, 'Chem. Eng', Vol. 6)

U 350

Provisional area of heat exchanger, A can be obtained trough the formulae,

Provisional area, A 227.12162444.7164

b) Tube rating ( App.5.-2, Tranport Processes )Material Carbon steelBWG number 14

2.4419.0514.83

Material Thermal Conductivity ( W/m.K ) 16.3

0.1460

1.5718

Number of tube, Nt

1555

Tube pitch is the distance between tube centres and formulated as

23.8125

From Table 12.4, Chemical Engineering , Vol. 6 ( 1st Edition )

0.249( 2 passes ) n 2.207

FtDTlm =

W/(C.m2)

m2

ft2

Length of tube Lt (m)Outer diameter, Dto (mm)Inner diameter, Dti (mm)

Heat transfer area of a tube, At

Area of one tube, At (m2)

(ft2)

Number of tube, Nt

Tube pitch, Pt (mm)

Triangular pitch K1

Q=UA ΔTalignl¿ lm ¿¿¿

A t=Lt πDalignl ¿ to ¿ ¿¿

A=Q

UΔT lm

N t=AA t

Pt=1 . 25×D to

Page 43: Heat Exchanger

Appendix F -105

Production of 100,000 MTA Hydrogen

( eqn. 12.3b )

999.3252

From Chemical Engineering , Vol. 6 (figure 12.10)Shell bundle clearance (mm) 72

For Split-ring floating head, Ds = Db + shell bundle clearance

1.0713

c) Tube side coefficient

Mean temperature (K)

Mean temperature (K) 314.9900

172.7542

389

0.0672

Mass flow rate (inside tube), m 166.1370 kg/s

2473.2820

The bundle diameter, Db

Bundle diameter, Db (mm)

Shell internal diameter, Ds (m)

Tmean =(TK.in +TK,out)/2

Tube cross-sectional area, At

Tube cross-sectional area, At

Tube cross-sectional area, At mm2

Tube per pass = Nt

Total flow area (m2), AT

Total flow area (m2), AT

Fluid velocity, nf

mass velocity, nf kg/m2.s

Db=D to( N t / K1 )1 /n

A t=πDti2

¿4 ¿¿

¿

AT=N t A t

v f=m / AT

Page 44: Heat Exchanger

Appendix F -106

Production of 100,000 MTA Hydrogen

Physical properties of the tube side fluid Physical properties

838.4112

5.15E-043.5453121354088 kJ/kg.K

0.57972579598 W/m.K

Linear velocity, u

Reynold number, Re

Prandtl number, Pr

linear velocity, u (m/s) 2.9500Reynold number, Re 71252.324Prandtl number, Pr 3.1481

164.5314

From figure 12.23, Chemical Engineering, Vol. 6

0.0033

( eqn. 12.15 )

13419.93( assuming viscosity of the fluid is identical at the wall and of the bulk fluid )

d) Tube side pressure drop

From figure 12.24 'Chemical Engineering'. Vol. 6

0.0029

density, rt kg/m3

Viscosity, mtL Ns/m2

Heat capacity, Ctp

Thermal conductivity, ktf

L/Dti

Heat transfer factor, jh

Tube side heat transfer coefficient, hi

Tube side heat transfer coefficient, hi W/m2.C

friction factor, jf

u=v f / ρ

Re=ρuDti

μ

Pr=Cp μ

k f

hi=k f jh RePr0 . 33

Dti ( μμw )

0 .14

Page 45: Heat Exchanger

Appendix F -107

Production of 100,000 MTA Hydrogen

( eqn. 12.20 )where m = 0.25 for laminar flow, Re<2100 m = 0.14 for turbulent flow, Re>2100

46.0903 kPa (acceptable)

e) Shell side coefficient1.0713 m Baffle

diameter

0.9642 mBaffle Diameter 1.0697 m

23.8125 mm

( eqn. 12.21 )

0.2066

204584.0255 kg/hr

275.0769

( eqn. 12.23 )

13.5265 mm

Tube side pressure drop, DPt

Np = number of tube side passes

Tube side pressure drop,

DPt

Shell diameter, Ds

Baffle spacing, lB

Tube pitch, Pt

Cross flow area, As

Cross flow area, As m2

Shell side mass velocity, Gs

Mass flow (inside shell), Ws

Shell side mass velocity, Gs kg/s.m2

Shell side equivalent diameter, De

Shell side equivalent diameter, De

ΔPs=N p [ 8 jf ( L/ Dti )(μ

μw)−m+2. 5 ]

ρus2

2

Baffle Diameter=D s−0 . 0016

Baffle Spacing , lB=0 . 9∗Ds

A s=( p t−Dto )D s lB

pt

sss AwG /

De=1 .1Dto

( pz2−0.971 Dto

2 )

Page 46: Heat Exchanger

Appendix F -108

Production of 100,000 MTA Hydrogen

Mean temperature (C)

Mean temperature (C) 553.1500

Physical properties of shell fluid (light hydrocarbon)

Physical properties

6.0172

2.3856E-052.41040091250368 kJ/kg.K

0.1416 W/m.K

Reynold number, Re( eqn. 12.24 )

Reynold number, Re 7228.068Prandtl number, Pr 0.4062

Selecting 15% for baffle cutFrom figure 12.29, Chemical Engineering, Vol. 6

0.0070

( eqn. 12.25 )

393.3391

f) Shell side pressure drop

45.7151 m/s

From figure 12.30 'Chemical Engineering'. Vol. 6

0.0720

Tmean = (Tshell.in +Tshell.out)/2

Fluid density, rs kg/m3

Viscosity, msL Ns/m2

Heat capacity, Csp

Thermal conductivity, ksf

Heat Transfer Factor, jh

Shell side heat transfer coefficient, hs

Shell side heat transfer coefficient, hs W/m2.C

Linear velocity, us

Linear velocity, us

friction factor, jf

Re=Gs De /μ

hs=k f jhRePr1/3

De ( μμw )

0 .14

us=Gs / ρ

Page 47: Heat Exchanger

Appendix F -109

Production of 100,000 MTA Hydrogen

( eqn. 12.26 )

Shell side presure drop, 48784382.0918 Pa (acceptable)

48784.3821 kPa

g) Overall Coefficient

393.3391

13419.93

5000

5000

16.30.01483

0.01905

Overall heat transfer coefficient can be calculated by using the formula

( eqn. 12.1 )Therefore,

0.00324129909514685

308.518273274221

2

Shell side presure drop, DPs

DPs

Outside fluid film coefficient, hs, W/m2.oC

Inside fluid film coefficient, hi, W/m2.oC

Outside dirt coefficient (fouling factor), hod, W/m2.oC

Inside dirt coefficient, hid, W/m2.oC (from Table 12.2, vol. Six )

Thermal conductivity of the tube wall material, kw, W/m.oCTube inside diameter, Dti, m

Tube outside diameter, Dto, m

1/Uo =

Uo = W/m2.C

h) Number of baffle, Nb

Number of baffle, Nb

Nbaffle

hs=k f jh RePr1/3

De ( μμw )

0 .14

1Uo

= 1hs

+ 1hod

+d to ln(d to /d ti)

2k w+

d to

d ti× 1

hid+

d to

dti× 1

hi

Nb=( L/ lB)−1

C=C 0(S/S0)α

Page 48: Heat Exchanger

Appendix F -110

Production of 100,000 MTA Hydrogen

Costing

Type Shell and tube

227.1216Material Carbon SteelFeed Pressure 23 bar

With reference to costing method proposed by L.T. Biegler,Base Cost, C

For 100<S<10000 ft2,Co 5000

Bare Module Cost, BMC So 400a 0.65UF 3.219048

Materials and Pressure Correction Factor, MPF

Total area (ft2) 2444.72Base cost, C ($) 16217.3365Modular factor, MF 3.29Design factor, Fd 1.0 (Floating head)Pressure factor, Fp 0Material factor, Fm 1 (CS/CS)MPF 1Bare module cost ($) $171,752Bare module cost (RM) 652,659

Area (m2)

BMC= BC(C)×MF

MPF= Fm(Fp+Fd)

C=C0( S/ S0 )α

BMC=BC (C )×MF

MPF=Fm( F p+Fd )

Page 49: Heat Exchanger

Appendix F -111

Production of 100,000 MTA Hydrogen

Heat Exchanger, X-25

Heat exchanger type 1 shell and 2 tubesDesign type Split-ring floating headHeat exchanger orientation HorizontalTube inlet direction HorizontalNumber of parallel plate 1Tube side stream feed 1Tube side MethanolShell side Natural GasesHeat duty (kW) 1088.150

a) Equipment sizingshell tube

Stream Natural Gases Methanol429.30 295.97

387.57 298.04

R = ( eqn. 12.6 )R= 20.159

S= ( eqn. 12.7 )S= 0.016

Ft can be obtained from fig 12.19 ( vol. 6 ),

1.0000

( eqn. 12.4 )

110.2436

Tin (K)

Tout (K)

(T1-T2)/(t2-t1)

(t2-t1)/(T1-t1)

Ft =DTlm can be calculated from the equation,

DTlm =

ΔT lm=(T 1−t2 )−(T2−t1 )

ln(T1−t2 )(T2−t1 )

T1 = inlet temperature to shellT2 = outlet temperature from shellt1 = inlet temperature to tubet2 = outlet temperature from tube

T2

T1

t2

t1

Page 50: Heat Exchanger

Appendix F -112

Production of 100,000 MTA Hydrogen

Therefore, the actual temperature difference is

110.2436

Assumption: (Table 12.1, 'Chem. Eng', Vol. 6)

U 300

Provisional area of heat exchanger, A can be obtained trough the formulae,

Provisional area, A 32.9014354.1476

b) Tube rating ( App.5.-2, Tranport Processes )Material Carbon steelBWG number 14

2.4419.0514.83

Material Thermal Conductivity ( W/m.K ) 16.3

0.1460

1.5718

Number of tube, Nt

225

Tube pitch is the distance between tube centres and formulated as

23.8125

From Table 12.4, Chemical Engineering , Vol. 6 ( 1st Edition )

0.249( 2 passes ) n 2.207

FtDTlm =

W/(C.m2)

m2

ft2

Length of tube Lt (m)Outer diameter, Dto (mm)Inner diameter, Dti (mm)

Heat transfer area of a tube, At

Area of one tube, At (m2)

(ft2)

Number of tube, Nt

Tube pitch, Pt (mm)

Triangular pitch K1

Q=UA ΔTalignl¿ lm ¿¿¿

A t=Lt πDalignl ¿ to ¿ ¿¿

A=Q

UΔT lm

N t=AA t

Pt=1 . 25×D to

Page 51: Heat Exchanger

Appendix F -113

Production of 100,000 MTA Hydrogen

( eqn. 12.3b )

416.4211

From Chemical Engineering , Vol. 6 (figure 12.10)Shell bundle clearance (mm) 55

For Split-ring floating head, Ds = Db + shell bundle clearance

0.4714

c) Tube side coefficient

Mean temperature (K)

Mean temperature (K) 297.0050

172.7542

56

0.0097

Mass flow rate (inside tube), m 143.4985 kg/s

14746.8378

The bundle diameter, Db

Bundle diameter, Db (mm)

