Download - Flexión mecánica

Transcript
Page 1: Flexión mecánica

Flexión mecánica

Ejemplo de flexión mecánica: arriba un elemento tal como una barra se encuentra en estado de reposo, en la figura

de abajo dicho elemento es sometido a una fuerza, el elemento en consecuencia se dobla hacia la misma dirección

de donde proviene la fuerza.

En ingeniería se denomina flexión al tipo de deformación que presenta un elemento estructural

alargado en una dirección perpendicular a su eje longitudinal. El término "alargado" se aplica cuando

una dimensión es dominante frente a las otras. Un caso típico son las vigas, las que están diseñadas

para trabajar, principalmente, por flexión. Igualmente, el concepto de flexión se extiende a elementos

estructurales superficiales como placas o láminas.

El rasgo más destacado es que un objeto sometido a flexión presenta una superficie de puntos

llamada fibra neutra tal que la distancia a lo largo de cualquier curva contenida en ella no varía con

respecto al valor antes de la deformación. El esfuerzo que provoca la flexión se denomina momento

flector.

Contenido

  [ocultar]

1 Flexión en vigas y arcos

o 1.1 Teoría de Euler-Bernoulli

o 1.2 Teoría de Timoshenko

2 Flexión en placas y láminas

o 2.1 Teoría de Love-Kirchhoff

o 2.2 Teoría de Reissner-Mindlin

3 Referencias

o 3.1 Bibliografía

4 Véase también

Page 2: Flexión mecánica

[editar]Flexión en vigas y arcos

Las vigas o arcos son elementos estructurales pensados para trabajar predominantemente en flexión.

Geométricamente son prismas mecánicos cuya rigidez depende, entre otras cosas, del momento de

inercia de la sección transversal de las vigas. Existen dos hipótesis cinemáticas comunes para

representar la flexión de vigas y arcos:

La hipótesis de Navier-Bernouilli.

La hipótesis de Timoshenko.

[editar]Teoría de Euler-Bernoulli

Viga en voladizo de sección cuadrada sometida a flexión recta simple, mediante una carga en el extremo libre. La

animación muestra una simulación mediante el método de los elementos finitos, donde se observan tensiones

crecientes cerca de la sección empotrada a medida que se incrementa la carga.

La teoría de Euler-Bernoulli para el cálculo de vigas es la que se deriva de la hipótesis cinemática de

Euler-Bernouilli, y puede emplearse para calcular tensiones y desplazamientos sobre una viga o arco de

longitud de eje grande comparada con el canto máximo o altura de la sección transversal.

Para escribir las fórmulas de la teoría de Euler-Bernouilli conviene tomar un sistema de coordenadas

adecuado para describir la geometría, una viga es de hecho un prisma mecánico sobre el que se

pueden considerar las coordenadas (s, y, z) con s la distancia a lo largo del eje de la viga e (y, z) las

coordenadas sobre la sección transversal. Para el caso de arcos este sistema de coordenas

escurvilíneo, aunque para vigas de eje recto puede tomarse como cartesiano (y en ese caso s se

nombra como x). Para una viga de sección recta la tensión el caso de flexión compuesta esviada la

tensión viene dada por la fórmula de Navier:

Donde:

Page 3: Flexión mecánica

 son los segundos momentos de área (momentos de inercia) según los ejes Y y Z.

 es el momento de área mixto o producto de inercia según los ejes Z e Y.

 son los momentos flectores según las direcciones Y y Z, que en general

varíarán según la coordenada x.

 es el esfuerzo axial a lo largo del eje.

Si la dirección de los ejes de coordenadas (y, z) se toman coincidentes con

las direcciones principales de inercia entonces los productos de inercia se anulan y la

ecuación anterior se simplifica notablemente. Además si se considera el caso de

flexión simple no-desviada las tensiones según el eje son simplemente:

Por otro lado, en este mismo caso de flexión simple no esviada, el campo de

desplazamientos, en la hipótesis de Bernoulli, viene dada por la ecuación de la curva

elástica:

Donde:

 representa la flecha, o desplazamiento vertical, respecto de la posición inicial sin cargas.

 representa el momento flector a lo largo de la ordenada x.

 el segundo momento de inercia de la sección transversal.

 el módulo de elasticidad del material.

 representa las cargas a lo largo del eje de la viga.

[editar]Teoría de Timoshenko

Page 4: Flexión mecánica

Esquema de deformación de una viga que ilustra la diferencia

entre la teoría de Timoshenko y la teoría de Euler-Bernouilli: en

la primera θi y dw/dxi no tienen necesariamente que coincidir,

mientras que en la segunda son iguales.

La diferencia fundamental entre la teoría de Euler-Bernouilli y la

teoría de Timoshenko es que en la primera el giro relativo de la

sección se aproxima mediante la derivada del desplazamiento

vertical, esto constituye una aproximación válida sólo para

piezas largas en relación a las dimensiones de la sección

transversal, y entonces sucede que las deformaciones debidas

alesfuerzo cortante son despreciables frente a las

deformaciones ocasionadas por el momento flector. En la

teoría de Timoshenko, donde no se desprecian las

deformaciones debidas al cortante y por tanto es válida

también para vigas cortas, la ecuación de la curva elástica

viene dada por el sistema de ecuaciones más complejo:

Derivando la primera de las dos ecuaciones anteriores y

substituyendo en ella la segunda llegamos a la ecuación de la

curva elástica incluyendo el efecto del esfuerzo cortante:

[editar]Flexión en placas y láminas

Una placa es un elemento estructural que puede presentar

flexión en dos direcciones perpendiculares. Existen dos

hipótesis cinemáticas comunes para representar la flexión de

placas y láminas:

La hipótesis de Love-Kirchhoff

La hipótesis de Reissner-Mindlin.

Page 5: Flexión mecánica

Siendo la primera el análogo para placas de la hipótesis de

Navier-Bernouilli y el segundo el análogo de la hipótesis de

Timoshenko.

[editar]Teoría de Love-Kirchhoff

La teoría de placas de Love-Kirchhoff es la que se deriva de la

hipótesis cinemática de Love-Kirchhoff para las mismas y es

análoga a la hipótesis de Navier-Bernouilli para vigas y por

tanto tiene limitaciones similares, y es adecuada sólo cuando el

espesor de la placa es suficientemente pequeño en relación a

su largo y ancho.

Para un placa de espesor constante h emplearemos un sistema

de coordenadas cartesianas con (x, y) según el plano que

contiene a la placa, y el eje z