Shell internal diameter, Ds (m)

Tmean =(Tc.in +Tc,out)/2

Tube cross-sectional area, At

Tube cross-sectional area, At

Tube cross-sectional area, At mm2

Tube per pass = Nt

Total flow area (m2), AT

Total flow area (m2), AT

Fluid velocity, nf

mass velocity, nf kg/m2.s

Db=D to( N t / K1 )1 /n

A t=πDti2

¿4 ¿¿

¿

AT=N t A t

v f=m / AT

Page 52: Heat Exchanger

Appendix F -114

Production of 100,000 MTA Hydrogen

Physical properties of the tube side fluidPhysical properties

814.0675

5.30E-043.66328876558271 kJ/kg.K

0.60959368776 W/m.K

Linear velocity, u

Reynold number, Re

Prandtl number, Pr

linear velocity, u (m/s) 18.1150Reynold number, Re 412575.610Prandtl number, Pr 3.1854

164.5314

From figure 12.23, Chemical Engineering, Vol. 6

0.0028

( eqn. 12.15 )

69599.49( assuming viscosity of the fluid is identical at the wall and of the bulk fluid )

d) Tube side pressure drop

From figure 12.24 'Chemical Engineering'. Vol. 6

0.0019

density, rt kg/m3

Viscosity of E.G, mtL Ns/m2

Heat capacity, Ctp

Thermal conductivity, ktf

L/Dti

Heat transfer factor, jh

Tube side heat transfer coefficient, hi

Tube side heat transfer coefficient, hi W/m2.C

friction factor, jf

u=v f / ρ

Re=ρuDti

μ

Pr=Cp μ

k f

hi=k f jh RePr0 . 33

Dti ( μμw )

0 .14

Page 53: Heat Exchanger

Appendix F -115

Production of 100,000 MTA Hydrogen

( eqn. 12.20 )where m = 0.25 for laminar flow, Re<2100 m = 0.14 for turbulent flow, Re>2100

1335.9295 kPa (acceptable)

e) Shell side coefficient0.4714 m Baffle

diameter

0.4243 mBaffle Diameter 0.4698 m

23.8125 mm

( eqn. 12.21 )

0.0400

40225.6368 kg/hr

279.3250

( eqn. 12.23 )

13.5265 mm

Tube side pressure drop, DPt

Np = number of tube side passes

Tube side pressure drop,

DPt

Shell diameter, Ds

Baffle spacing, lB

Tube pitch, Pt

Cross flow area, As

Cross flow area, As m2

Shell side mass velocity, Gs

Mass flow (inside shell), Ws

Shell side mass velocity, Gs kg/s.m2

Shell side equivalent diameter, De

Shell side equivalent diameter, De

ΔPs=N p [ 8 jf ( L/ Dti )(μ

μw)−m+2.5 ]

ρus2

2

Baffle Diameter=D s−0 . 0016

Baffle Spacing , lB=0 . 9∗Ds

As=( p t−Dto )D s lB

pt

sss AwG /

De=1 .1Dto

( pz2−0. 971 Dto

2 )

Page 54: Heat Exchanger

Appendix F -116

Production of 100,000 MTA Hydrogen

Mean temperature (C)

Mean temperature (C) 408.4350

Physical properties of shell fluid (light hydrocarbon)

Physical properties

1.9887

1.8326E-052.99569121652991 kJ/kg.K

0.0745 W/m.K

Reynold number, Re( eqn. 12.24 )

Reynold number, Re 7127.829Prandtl number, Pr 0.7367

Selecting 15% for baffle cutFrom figure 12.29, Chemical Engineering, Vol. 6

0.0075

( eqn. 12.25 )

266.2769

f) Shell side pressure drop

140.4561 m/s

From figure 12.30 'Chemical Engineering'. Vol. 6

0.0730

Tmean = (Tshell.in +Tshell.out)/2

Fluid density, rs kg/m3

Viscosity, msL Ns/m2

Heat capacity, Csp

Thermal conductivity, ksf

Heat Transfer Factor, jh

Shell side heat transfer coefficient, hs

Shell side heat transfer coefficient, hs W/m2.C

Linear velocity, us

Linear velocity, us

friction factor, jf

Re=Gs De /μ

hs=k f jh RePr1/3

De ( μμw )

0 .14

us=Gs / ρ

Page 55: Heat Exchanger

Appendix F -117

Production of 100,000 MTA Hydrogen

( eqn. 12.26 )

Shell side presure drop, 267886243.7284 Pa (acceptable)

267886.2437 kPa

g) Overall Coefficient

266.2769

69599.49

5000

5000

16.30.01483

0.01905

Overall heat transfer coefficient can be calculated by using the formula

( eqn. 12.1 )Therefore,

0.0043771889231655

228.457125692628

5

Shell side presure drop, DPs

DPs

Outside fluid film coefficient, hs, W/m2.oC

Inside fluid film coefficient, hi, W/m2.oC

Outside dirt coefficient (fouling factor), hod, W/m2.oC

Inside dirt coefficient, hid, W/m2.oC (from Table 12.2, vol. Six )

Thermal conductivity of the tube wall material, kw, W/m.oCTube inside diameter, Dti, m

Tube outside diameter, Dto, m

1/Uo =

Uo = W/m2.C

h) Number of baffle, Nb

Number of baffle, Nb

Nbaffle

hs=k f jh RePr1/3

De ( μμw )

0 .14

1Uo

= 1hs

+ 1hod

+d to ln (d to /d ti)

2k w+

d to

d ti× 1

hid+

d to

dti× 1

hi

Nb=( L/ lB)−1

C=C 0(S/S0)α

Page 56: Heat Exchanger

Appendix F -118

Production of 100,000 MTA Hydrogen

Costing

Type Shell and tube

32.9014Material Carbon SteelFeed Pressure 24 bar

With reference to costing method proposed by L.T. Biegler,Base Cost, C

For 100<S<10000 ft2,Co 5000

Bare Module Cost, BMC So 400a 0.65UF 3.219048

Materials and Pressure Correction Factor, MPF

Total area (ft2) 354.15Base cost, C ($) 4619.5617Modular factor, MF 3.29Design factor, Fd 1.0 (Floating head)Pressure factor, Fp 0Material factor, Fm 1 (CS/CS)MPF 1Bare module cost ($) $48,924Bare module cost (RM) 185,912

Area (m2)

BMC=BC (C)×MF

MPF= Fm(Fp+Fd)

C=C0( S/ S0 )α

BMC=BC (C )×MF

MPF=Fm( F p+Fd )

Page 57: Heat Exchanger

Appendix F -119

Production of 100,000 MTA Hydrogen

Heat Exchanger, X-26

Heat exchanger type 1 shell and 2 tubesDesign type Split-ring floating headHeat exchanger orientation HorizontalTube inlet direction HorizontalNumber of parallel plate 1Tube side stream feed 1Tube side MethanolShell side WaterHeat duty (kW) 1107.710

a) Equipment sizingshell tube

Stream Water Methanol358.15 298.04

349.12 300.15

R = ( eqn. 12.6 )R= 4.280

S= ( eqn. 12.7 )S= 0.035

Ft can be obtained from fig 12.19 ( vol. 6 ),

1.0000

( eqn. 12.4 )

54.4668

Tin (K)

Tout (K)

(T1-T2)/(t2-t1)

(t2-t1)/(T1-t1)

Ft =DTlm can be calculated from the equation,

DTlm =

ΔT lm=(T 1−t2 )−(T2−t1 )

ln(T1−t2 )(T2−t1 )

T1 = inlet temperature to shellT2 = outlet temperature from shellt1 = inlet temperature to tubet2 = outlet temperature from tube

T2

T1

t2

t1

Page 58: Heat Exchanger

Appendix F -120

Production of 100,000 MTA Hydrogen

Therefore, the actual temperature difference is

54.4668

Assumption: (Table 12.1, 'Chem. Eng', Vol. 6)

U 500

Provisional area of heat exchanger, A can be obtained trough the formulae,

Provisional area, A 40.6747437.8190

b) Tube rating ( App.5.-2, Tranport Processes )Material Carbon steelBWG number 14

2.4419.0514.83

Material Thermal Conductivity ( W/m.K ) 16.3

0.1460

1.5718

Number of tube, Nt

279

Tube pitch is the distance between tube centres and formulated as

23.8125

From Table 12.4, Chemical Engineering , Vol. 6 ( 1st Edition )

0.249( 2 passes ) n 2.207

FtDTlm =

W/(C.m2)

m2

ft2

Length of tube Lt (m)Outer diameter, Dto (mm)Inner diameter, Dti (mm)

Heat transfer area of a tube, At

Area of one tube, At (m2)

(ft2)

Number of tube, Nt

Tube pitch, Pt (mm)

Triangular pitch K1

Q=UA ΔTalignl ¿ lm ¿¿¿

A t=Lt πDalignl ¿ to ¿ ¿¿

A=Q

UΔT lm

N t=AA t

Pt=1 . 25×D to

Page 59: Heat Exchanger

Appendix F -121

Production of 100,000 MTA Hydrogen

( eqn. 12.3b )

458.4250

From Chemical Engineering , Vol. 6 (figure 12.10)Shell bundle clearance (mm) 72

For Split-ring floating head, Ds = Db + shell bundle clearance

0.5304

c) Tube side coefficient

Mean temperature (K)

Mean temperature (K) 299.0950

172.7542

70

0.0120

Mass flow rate (inside tube), m 143.3087 kg/s

The bundle diameter, Db

Bundle diameter, Db (mm)

Shell internal diameter, Ds (m)

Tmean =(Tc.in +Tc,out)/2

Tube cross-sectional area, At

Tube cross-sectional area, At

Tube cross-sectional area, At mm2

Tube per pass = Nt

Total flow area (m2), AT

Total flow area (m2), AT

Db=D to( N t / K1 )1 /n

A t=πDti2

¿4 ¿¿

¿

AT=N t A t

Page 60: Heat Exchanger

Appendix F -122

Production of 100,000 MTA Hydrogen

11912.7959

Physical properties of the tube side fluid Physical properties

814.0675

5.30E-043.66328876558271 kJ/kg.K

0.60959368776 W/m.K

Linear velocity, u

Reynold number, Re

Prandtl number, Pr

linear velocity, u (m/s) 14.6337Reynold number, Re 333286.982Prandtl number, Pr 3.1854

164.5314

From figure 12.23, Chemical Engineering, Vol. 6

0.0029

( eqn. 12.15 )

58231.88( assuming viscosity of the fluid is identical at the wall and of the bulk fluid )

d) Tube side pressure drop

From figure 12.24 'Chemical Engineering'. Vol. 6

0.0020

Fluid velocity, nf

E.G mass velocity, nf kg/m2.s

density, rt kg/m3

Viscosity, mtL Ns/m2

Heat capacity, Ctp

Thermal conductivity, ktf

L/Dti

Heat transfer factor, jh

Tube side heat transfer coefficient, hi

Tube side heat transfer coefficient, hi W/m2.C

friction factor, jf

v f=m / AT

u=v f / ρ

Re=ρuDti

μ

Pr=Cp μ

k f

hi=k f jh RePr0 . 33

Dti ( μμw )

0 .14

Page 61: Heat Exchanger

Appendix F -123

Production of 100,000 MTA Hydrogen

( eqn. 12.20 )where m = 0.25 for laminar flow, Re<2100 m = 0.14 for turbulent flow, Re>2100

894.7384 kPa (acceptable)

e) Shell side coefficient0.5304 m Baffle

diameter

0.4774 mBaffle Diameter 0.5288 m

23.8125 mm

( eqn. 12.21 )

0.0506

109113.8792 kg/hr

598.4902

( eqn. 12.23 )

13.5265 mm

Tube side pressure drop, DPt

Np = number of tube side passes

Tube side pressure drop,

DPt

Shell diameter, Ds

Baffle spacing, lB

Tube pitch, Pt

Cross flow area, As

Cross flow area, As m2

Shell side mass velocity, Gs

Mass flow (inside shell), Ws

Shell side mass velocity, Gs kg/s.m2

Shell side equivalent diameter, De

Shell side equivalent diameter, De

ΔPs=N p [ 8 jf ( L/ Dti )(μ

μw)−m+2.5 ]

ρus2

2

Baffle Diameter=D s−0 . 0016

Baffle Spacing , lB=0 .9∗Ds

A s=( p t−Dto )D s lB

pt

sss AwG /

De=1 .1Dto

( pz2−0.971 Dto

2 )

Page 62: Heat Exchanger

Appendix F -124

Production of 100,000 MTA Hydrogen

Mean temperature (C)

Mean temperature (C) 353.6350

Physical properties of shell fluid

Physical properties

965.3964

5.8331E-044.18173789157996 kJ/kg.K

1.1730 W/m.K

Reynold number, Re( eqn. 12.24 )

Reynold number, Re 15272.299Prandtl number, Pr 2.0794

Selecting 15% for baffle cutFrom figure 12.29, Chemical Engineering, Vol. 6

0.0055

( eqn. 12.25 )

9275

f) Shell side pressure drop

0.6199 m/s

From figure 12.30 'Chemical Engineering'. Vol. 6

0.0650

Tmean = (Tshell.in +Tshell.out)/2

Fluid density, rs kg/m3

Viscosity, msL Ns/m2

Heat capacity, Csp

Thermal conductivity, ksf

Heat Transfer Factor, jh

Shell side heat transfer coefficient, hs

Shell side heat transfer coefficient, hs W/m2.C

Linear velocity, us

Linear velocity, us

friction factor, jf

Re=Gs De /μ

hs=k f jh RePr1/3

De ( μμw )

0 .14

us=Gs / ρ

Page 63: Heat Exchanger

Appendix F -125

Production of 100,000 MTA Hydrogen

( eqn. 12.26 )

Shell side presure drop, 2624542.4541 Pa (acceptable)

2624.5425 kPa

g) Overall Coefficient

9275

58231.88

5000

5000

16.30.01483

0.01905

Overall heat transfer coefficient can be calculated by using the formula

( eqn. 12.1 )Therefore,

0.000733119206563126

1364.03464954631

4

Costing

Type Shell and tube

40.6747Material Carbon SteelFeed Pressure 1.01325 bar

Shell side presure drop, DPs

DPs

Outside fluid film coefficient, hs, W/m2.oC

Inside fluid film coefficient, hi, W/m2.oC

Outside dirt coefficient (fouling factor), hod, W/m2.oC

Inside dirt coefficient, hid, W/m2.oC (from Table 12.2, vol. Six )

Thermal conductivity of the tube wall material, kw, W/m.oCTube inside diameter, Dti, m

Tube outside diameter, Dto, m

1/Uo =

Uo = W/m2.C

h) Number of baffle, Nb

Number of baffle, Nb

Nbaffle

Area (m2)

hs=k f jh RePr1/3

De ( μμw )

0 .14

1Uo

= 1hs

+ 1hod

+d to ln (d to /d ti)

2k w+

d to

d ti× 1

hid+

d to

dti× 1

hi

Nb=( L/ lB)−1

Page 64: Heat Exchanger

Appendix F -126

Production of 100,000 MTA Hydrogen

With reference to costing method proposed by L.T. Biegler,Base Cost, C

For 100<S<10000 ft2,Co 5000

Bare Module Cost, BMC So 400a 0.65UF 3.219048

Materials and Pressure Correction Factor, MPF

Total area (ft2) 437.82Base cost, C ($) 5302.4006Modular factor, MF 3.29Design factor, Fd 1.0 (Floating head)Pressure factor, Fp 0Material factor, Fm 1 (CS/CS)MPF 1Bare module cost ($) $56,156Bare module cost (RM) 213,393

C=C0( S/ S0 )α

BMC=BC (C )×MF

MPF=Fm( F p+Fd )

Page 65: Heat Exchanger

Appendix F -127

Production of 100,000 MTA Hydrogen

Heat Exchanger, X-28

Heat exchanger type 1 shell and 2 tubesDesign type Split-ring floating headHeat exchanger orientation HorizontalTube inlet direction HorizontalNumber of parallel plate 1Tube side stream feed 1Tube side Organic SolventsShell side WaterHeat duty (kW) 5635.519

a) Equipment sizingshell tube

Stream Water organic solvent349.12 289.79

303.15 299.36

R = ( eqn. 12.6 )R= 4.804

S= ( eqn. 12.7 )S= 0.161

Ft can be obtained from fig 12.19 ( vol. 6 ),

0.9600

( eqn. 12.4 )

27.6817

Therefore, the actual temperature difference is

26.5745

Tin (K)

Tout (K)

(T1-T2)/(t2-t1)

(t2-t1)/(T1-t1)

Ft =DTlm can be calculated from the equation,

DTlm =

FtDTlm =

ΔT lm=(T 1−t 2 )−(T2−t 1 )

ln(T1−t2 )(T2−t1 )

T1 = inlet temperature to shellT2 = outlet temperature from shellt1 = inlet temperature to tubet2 = outlet temperature from tube

T2T1

t2

t1

Page 66: Heat Exchanger

Appendix F -128

Production of 100,000 MTA Hydrogen

Assumption: (Table 12.1, 'Chem. Eng', Vol. 6)

U 600

Provisional area of heat exchanger, A can be obtained trough the formulae,

Provisional area, A 353.44193804.4172

b) Tube rating ( App.5.-2, Tranport Processes )Material Carbon steelBWG number 16

2.4419.0515.75

Material Thermal Conductivity ( W/m.K ) 16.3

0.1460

1.5718

Number of tube, Nt

2420

Tube pitch is the distance between tube centres and formulated as

23.8125

From Table 12.4, Chemical Engineering , Vol. 6 ( 1st Edition )

0.249( 2 passes ) n 2.207

W/(C.m2)

m2

ft2

Length of tube Lt (m)Outer diameter, Dto (mm)Inner diameter, Dti (mm)

Heat transfer area of a tube, At

Area of one tube, At (m2)

(ft2)

Number of tube, Nt

Tube pitch, Pt (mm)

Triangular pitch K1

Q=UA ΔTalignl¿ lm ¿¿¿

A t=Lt πDalignl ¿ to ¿ ¿¿

A=Q

UΔT lm

N t=AA t

Pt=1 .25×D to

Page 67: Heat Exchanger

Appendix F -129

Production of 100,000 MTA Hydrogen

( eqn. 12.3b )

1221.0397

From Chemical Engineering , Vol. 6 (figure 12.10)Shell bundle clearance (mm) 78

For Split-ring floating head, Ds = Db + shell bundle clearance

1.2990

c) Tube side coefficient

Mean temperature (K)

Mean temperature (K) 294.5750

194.8531

605

0.1179

Mass flow rate (inside tube), m 166.2194 kg/hr

1409.7780

The bundle diameter, Db

Bundle diameter, Db (mm)

Shell internal diameter, Ds (m)

Tmean =(Tc.in +Tc,out)/2

Tube cross-sectional area, At

Tube cross-sectional area, At

Tube cross-sectional area, At mm2

Tube per pass = Nt

Total flow area (m2), AT

Total flow area (m2), AT

Fluid velocity, nf

mass velocity, nf kg/m2.s

Db=D to( N t / K1 )1 /n

A t=πDti2

¿4 ¿¿

¿

AT=N t A t

v f=m / AT

Page 68: Heat Exchanger

Appendix F -130

Production of 100,000 MTA Hydrogen

Physical properties of the tube side fluid Physical properties

838.8215

5.16E-043.54274740819102 kJ/kg.K

0.58032666372 W/m.K

Linear velocity, u

Reynold number, Re

Prandtl number, Pr

linear velocity, u (m/s) 1.6807Reynold number, Re 43015.675Prandtl number, Pr 3.1512

154.9206

From figure 12.23, Chemical Engineering, Vol. 6

0.0036

( eqn. 12.15 )

8333.3( assuming viscosity of the fluid is identical at the wall and of the bulk fluid )

d) Tube side pressure drop

From figure 12.24 'Chemical Engineering'. Vol. 6

0.0033

( eqn. 12.20 )

where m = 0.25 for laminar flow, Re<2100 m = 0.14 for turbulent flow, Re>2100

density, rt kg/m3

Viscosity, mtL Ns/m2

Heat capacity, Ctp

Thermal conductivity, ktf

L/Dti

Heat transfer factor, jh

Tube side heat transfer coefficient, hi

Tube side heat transfer coefficient, hi W/m2.C

friction factor, jf

Tube side pressure drop, DPt

Np = number of tube side passes

u=v f / ρ

Re=ρuDti

μ

Pr=Cp μ

k f

hi=k f jh RePr0 . 33

Dti ( μμw )

0 .14

ΔPs=N p [ 8 jf ( L/ Dti )(μ

μw)−m+2. 5 ]

ρus2

2

Page 69: Heat Exchanger

Appendix F -131

Production of 100,000 MTA Hydrogen

15.6139 kPa (acceptable)

e) Shell side coefficient1.2990 m Baffle

diameter

1.1691 mBaffle Diameter 1.2974 m

23.8125 mm

( eqn. 12.21 )

0.3038

109113.8792 kg/hr

99.7838

( eqn. 12.23 )

13.5265 mm

Mean temperature (C)

Mean temperature (C) 326.1350

Physical properties of shell fluid

Tube side pressure drop,

DPt

Shell diameter, Ds

Baffle spacing, lB

Tube pitch, Pt

Cross flow area, As

Cross flow area, As m2

Shell side mass velocity, Gs

Mass flow (inside shell), Ws

Shell side mass velocity, Gs kg/s.m2

Shell side equivalent diameter, De

Shell side equivalent diameter, De

Tmean = (Tshell.in +Tshell.out)/2

Baffle Diameter=D s−0 . 0016

Baffle Spacing , lB=0 . 9∗Ds

A s=( p t−Dto )D s lB

pt

sss AwG /

De=1 . 1Dto

( pz2−0.971 Dto

2 )

Page 70: Heat Exchanger

Appendix F -132

Production of 100,000 MTA Hydrogen

Physical properties

965.3964

5.8331E-044.18340762759332 kJ/kg.K

1.1730 W/m.K

Reynold number, Re( eqn. 12.24 )

Reynold number, Re 2614.806Prandtl number, Pr 2.0803

Selecting 15% for baffle cutFrom figure 12.29, Chemical Engineering, Vol. 6

0.0130

( eqn. 12.25 )

3753.935

f) Shell side pressure drop

0.1034 m/s

From figure 12.30 'Chemical Engineering'. Vol. 6

0.0850

( eqn. 12.26 )

Fluid density, rs kg/m3

Viscosity, msL Ns/m2

Heat capacity, Csp

Thermal conductivity, ksf

Heat Transfer Factor, jh

Shell side heat transfer coefficient, hs

Shell side heat transfer coefficient, hs W/m2.C

Linear velocity, us

Linear velocity, us

friction factor, jf

Shell side presure drop, DPs

Re=Gs De /μ

hs=k f jh RePr1/3

De ( μμw )

0 .14

us=Gs / ρ

hs=k f jh RePr1/3

De ( μμw )

0 .14

Page 71: Heat Exchanger

Appendix F -133

Production of 100,000 MTA Hydrogen

Shell side presure drop, 42201.6211 Pa (acceptable)

42.2016 kPa

g) Overall Coefficient

3753.935

8333.3

5000

5500

16.30.01575

0.01905

Overall heat transfer coefficient can be calculated by using the formula

( eqn. 12.1 )Therefore,

0.000942604074700494

1060.89080966231

1

Costing

Type Shell and tube

353.4419Material Carbon SteelFeed Pressure 25.7 bar

With reference to costing method proposed by L.T. Biegler,Base Cost, C

DPs

Outside fluid film coefficient, hs, W/m2.oC

Inside fluid film coefficient, hi, W/m2.oC

Outside dirt coefficient (fouling factor), hod, W/m2.oC

Inside dirt coefficient, hid, W/m2.oC (from Table 12.2, vol. Six )

Thermal conductivity of the tube wall material, kw, W/m.oCTube inside diameter, Dti, m

Tube outside diameter, Dto, m

1/Uo =

Uo = W/m2.C

h) Number of baffle, Nb

Number of baffle, Nb

Nbaffle

Area (m2)

1Uo

= 1hs

+ 1hod

+d to ln(d to /d ti)

2k w+

d to

d ti× 1

hid+

d to

dti× 1

hi

Nb=( L/ lB)−1

C=C0( S/ S0 )α

Page 72: Heat Exchanger

Appendix F -134

Production of 100,000 MTA Hydrogen

Bare Module Cost, BMC For 100<S<10000 ft2,Co 5000So 400

Materials and Pressure Correction Factor, MPF a 0.65UF 3.219048

Total area (ft2) 3804.42Base cost, C ($) 21618.1387Modular factor, MF 3.29Design factor, Fd 1.0 (Floating head)Pressure factor, Fp 0Material factor, Fm 1 (CS/CS)MPF 1Bare module cost ($) $228,951Bare module cost (RM) 870,012

BMC=BC (C )×MF

MPF=Fm( F p+Fd )

Page 73: Heat Exchanger

Appendix F -135

Production of 100,000 MTA Hydrogen

Heat Exchanger, X-29

Heat exchanger type 1 shell and 2 tubesDesign type Split-ring floating headHeat exchanger orientation HorizontalTube inlet direction HorizontalNumber of parallel plate 1Tube side stream feed 1Tube side light hydrocarbonShell side natural gasesHeat duty (kW) 2437.400

a) Equipment sizingshell tube

Stream Natural Gases Light Hydrocarbon387.57 284.15

294.15 333.15

R = ( eqn. 12.6 )R= 1.907

S= ( eqn. 12.7 )S= 0.474

Ft can be obtained from fig 12.19 ( vol. 6 ),

0.8000

( eqn. 12.4 )

26.2197

Tin (K)

Tout (K)

(T1-T2)/(t2-t1)

(t2-t1)/(T1-t1)

Ft =

DTlm can be calculated from the equation,

DTlm =

ΔT lm=(T 1−t 2 )−(T2−t1 )

ln(T1−t2 )(T2−t1 )

T1 = inlet temperature to shellT2 = outlet temperature from shellt1 = inlet temperature to tubet2 = outlet temperature from tube

T2

T1

t2

t1

Page 74: Heat Exchanger

Appendix F -136

Production of 100,000 MTA Hydrogen

Therefore, the actual temperature difference is

20.9758

Assumption: (Table 12.1, 'Chem. Eng', Vol. 6)

U 300

Provisional area of heat exchanger, A can be obtained trough the formulae,

Provisional area, A 387.33614169.2514

b) Tube rating ( App.5.-2, Tranport Processes )Material Carbon steelBWG number 16

2.4419.0515.75

Material Thermal Conductivity ( W/m.K ) 16.3

0.1460

1.5587

Number of tube, Nt

2652

Tube pitch is the distance between tube centres and formulated as

23.8125

From Table 12.4, Chemical Engineering , Vol. 6 ( 1st Edition )

0.249( 2 passes ) n 2.207

FtDTlm =

W/(C.m2)

m2

ft2

Length of tube Lt (m)Outer diameter, Dto (mm)Inner diameter, Dti (mm)

Heat transfer area of a tube, At

Area of one tube, At (m2)

(ft2)

Number of tube, Nt

Tube pitch, Pt (mm)

Triangular pitch K1

Q=UA ΔTalignl¿ lm ¿¿¿

A t=Lt πDalignl ¿ to ¿ ¿¿

A=Q

UΔT lm

N t=AA t

Pt=1 . 25×D to

Page 75: Heat Exchanger

Appendix F -137

Production of 100,000 MTA Hydrogen

( eqn. 12.3b )

1272.7693

From Chemical Engineering , Vol. 6 (figure 12.10)Shell bundle clearance (mm) 77

For Split-ring floating head, Ds = Db + shell bundle clearance

1.3498

c) Tube side coefficient

Mean temperature (K)

Mean temperature (K) 308.6500

194.8531

663

0.1292

Mass flow rate (inside tube), m 4.5877 kg/s

35.5055

The bundle diameter, Db

Bundle diameter, Db (mm)

Shell internal diameter, Ds (m)

Tmean =(Tc.in +Tc,out)/2

Tube cross-sectional area, At

Tube cross-sectional area, At

Tube cross-sectional area, At mm2

Tube per pass = Nt

Total flow area (m2), AT

Total flow area (m2), AT

Fluid velocity, nf

mass velocity, nf kg/m2.s

Db=D to( N t / K1 )1 /n

A t=πDti2

¿4 ¿¿

¿

AT=N t A t

v f=m / AT

Page 76: Heat Exchanger

Appendix F -138

Production of 100,000 MTA Hydrogen

Physical properties of the tube side fluid Physical properties

2.6873

8.10E-0610.8426291635825 kJ/kg.K

0.14327499494 W/m.K

Linear velocity, u

Reynold number, Re

Prandtl number, Pr

linear velocity, u (m/s) 13.2123Reynold number, Re 69081.032Prandtl number, Pr 0.6126

154.9206

From figure 12.23, Chemical Engineering, Vol. 6

0.0038

( eqn. 12.15 )

2031.431( assuming viscosity of the fluid is identical at the wall and of the bulk fluid )

d) Tube side pressure drop

From figure 12.24 'Chemical Engineering'. Vol. 6

0.0035

density, rt kg/m3

Viscosity, mtL Ns/m2

Heat capacity, Ctp

Thermal conductivity, ktf

L/Dti

Heat transfer factor, jh

Tube side heat transfer coefficient, hi

Tube side heat transfer coefficient, hi W/m2.C

friction factor, jf

u=v f / ρ

Re=ρuDti

μ

Pr=Cp μ

k f

hi=k f jh RePr0 . 33

Dti ( μμw )

0 .14

Page 77: Heat Exchanger

Appendix F -139

Production of 100,000 MTA Hydrogen

( eqn. 12.20 )where m = 0.25 for laminar flow, Re<2100 m = 0.14 for turbulent flow, Re>2100

3.2077 kPa (acceptable)

e) Shell side coefficient1.3498 m Baffle

diameter

1.2148 mBaffle Diameter 1.3482 m

23.8125 mm

( eqn. 12.21 )

0.3279

40225.6368 kg/hr

34.0729

( eqn. 12.23 )

13.5265 mm

Tube side pressure drop, DPt

Np = number of tube side passes

Tube side pressure drop,

DPt

Shell diameter, Ds

Baffle spacing, lB

Tube pitch, Pt

Cross flow area, As

Cross flow area, As m2

Shell side mass velocity, Gs

Mass flow (inside shell), Ws

Shell side mass velocity, Gs kg/s.m2

Shell side equivalent diameter, De

Shell side equivalent diameter, De

ΔPs=N p [ 8 jf ( L/ Dti )(μ

μw)−m+2.5 ]

ρus2

2

Baffle Diameter=D s−0 .0016

Baffle Spacing , lB=0 . 9∗Ds

A s=( p t−Dto )D s lB

pt

sss AwG /

De=1 .1Dto

( pz2−0. 971 Dto

2 )

Page 78: Heat Exchanger

Appendix F -140

Production of 100,000 MTA Hydrogen

Mean temperature (C)

Mean temperature (C) 340.8600

Physical properties of shell fluid (stream)

Physical properties

1.9887

1.8326E-052.99569121652991 kJ/kg.K

0.0745 W/m.K

Reynold number, Re( eqn. 12.24 )

Reynold number, Re 56934.549Prandtl number, Pr 0.7367

Selecting 15% for baffle cutFrom figure 12.29, Chemical Engineering, Vol. 6

0.0025

( eqn. 12.25 )

708.9748

f) Shell side pressure drop

17.1332 m/s

From figure 12.30 'Chemical Engineering'. Vol. 6

0.0500

Tmean = (Tshell.in +Tshell.out)/2

Fluid density, rs kg/m3

Viscosity, msL Ns/m2

Heat capacity, Csp

Thermal conductivity, ksf

Heat Transfer Factor, jh

Shell side heat transfer coefficient, hs

Shell side heat transfer coefficient, hs W/m2.C

Linear velocity, us

Linear velocity, us

friction factor, jf

Re=Gs De /μ

hs=kf jh RePr1/3

De ( μμw )

0 .14

us=Gs / ρ

Page 79: Heat Exchanger

Appendix F -141

Production of 100,000 MTA Hydrogen

( eqn. 12.26 )

Shell side presure drop, 1334974.4710 Pa (acceptable)

1334.9745 kPa

g) Overall Coefficient

708.9748

2031.431

5000

5000

16.30.01575

0.01905

Overall heat transfer coefficient can be calculated by using the formula

( eqn. 12.1 )Therefore,

0.00255895713832139

390.784192913826

1

Shell side presure drop, DPs

DPs

Outside fluid film coefficient, hs, W/m2.oC

Inside fluid film coefficient, hi, W/m2.oC

Outside dirt coefficient (fouling factor), hod, W/m2.oC

Inside dirt coefficient, hid, W/m2.oC (from Table 12.2, vol. Six )

Thermal conductivity of the tube wall material, kw, W/m.oCTube inside diameter, Dti, m

Tube outside diameter, Dto, m

1/Uo =

Uo = W/m2.C

h) Number of baffle, Nb

Number of baffle, Nb

Nbaffle

hs=k f jh RePr1/3

De ( μμw )

0 .14

1Uo

= 1hs

+ 1hod

+d to ln(d to /d ti)

2k w+

d to

d ti× 1

hid+

d to

dti× 1

hi

Nb=( L/ lB)−1

Page 80: Heat Exchanger

Appendix F -142

Production of 100,000 MTA Hydrogen

Costing

Type Shell and tube

387.3361Material Carbon SteelFeed Pressure 5.07bar

With reference to costing method proposed by L.T. Biegler,Base Cost, C

For 100<S<10000 ft2,Co 5000

Bare Module Cost, BMC So 400a 0.65UF 3.219048

Materials and Pressure Correction Factor, MPF

Total area (ft2) 4169.25Base cost, C ($) 22943.9805Modular factor, MF 3.29Design factor, Fd 1.0 (Floating head)Pressure factor, Fp 0Material factor, Fm 1 (CS/CS)MPF 1Bare module cost ($) $242,992Bare module cost (RM) 923,370

Area (m2)

C=C0( S/ S0 )α

BMC=BC (C )×MF

MPF=Fm( F p+Fd )

Page 81: Heat Exchanger

Appendix F -143

Production of 100,000 MTA Hydrogen

Heat Exchanger, X-30

Heat exchanger type 1 shell and 2 tubesDesign type Split-ring floating headHeat exchanger orientation HorizontalTube inlet direction HorizontalNumber of parallel plate 1Tube side stream feed 1Tube side Organic SolventShell side MethanolHeat duty (kW) 1044.601

a) Equipment sizingshell tube

Stream Methanol Organic Solvent294.15 263.15

292.26 284.15

R = ( eqn. 12.6 )R= 0.090

S= ( eqn. 12.7 )S= 0.677

Ft can be obtained from fig 12.19 ( vol. 6 ),

0.9800

( eqn. 12.4 )

17.8860

Therefore, the actual temperature difference is

17.5283

Tin (K)

Tout (K)

(T1-T2)/(t2-t1)

(t2-t1)/(T1-t1)

Ft =DTlm can be calculated from the equation,

DTlm =

FtDTlm =

ΔT lm=(T 1−t 2 )−(T2−t 1 )

ln(T1−t2 )(T2−t1 )

T1 = inlet temperature to shellT2 = outlet temperature from shellt1 = inlet temperature to tubet2 = outlet temperature from tube

T2

T1

t2

t1

Page 82: Heat Exchanger

Appendix F -144

Production of 100,000 MTA Hydrogen

Assumption: (Table 12.1, 'Chem. Eng', Vol. 6)

U 450

Provisional area of heat exchanger, A can be obtained trough the formulae,

Provisional area, A 132.43361425.5029

b) Tube rating ( App.5.-2, Tranport Processes )Material Carbon steelBWG number 16

2.4419.0515.75

Material Thermal Conductivity ( W/m.K ) 16.3

0.1460

1.5587Number of tube, Nt

907

Tube pitch is the distance between tube centres and formulated as

23.8125

From Table 12.4, Chemical Engineering , Vol. 6 ( 1st Edition )

0.249( 2 passes ) n 2.207

W/(C.m2)

m2

ft2

Length of tube Lt (m)Outer diameter, Dto (mm)Inner diameter, Dti (mm)

Heat transfer area of a tube, At

Area of one tube, At (m2)

(ft2)

Number of tube, Nt

Tube pitch, Pt (mm)

Triangular pitch K1

The bundle diameter, Db

Q=UA ΔTalignl¿ lm ¿¿¿

A t=Lt πDalignl ¿ to ¿ ¿¿

A=Q

UΔT lm

N t=AA t

Pt=1 . 25×D to

Page 83: Heat Exchanger

Appendix F -145

Production of 100,000 MTA Hydrogen

( eqn. 12.3b )

782.6410

From Chemical Engineering , Vol. 6 (figure 12.10)Shell bundle clearance (mm) 73

For Split-ring floating head, Ds = Db + shell bundle clearance

0.8556

c) Tube side coefficient

Mean temperature (K)

Mean temperature (K) 273.6500

194.8531

227

0.0442

Mass flow rate (inside tube), m 4.5877 kg/s

103.8450

Bundle diameter, Db (mm)

Shell internal diameter, Ds (m)

Tmean =(Tc.in +Tc,out)/2

Tube cross-sectional area, At

Tube cross-sectional area, At

Tube cross-sectional area, At mm2

Tube per pass = Nt

Total flow area (m2), AT

Total flow area (m2), AT

Fluid velocity, nf

mass velocity, nf kg/m2.s

Db=D to( N t / K1 )1 /n

A t=πDti2

¿4 ¿¿

¿

AT=N t A t

v f=m / AT

Page 84: Heat Exchanger

Appendix F -146

Production of 100,000 MTA Hydrogen

Physical properties of the tube side fluid Physical properties

2.6873

8.10E-0610.8426291635825 kJ/kg.K

0.14327499494 W/m.K

Linear velocity, u

Reynold number, Re

Prandtl number, Pr

linear velocity, u (m/s) 38.6429Reynold number, Re 202045.508Prandtl number, Pr 0.6126

154.9206

From figure 12.23, Chemical Engineering, Vol. 6

0.0030

( eqn. 12.15 )

4690.617776129( assuming viscosity of the fluid is identical at the wall and of the bulk fluid )

d) Tube side pressure drop

From figure 12.24 'Chemical Engineering'. Vol. 6

0.0023

( eqn. 12.20 )where m = 0.25 for laminar flow, Re<2100

density, rt kg/m3

Viscosity, mtL Ns/m2

Heat capacity, Ctp

Thermal conductivity, ktf

L/Dti

Heat transfer factor, jh

Tube side heat transfer coefficient, hi

Tube side heat transfer coefficient, hi (W/m2.C)

friction factor, jf

Tube side pressure drop, DPt

u=v f / ρ

Re=ρuDti

μ

Pr=Cp μ

k f

hi=k f jh RePr0 . 33

Dti ( μμw )

0 .14

ΔPs=N p [ 8 jf ( L/ Dti )(μμw

)−m+2. 5 ]ρus

2

2

Page 85: Heat Exchanger

Appendix F -147

Production of 100,000 MTA Hydrogen

m = 0.14 for turbulent flow, Re>2100

21.4710 kPa (acceptable)

e) Shell side coefficient0.8556 m

Baffle diameter

0.7701 mBaffle Diameter 0.8540 m

23.8125 mm

( eqn. 12.21 )

0.1318

720925.4752 kg/hr

1519.6103

( eqn. 12.23 )

13.5265 mm

Mean temperature (C)

Mean temperature (C) 293.2065

Np = number of tube side passes

Tube side pressure drop,

DPt

Shell diameter, Ds

Baffle spacing, lB

Tube pitch, Pt

Cross flow area, As

Cross flow area, As m2

Shell side mass velocity, Gs

Mass flow (inside shell), Ws

Shell side mass velocity, Gs kg/s.m2

Shell side equivalent diameter, De

Shell side equivalent diameter, De

Tmean = (Tshell.in +Tshell.out)/2

Baffle Diameter=D s−0 . 0016

Baffle Spacing , lB=0 . 9∗Ds

A s=( p t−Dto )D s lB

pt

sss AwG /

De=1 . 1Dto

( pz2−0.971 Dto

2 )

Page 86: Heat Exchanger

Appendix F -148

Production of 100,000 MTA Hydrogen

Physical properties of shell fluid (stream)

Physical properties

799.8603

5.1581E-043.69813443294356 kJ/kg.K

0.6155 W/m.K

Reynold number, Re( eqn. 12.24 )

Reynold number, Re 2539213.908Prandtl number, Pr 3.0990

Selecting 15% for baffle cutFrom figure 12.29, Chemical Engineering, Vol. 6

0.0008

( eqn. 12.25 )

134265.25076058

f) Shell side pressure drop

1.8998 m/s

From figure 12.30 'Chemical Engineering'. Vol. 6

0.0320

Fluid density, rs kg/m3

Viscosity, msL Ns/m2

Heat capacity, Csp

Thermal conductivity, ksf

Heat Transfer Factor, jh

Shell side heat transfer coefficient, hs

Shell side heat transfer coefficient, hs (W/m2.C)

Linear velocity, us

Linear velocity, us

friction factor, jf

Re=Gs De /μ

hs=k f jh RePr1/3

De ( μμw )

0 .14

us=Gs / ρ

Page 87: Heat Exchanger

Appendix F -149

Production of 100,000 MTA Hydrogen

( eqn. 12.26 )

Shell side presure drop, 6319096.4457 Pa (acceptable)

6319.0964 kPa

g) Overall Coefficient

134265.25076058

4690.617776129

5000

5000

16.30.01575

0.01905

Overall heat transfer coefficient can be calculated by using the formula

( eqn. 12.1 )Therefore,

0.000818373044027

1221.93663060944

2

Costing

Type Shell and tube

132.4336Material Carbon SteelFeed Pressure 5.07bar

Shell side presure drop, DPs

DPs

Outside fluid film coefficient, hs, W/m2.oC

Inside fluid film coefficient, hi, W/m2.oC

Outside dirt coefficient (fouling factor), hod, W/m2.oC

Inside dirt coefficient, hid, W/m2.oC (from Table 12.2, vol. Six )

Thermal conductivity of the tube wall material, kw, W/m.oCTube inside diameter, Dti, m

Tube outside diameter, Dto, m

1/Uo =

Uo = W/m2.C

h) Number of baffle, Nb

Number of baffle, Nb

Nbaffle

Area (m2)

hs=k f jh RePr1/3

De ( μμw )

0 .14

1Uo

= 1hs

+ 1hod

+d to ln (d to /d ti)

2k w+

d to

d ti× 1

hid+

d to

dti× 1

hi

Nb=( L/ lB)−1

Page 88: Heat Exchanger

Appendix F -150

Production of 100,000 MTA Hydrogen

With reference to costing method proposed by L.T. Biegler,Base Cost, C

For 100<S<10000 ft2,Bare Module Cost, BMC Co 5000

So 400a 0.65

Materials and Pressure Correction Factor, MPF UF 3.21904761904762

Total area (ft2) 1425.50Base cost, C ($) 11421.1619Modular factor, MF 3.29Design factor, Fd 1.0 (Floating head)Pressure factor, Fp 0Material factor, Fm 1 (CS/CS)MPF 1Bare module cost ($) $120,958Bare module cost (RM) 459,639

C=C0( S/ S0)α

BMC=BC(C )×MF

MPF=Fm( F p+Fd )

Page 89: Heat Exchanger

Appendix F -151

Production of 100,000 MTA Hydrogen

Heater X-34

Heat exchanger type Split flow shell and 2 tubesDesign type Fixed and U-TubeHeat exchanger orientation HorizontalTube inlet direction HorizontalNumber of parallel plate 1Tube side stream feed 1Tube side Organic solventShell side SteamHeat duty (kW) (Q) 12935.46000

a) Equipment sizingshell (t) tube (T)

Stream Steam523.15 331.19

423.15 353.15

R = ( eqn. 12.6 )R= 4.55373406193079

S= ( eqn. 12.7 )S= 0.1144

Ft can be obtained from eqn 12.8 ( vol. 6 ),

0.976

Organic solvent

Tin (K)

Tout (K)

(T1-T2)/(t2-t1)

(t2-t1)/(T1-t1)

Ft =

T1 = inlet temperature to tubeT2 = outlet temperature from tubet1 = inlet temperature to shellt2 = outlet temperature from shell

T2

T1

t2

t1

Page 90: Heat Exchanger

Appendix F -152

Production of 100,000 MTA Hydrogen

( eqn. 12.4 )

127.0090

Therefore, the actual temperature difference is

124.0151

Assumption: (Table 12.1, 'Chem. Eng', Vol. 6)

U 800

Provisional area of heat exchanger, A can be obtained trough the formula,

Provisional area, A = 130.3819

= 1403.4194

Material Stainless SteelBWG number 16

4.8819.0515.7544.0

0.2921

3.1437

DTlm can be calculated from the equation,

DTlm =

ΔTm = FtΔTlm =

W/(ºC.m2)

m2

ft2

b) Tube rating ( From App.5.-2, Tranport Processes by, Christie J. Geankoplis )

Length of tube Lt (m)Outer diameter, Dto (mm)Inner diameter, Dti (mm)Material Thermal Conductivity ( W/m.K )

Heat transfer area of a tube, At

Area of one tube, At (m2) =

(ft2) =

ΔT lm=(T 1−t 2 )−(T2−t 1 )

ln(T1−t2 )(T2−t1 )

Q=UA ΔTalignl¿ lm ¿¿¿A=

QUΔT lm

A t=Lt πDalignl ¿ to ¿ ¿¿

Page 91: Heat Exchanger

Appendix F -153

Production of 100,000 MTA Hydrogen

Number of tube, Nt

446

Tube pitch is the distance between tube centres and formulated as

23.8125

From Table 12.4, Chemical Engineering , Vol. 6 ( 1st Edition ), page 523Triangular pitch K1 0.249( 2 passes ) n 2.207

( eqn. 12.3b )

567.6654

From Chemical Engineering , Vol. 6 (figure 12.10)Shell bundle clearance (mm) 60

For Split-ring floating head, Ds = Db + shell bundle clearance

0.62767

c) Tube side coefficient

Mean temperature (C)

Mean temperature (C) 342.1700

Number of tube, Nt

Tube pitch, Pt (mm)

The bundle diameter, Db

Bundle diameter, Db (mm)

Shell internal diameter, Ds (m)

Tmean =(TH.in +TH,out)/2

N t=AA t

Pt=1 . 25×D to

Pt

Db=D to( N t / K1 )1 /n

Page 92: Heat Exchanger

Appendix F -154

Production of 100,000 MTA Hydrogen

194.8531

223

0.0434941

Mass flow rate (inside tube), m 216.6034 kg/s

4980.0634

Physical properties of the tube side fluid (simulation result)Physical properties of organic solvent

838.4112

5.15E-043.5453121354088 kJ/kg.K

0.57972579598 W/m.K1 cp (Ns/m2) = 1.00E-03

Linear velocity, u

Reynold number, Re Prandtl number, Pr

Tube cross-sectional area, At

Tube cross-sectional area, At mm2

Tube per pass = Nt

Total flow area (m2), AT

Total flow area (m2), AT

Fluid velocity, nf

Fluid mass velocity, nf kg/m2.s

organic solvent density, rt kg/m3

Viscosity of , mtL Ns/m2

Heat capacity, Ctp

Thermal conductivity, ktf

A t=πDti2

¿4 ¿¿

¿

AT =N t A t

v f=m / AT

u=v f / ρ

Re=ρuDti

μPr=

Cp μk f

Page 93: Heat Exchanger

Appendix F -155

Production of 100,000 MTA Hydrogen

steam linear velocity, u (m/s) 5.9399Reynold number, Re 1.5237E+05Prandtl number, Pr 3.1481

309.8413

From figure 12.23, Chemical Engineering, Vol. 6

0.00320

( eqn. 12.15 )

26202.7833( assuming viscosity of the fluid is identical at the wall and of the bulk fluid )

d) Tube side pressure drop

From figure 12.24 'Chemical Engineering'. Vol. 6

0.00250

( eqn. 12.20 )where m = 0.25 for laminar flow, Re<2100 m = 0.14 for turbulent flow, Re>2100

257.2607 kPa

2.5389655289586

L/Dti

Heat transfer factor, jh

Tube side heat transfer coefficient, hi

Tube side heat transfer coefficient, hi

friction factor, jf

Tube side pressure drop, DPt

Np = number of tube side passes

Tube side pressure drop,

DPt (atm)

hi=k f jh RePr0 .33

Dti ( μμw )

0 .14

ΔPs=N p [ 8 jf ( L/ Dti )(μμw

)−m+2. 5 ]ρus

2

2

B159
cclw:
Page 94: Heat Exchanger

Appendix F -156

Production of 100,000 MTA Hydrogen

e) Shell side coefficient0.6277 m

Baffle diameter

0.5649 mBaffle Diameter 0.6261 m

23.8125 mm

( eqn. 12.21 )

0.070913

65.102979 kg/s

918.0619

( eqn. 12.23 )13.5265 mm

Mean temperature (C)

Mean temperature (ºC) 473.1500

Physical properties of shell fluid (steam)

Shell diameter, Ds

Baffle spacing, lB

Tube pitch, Pt

Cross flow area, As

Cross flow area, As m2

Shell side mass velocity, Gs

Mass flow (inside shell), Ws

Shell side mass velocity, Gs kg/s.m2

Shell side equivalent diameter, De

Shell side equivalent diameter, De

Tmean = (Tshell.in +Tshell.out)/2

A s=( p t−Dto )D s lB

pt

sss AwG /

De=1 .1Dto

( pz2−0. 971 Dto

2 )

Baffle Spacing , lB=0 . 9∗Ds

Baffle Diameter=D s−0 .0016

Page 95: Heat Exchanger

Appendix F -157

Production of 100,000 MTA Hydrogen

Physical properties

0.4211

1.82E-051.98692E+00 kJ/kg.K

0.0381499 W/m.K

Reynold number, Re( eqn. 12.24 )

Reynold number, Re 6.8153E+05Prandtl number, Pr 0.9490

Selecting 15% for baffle cutFrom figure 12.29, Chemical Engineering, Vol. 6

0.0009

( eqn. 12.25 )

1700.322135865

f) Shell side pressure drop

2179.9965 m/s

From figure 12.30 'Chemical Engineering'. Vol. 6

0.0340

( eqn. 12.26 )

Shell side presure drop, 109108878.2618 Pa

109108.8783 kPa 1076.820905618

Fluid density, rs kg/m3

Viscosity, msL Ns/m2

Heat capacity, Csp

Thermal conductivity, ksf

Heat Transfer Factor, jh

Shell side heat transfer coefficient, hs

Shell side heat transfer coefficient, hs (W/m2.C)

Linear velocity, us

Linear velocity, us

friction factor, jf

Shell side presure drop, DPs

DPs (atm)

m/Re es DG

hs=k f jh RePr1/3

De ( μμw )

0 .14

us=Gs / ρ

ΔPs=8 jf ( Ds /D e)( L/ lB )ρus

2

2( μ

μw)−0 . 14

Page 96: Heat Exchanger

Appendix F -158

Production of 100,000 MTA Hydrogen

g) Overall Coefficient

1700.322135865

26202.7833

5000

5000

44.00.01575

0.01905

Overall heat transfer coefficient can be calculated by using the formula

( eqn. 12.2 )Therefore,

0.001117368503781

894.959896055954

8

i) Costing (Guthrie's Modular Method)

Total area of the Heat Exchanger = 130.3819 = 1403.4180838

Operating Pressure = 4.75 bar405.6

126.00Update factor = 405.6

126.00

= 3.21904761904762

With reference to costing method proposed in Systematic Method of Chemical ProcessDesign by L.T. Biegler.

Outside fluid film coefficient, hs, W/m2.oC

Inside fluid film coefficient, hi, W/m2.oC

Outside dirt coefficient (fouling factor), hod, W/m2.oC

Inside dirt coefficient, hid, W/m2.oC (Table 12.2, vol. Six )

Thermal conductivity of the tube wall material, kw, W/m.oCTube inside diameter, Dti, m

Tube outside diameter, Dto, m

1/Uo =

Uo = W/m2.C

h) Number of baffle, Nb

Number of baffle, Nb

Nbaffle

m2

ft2

CE Plant Cost Index for 2003, CEI 03 =CE Plant Cost Index for 1968 1/2, CEI 68 =

1Uo

= 1hs

+ 1hod

+d to ln (d to /d ti)

2k w+

d to

d ti× 1

hid+

d to

dti× 1

hi

Nb=( L/ lB)−1

Page 97: Heat Exchanger

Appendix F -159

Production of 100,000 MTA Hydrogen

Base Cost,

C0= 5000S0= 400

0.65Updated Bare Module Cost : BMC= (UF)(MPF+MF-1) (BC)

Materials and Pressure Correction Factor, MPF

Total area (ft2) 1,403.41808Base cost, C ($) 11,305.834Modular factor, MF 3.2900Design factor, Fd 0.8500Pressure factor, Fp 0.0000Material factor, Fm 2.5000MPF 2.1250

160,679.59Bare module cost (RM) 610,582.44

Utility cost:H (250C, 475 kPa,super) = 2961.85 kJ/kgH (150C, saturated) = 632.1 kJ/kgΔ H = 2329.75 kJ/kg

== 5.5523 kg/s= 5552.3 g/s= 308 gmol/s

The amout of water need to be heated to obtain the amount of steam;= 5.5523 kg/s= 19988 kg/hr= 19.9883= 172,698.5933

Assume the water will be flowed to the incinerator to generate steam before flowing to the heater, therefore, no extra heating cost is needed.

Assume water cost = RM 1.15Total cost of water RM/yr = 198,603.38

α=

Updated bare module cost ($)

Steam flow, mc Qmax/ΔH

m3/hrm3/yr

/m3

Page 98: Heat Exchanger

Appendix F -160

Production of 100,000 MTA Hydrogen

Cooler X-35

Heat exchanger type Split flow shell and 2 tubesDesign type Fixed and U-TubeHeat exchanger orientation HorizontalTube inlet direction HorizontalNumber of parallel plate 1Tube side stream feed 1Tube side R-12Shell side waterHeat duty (kW) (Q) 68805.55600

a) Equipment sizingshell (t) tube (T)

Stream Methanol R-12299.82 479.75

324.82 368.15

R = ( eqn. 12.6 )R= 0.224014336917563

S= ( eqn. 12.7 )S= 0.6202

Ft can be obtained from fig 12.19 ( vol. 6 ),

0.950

( eqn. 12.4 )

105.7872

Tin (K)

Tout (K)

(T1-T2)/(t2-t1)

(t2-t1)/(T1-t1)

Ft =DTlm can be calculated from the equation,

DTlm =

T1 = inlet temperature to tubeT2 = outlet temperature from tubet1 = inlet temperature to shellt2 = outlet temperature from shell

T2

T1

t2

t1

ΔT lm=(T 1−t2 )−(T2−t 1)

ln(T1−t 2 )(T2−t 1 )

Page 99: Heat Exchanger

Appendix F -161

Production of 100,000 MTA Hydrogen

Therefore, the actual temperature difference is

100.4978

Assumption: (Table 12.1, 'Chem. Eng', Vol. 6)

U 454.264

Provisional area of heat exchanger, A can be obtained trough the formula,

Provisional area, A = 150.7157

= 1622.2900

b) Tube rating

Material Stainless SteelBWG number 16

4.8819.0515.7544.0

0.2921

3.1437

Number of tube, Nt

516

Tube pitch is the distance between tube centres and formulated as

ΔTm = FtΔTlm =

W/(ºC.m2)

m2

ft2

Length of tube Lt (m)Outer diameter, Dto (mm)Inner diameter, Dti (mm)Material Thermal Conductivity ( W/m.K )

Heat transfer area of a tube, At

Area of one tube, At (m2) =

(ft2) =

Number of tube, Nt

Q=UA ΔTalignl¿ lm ¿¿¿A=

QUΔT lm

A t=Lt πDalignl ¿ to ¿ ¿¿

N t=AA t

Pt=1 . 25×D to

Page 100: Heat Exchanger

Appendix F -162

Production of 100,000 MTA Hydrogen

23.8125

From Table 12.4, Chemical Engineering , Vol. 6 ( 1st Edition ), page 523Triangular pitch K1 0.249( 2 passes ) n 2.207

( eqn. 12.3b )

606.1934

From Chemical Engineering , Vol. 6 (figure 12.10)Shell bundle clearance (mm) 63

For Split-ring floating head, Ds = Db + shell bundle clearance

0.66919

c) Tube side coefficient

Mean temperature (C)

Mean temperature (C) 423.9500

194.8531

258

0.0502772

Tube pitch, Pt (mm)

The bundle diameter, Db

Bundle diameter, Db (mm)

Shell internal diameter, Ds (m)

Tmean =(TH.in +TH,out)/2

Tube cross-sectional area, At

Tube cross-sectional area, At

Tube per pass = Nt

Total flow area (m2), AT

Total flow area (m2), AT

Pt

Db=D to( N t / K1 )1 /n

A t=πDti2

¿4 ¿¿

¿

AT=N t A t

Page 101: Heat Exchanger

Appendix F -163

Production of 100,000 MTA Hydrogen

Mass flow rate (inside tube), m -12.7199

-252.9944

Physical properties of the tube side fluid (simulation result)Physical properties of organic solvent

5.9838

1.06E-050.567650181120466 kJ/kg.K

0.00834125294 W/m.K1 cp =

Linear velocity, u

Reynold number, Re Prandtl number, Pr

steam linear velocity, u (m/s) -42.2799Reynold number, Re -3.7741E+05Prandtl number, Pr 0.7185

309.8413

From figure 12.23, Chemical Engineering, Vol. 6

0.00270

( eqn. 12.15 )

( assuming viscosity of the fluid is identical at the wall and of the bulk fluid )

d) Tube side pressure drop

Fluid velocity, nf

Fluid mass velocity, nf

organic solvent density, rt kg/m3

Viscosity of , mtL Ns/m2

Heat capacity, Ctp

Thermal conductivity, ktf

L/Dti

Heat transfer factor, jh

Tube side heat transfer coefficient, hi

Tube side heat transfer coefficient, hi

v f=m / AT

u=v f / ρ

Re=ρuDti

μPr=

Cp μk f

hi=k f jh RePr0 . 33

Dti ( μμw )

0 .14

Page 102: Heat Exchanger

Appendix F -164

Production of 100,000 MTA Hydrogen

From figure 12.24 'Chemical Engineering'. Vol. 6

0.00170

where m = 0.25 for laminar flow, Re<2100 m = 0.14 for turbulent flow, Re>2100

71.8151 kPa

e) Shell side coefficient0.6692

0.6023Baffle Diameter 0.6676

23.8125

( eqn. 12.21 )

0.080608

200.257076

2484.3456

( eqn. 12.23 )

friction factor, jf

Tube side pressure drop, DPt

Np = number of tube side passes

Tube side pressure drop,

DPt

Shell diameter, Ds

Baffle spacing, lB

Tube pitch, Pt

Cross flow area, As

Cross flow area, As

Shell side mass velocity, Gs

Mass flow (inside shell), Ws

Shell side mass velocity, Gs

Shell side equivalent diameter, De

ΔPs=N p [ 8 jf ( L/ Dti )(μμw

)−m+2. 5 ]ρus

2

2

A s=( p t−Dto )D s lB

pt

sss AwG /

De=1 .1Dto

( pz2−0.971 Dto

2 )

Baffle Spacing , lB=0 . 9∗Ds

Baffle Diameter=D s−0 . 0016

B153
cclw:
Page 103: Heat Exchanger

Appendix F -165

Production of 100,000 MTA Hydrogen

13.5265

Mean temperature (C)

Mean temperature (ºC) 312.3200

Physical properties of shell fluid (steam)

Physical properties

799.8603

5.16E-043.69813E+00 kJ/kg.K

0.6155396 W/m.K

Reynold number, Re( eqn. 12.24 )

Reynold number, Re 6.5148E+04Prandtl number, Pr 3.0990

Selecting 15% for baffle cutFrom figure 12.29, Chemical Engineering, Vol. 6

0.0028

( eqn. 12.25 )

f) Shell side pressure drop

3.1060

From figure 12.30 'Chemical Engineering'. Vol. 6

Shell side equivalent diameter, De

Tmean = (Tshell.in +Tshell.out)/2

Fluid density, rs kg/m3

Viscosity, msL Ns/m2

Heat capacity, Csp

Thermal conductivity, ksf

Heat Transfer Factor, jh

Shell side heat transfer coefficient, hs

Shell side heat transfer coefficient, hs

Linear velocity, us

Linear velocity, us

De=1 .1Dto

( pz2−0.971 Dto

2 )

m/Re es DG

hs=k f jh RePr1/3

De ( μμw )

0 .14

us=Gs / ρ

Page 104: Heat Exchanger

Appendix F -166

Production of 100,000 MTA Hydrogen

0.0500

Shell side presure drop, 618633.2884 Pa

618.6333 kPa

g) Overall Coefficient

Overall heat transfer coefficient can be calculated by using the formula

Therefore,

-0.0019335603433026

-517.180652501363

7

friction factor, jf

Shell side presure drop, DPs

DPs

Outside fluid film coefficient, hs, W/m2.oC

Inside fluid film coefficient, hi, W/m2.oC

Outside dirt coefficient (fouling factor), hod, W/m2.oC

Inside dirt coefficient, hid, W/m2.oC (Table 12.2, vol. Six )

Thermal conductivity of the tube wall material, kw, W/m.oCTube inside diameter, Dti, m

Tube outside diameter, Dto, m

1/Uo =

Uo = W/m2.C

h) Number of baffle, Nb

Number of baffle, Nb

Nbaffle

ΔPs=8 jf ( Ds /D e)( L/ lB )ρus

2

2( μ

μw)−0 .14

1Uo

= 1hs

+ 1hod

+d to ln (d to /d ti)

2k w+

d to

d ti× 1

hid+

d to

dti× 1

hi

Nb=( L/ lB)−1

Page 105: Heat Exchanger

Appendix F -167

Production of 100,000 MTA Hydrogen

i) Costing (Guthrie's Modular Method)

Total area of the Heat Exchanger = 150.7157 = 1622.28846242856

Operating Pressure = 4.75

405.6126.00

Update factor = 405.6126.00

= 3.21904761904762

With reference costing method proposed in Systematic Method of Chemical ProcessDesign by L.T. Biegler.

Base Cost,

C0= 5000S0= 400

0.65Updated Bare Module Cost : BMC= (UF)(MPF+MF-1) (BC)

Materials and Pressure Correction Factor, MPF

Total area (ft2) 1,622.28846Base cost, C ($) 12,422.650Modular factor, MF 3.2900Design factor, Fd 0.8500Pressure factor, Fp 0.0000Material factor, Fm 2.5000MPF 2.1250

176,551.89Bare module cost (RM) 670,897.18

CE Plant Cost Index for 2003, CEI 03 =CE Plant Cost Index for 1968 1/2, CEI 68 =

α=

Updated bare module cost ($)

Page 106: Heat Exchanger

Appendix F -168

Production of 100,000 MTA Hydrogen

Cost of Coolant:Mass flowrate of R-12 needed = -12.7199Assume that the coolant R-12 will be recycled in a cycle in 10 minutes, which equal to 600s.Total of coolant needed = -7631.9152From the website, we obtained 50 pound of R-12a is sold at US 160;Price for coolant = US 3.2 /pound = RM 27.02 /kgThe cost for coolant = RM -206231.309417173

Cost of Mechanical Refrigeration Unit:For the coolant/refrigerate to cold down to its initial temperature for recycling to the cooler X-35,an air cooled mechanical refrigeration unit is installed. From Ulrich (1984);The rate of heat absorbtion, Q = 68805.55600The temperature of coolant = 479.75000

= 206.60000From Figure 5-11, Ulrich (1984);Bare module cost for the air-cooled refrigeration unit = US $Updated factor = 1.29Updated module cost, BMC = US $ 1,935,000.00

= RM 7,353,000.00

Page 107: Heat Exchanger

Appendix F -169

Production of 100,000 MTA Hydrogen

Split flow shell and 2 tubesFixed and U-Tube

HorizontalHorizontal

11

R-12water

68805.55600

T1 = inlet temperature to tubeT2 = outlet temperature from tubet1 = inlet temperature to shellt2 = outlet temperature from shell

Page 108: Heat Exchanger

Appendix F -170

Production of 100,000 MTA Hydrogen

(standard length of tubes are 8, 12, or 16 ft, pg 520, Vol6 )

(A.3-16)

Page 109: Heat Exchanger

Appendix F -171

Production of 100,000 MTA Hydrogen

mm2

Page 110: Heat Exchanger

Appendix F -172

Production of 100,000 MTA Hydrogen

kg/s

1.00E-03

Prandtl number, Pr

-483.8899

kg/m2.s

Ns/m2

W/m2.C

Pr=Cp μ

k f

Page 111: Heat Exchanger

Appendix F -173

Production of 100,000 MTA Hydrogen

( eqn. 12.20 )

0.708759851386908 atm

Baffle

m diameter

mm

mm

kg/s

m2

kg/s.m2

Page 112: Heat Exchanger

Appendix F -174

Production of 100,000 MTA Hydrogen

mm

12056.9102221634

m/s

W/m2.C

Page 113: Heat Exchanger

Appendix F -175

Production of 100,000 MTA Hydrogen

( eqn. 12.26 )

6.10543585855115 atm

12056.9102221634

-483.8899

5000

5000

44.00.01575

0.01905

( eqn. 12.2 )

Page 114: Heat Exchanger

Appendix F -176

Production of 100,000 MTA Hydrogen

bar

With reference costing method proposed in Systematic Method of Chemical Process

m2

ft2

Page 115: Heat Exchanger

Appendix F -177

Production of 100,000 MTA Hydrogen

kg/sAssume that the coolant R-12 will be recycled in a cycle in 10 minutes, which equal to 600s.

kg

For the coolant/refrigerate to cold down to its initial temperature for recycling to the cooler X-35,

KWKoC

1,500,000

Page 116: Heat Exchanger

Appendix F -169

Production of 100,000 MTA Hydrogen

Cooler X-35

Heat exchanger type Split flow shell and 2 tubesDesign type Fixed and U-TubeHeat exchanger orientation HorizontalTube inlet direction HorizontalNumber of parallel plate 1Tube side stream feed 1Tube side R-12Shell side methanolHeat duty (kW) (Q) 26.08619

a) Equipment sizingshell (t) tube (T)

Stream Methanol R-12294.15 263.15

293.15 278.15

R = ( eqn. 12.6 )R= 0.0666666666666667

S= ( eqn. 12.7 )S= 0.4839

Ft can be obtained from fig 12.19 ( vol. 6 ),

0.980

( eqn. 12.4 )

22.2714

Therefore, the actual temperature difference is

21.8260

Tin (K)

Tout (K)

(T1-T2)/(t2-t1)

(t2-t1)/(T1-t1)

Ft =DTlm can be calculated from the equation,

DTlm =

ΔTm = FtΔTlm =

T1 = inlet temperature to tubeT2 = outlet temperature from tubet1 = inlet temperature to shellt2 = outlet temperature from shell

T2

T1

t2

t1

ΔT lm=(T 1−t2 )−(T2−t1 )

ln(T1−t2 )(T2−t1 )

Page 117: Heat Exchanger

Appendix F -170

Production of 100,000 MTA Hydrogen

Assumption: (Table 12.1, 'Chem. Eng', Vol. 6)

U 800

Provisional area of heat exchanger, A can be obtained trough the formula,

Provisional area, A = 1.4940

= 16.0811

Material Stainless SteelBWG number 16

4.8819.0515.7544.0

0.2921

3.1437

Number of tube, Nt

5

Tube pitch is the distance between tube centres and formulated as

23.8125

W/(ºC.m2)

m2

ft2

b) Tube rating ( From App.5.-2, Tranport Processes by, Christie J. Geankoplis )

Length of tube Lt (m)Outer diameter, Dto (mm)Inner diameter, Dti (mm)Material Thermal Conductivity ( W/m.K )

Heat transfer area of a tube, At

Area of one tube, At (m2) =

(ft2) =

Number of tube, Nt

Tube pitch, Pt (mm)

Q=UA ΔTalignl ¿ lm ¿¿¿A=

QUΔT lm

A t=Lt πDalignl ¿ to ¿ ¿¿

N t=AA t

Pt=1 . 25×D to

Page 118: Heat Exchanger

Appendix F -171

Production of 100,000 MTA Hydrogen

From Table 12.4, Chemical Engineering , Vol. 6 ( 1st Edition ), page 523Triangular pitch K1 0.249( 2 passes ) n 2.207

( eqn. 12.3b )

74.9336

From Chemical Engineering , Vol. 6 (figure 12.10)Shell bundle clearance (mm) 50

For Split-ring floating head, Ds = Db + shell bundle clearance

0.12493

c) Tube side coefficientMean temperature (C)

Mean temperature (C) 270.6500

194.8531

3

0.0004984

Mass flow rate (inside tube), m 2.8719 kg/s

The bundle diameter, Db

Bundle diameter, Db (mm)

Shell internal diameter, Ds (m)

Tmean =(TH.in +TH,out)/2

Tube cross-sectional area, At

Tube cross-sectional area, At mm2

Tube per pass = Nt

Total flow area (m2), AT

Total flow area (m2), AT

Pt

Db=D to( N t / K1 )1 /n

A t=πDti2

¿4 ¿¿

¿

AT=N t A t

Page 119: Heat Exchanger

Appendix F -172

Production of 100,000 MTA Hydrogen

5762.4214

Physical properties of the tube side fluid (simulation result)Physical properties of organic solvent

5.9838

1.26E-050.605556213507121 kJ/kg.K

0.0106691796 W/m.K1 cp = 1.00E-03

Linear velocity, u

Reynold number, Re Prandtl number, Pr

steam linear velocity, u (m/s) 963.0037Reynold number, Re 7.2007E+06Prandtl number, Pr 0.7154

309.8413

From figure 12.23, Chemical Engineering, Vol. 6

0.00270

( eqn. 12.15 )

11791.9849( assuming viscosity of the fluid is identical at the wall and of the bulk fluid )

Fluid velocity, nf

Fluid mass velocity, nf kg/m2.s

organic solvent density, rt kg/m3

Viscosity of , mtL Ns/m2

Heat capacity, Ctp

Thermal conductivity, ktf

Ns/m2

L/Dti

Heat transfer factor, jh

Tube side heat transfer coefficient, hi

Tube side heat transfer coefficient, hi W/m2.C

v f=m / AT

u=v f / ρ

Re=ρuDti

μPr=

Cp μk f

hi=kf jh RePr0 . 33

Dti ( μμw )

0 .14

Page 120: Heat Exchanger

Appendix F -173

Production of 100,000 MTA Hydrogen

d) Tube side pressure drop

From figure 12.24 'Chemical Engineering'. Vol. 6

0.00170

( eqn. 12.20 )where m = 0.25 for laminar flow, Re<2100 m = 0.14 for turbulent flow, Re>2100

37256.6692 kPa

367.6947371 atm

e) Shell side coefficient Baffle

0.1249 m diameter

0.1124 mBaffle Diameter 0.1233 m

23.8125 mm

( eqn. 12.21 )

0.002810

11.173788 kg/s

3977.1254

friction factor, jf

Tube side pressure drop, DPt

Np = number of tube side passes

Tube side pressure drop,

DPt

Shell diameter, Ds

Baffle spacing, lB

Tube pitch, Pt

Cross flow area, As

Cross flow area, As m2

Shell side mass velocity, Gs

Mass flow (inside shell), Ws

Shell side mass velocity, Gs kg/s.m2

ΔPs=N p [ 8 jf ( L/ Dti )(μ

μw)−m+2. 5 ]

ρus2

2

A s=( p t−Dto )D s lB

pt

sss AwG /

Baffle Spacing , lB=0 .9∗Ds

Baffle Diameter=D s−0 .0016

B152
cclw:
Page 121: Heat Exchanger

Appendix F -174

Production of 100,000 MTA Hydrogen

( eqn. 12.23 )13.5265 mm

Mean temperature (C)

Mean temperature (ºC) 293.6500

Physical properties of shell fluid (steam)

Physical properties

1.9887

1.83E-052.99569E+00 kJ/kg.K

0.0745250 W/m.K

Reynold number, Re( eqn. 12.24 )

Reynold number, Re 2.9355E+06Prandtl number, Pr 0.7367

Selecting 15% for baffle cutFrom figure 12.29, Chemical Engineering, Vol. 6

0.0008

( eqn. 12.25 )

11697.42886

Shell side equivalent diameter, De

Shell side equivalent diameter, De

Tmean = (Tshell.in +Tshell.out)/2

Fluid density, rs kg/m3

Viscosity, msL Ns/m2

Heat capacity, Csp

Thermal conductivity, ksf

Heat Transfer Factor, jh

Shell side heat transfer coefficient, hs

Shell side heat transfer coefficient, hs W/m2.C

De=1 .1Dto

( pz2−0. 971 Dto

2 )

m/Re es DG

hs=k f jh RePr1/3

De ( μμw )

0 .14

Page 122: Heat Exchanger

Appendix F -175

Production of 100,000 MTA Hydrogen

f) Shell side pressure drop

1999.8619 m/s

From figure 12.30 'Chemical Engineering'. Vol. 6

0.0320

( eqn. 12.26 )

Shell side presure drop, 408105712.7656 Pa

408105.7128 kPa 4027.690232 atm

g) Overall Coefficient

11697.42886

11791.9849

5000

5000

44.00.01575

0.01905

Overall heat transfer coefficient can be calculated by using the formula

( eqn. 12.2 )

Therefore,

0.000671145088401414

1489.99078929696

Linear velocity, us

Linear velocity, us

friction factor, jf

Shell side presure drop, DPs

DPs

Outside fluid film coefficient, hs, W/m2.oC

Inside fluid film coefficient, hi, W/m2.oC

Outside dirt coefficient (fouling factor), hod, W/m2.oC

Inside dirt coefficient, hid, W/m2.oC (Table 12.2, vol. Six )

Thermal conductivity of the tube wall material, kw, W/m.oCTube inside diameter, Dti, m

Tube outside diameter, Dto, m

1/Uo =

Uo = W/m2.C

h) Number of baffle, Nb

Number of baffle, Nb

us=Gs / ρ

ΔPs=8 jf ( Ds /D e)( L/ lB )ρus

2

2( μ

μw)−0 .14

1Uo

= 1hs

+ 1hod

+d to ln(d to /d ti)

2k w+

d to

d ti× 1

hid+

d to

dti× 1

hi

Nb=( L/ lB)−1

Page 123: Heat Exchanger

Appendix F -176

Production of 100,000 MTA Hydrogen

42

i) Costing (Guthrie's Modular Method)

Total area of the Heat Exchanger = 1.4940 = 16.0811302128

Operating Pressure = 4.75 bar405.6

126.00Update factor = 405.6

126.00

= 3.21904761904762

With reference to costing method proposed in Systematic Method of Chemical ProcessDesign by L.T. Biegler.

Base Cost,

C0= 5000S0= 400

0.65Updated Bare Module Cost : BMC= (UF)(MPF+MF-1) (BC)

Materials and Pressure Correction Factor, MPF

Total area (ft2) 16.08113Base cost, C ($) 619.066Modular factor, MF 3.2900Design factor, Fd 0.8500Pressure factor, Fp 0.0000Material factor, Fm 2.5000MPF 2.1250

8,798.22Bare module cost (RM) 33,433.24

Nbaffle

m2

ft2

CE Plant Cost Index for 2003, CEI 03 =CE Plant Cost Index for 1968 1/2, CEI 68 =

α=

Updated bare module cost ($)

Page 124: Heat Exchanger

Appendix F -177

Production of 100,000 MTA Hydrogen

Utility cost:

Cost of Coolant R-12:Mass flowrate of R-12 needed = 2.8719 kg/sAssume that the coolant R-12 will be recycled in a cycle in 10 minutes, which equal to 600s.Total of coolant needed = 1723.1226 kgFrom the website, we obtained 50 pound of R-12a is sold at US 160;Price for coolant = US 3.2 /pound = RM 27.02 /kgThe cost for coolant = RM 46562.6019443245

Cost of Mechanical Refrigeration Unit:For the coolant/refrigerate to cold down to its initial temperature for recycling to the cooler X-36, an air cooled mechanical refrigeration unit is installed. From Ulrich (1984);The rate of heat absorbtion, Q = 26.08619 KWThe temperature of coolant = 263.15000 K

= -10.00000 oCFrom Figure 5-11, Ulrich (1984);Bare module cost for the air-cooled refrigeration unit = US $ 15,000Updated factor = 1.29

19,350.00 = RM 73,530.00

Updated module cost, BMC = US $


Top Related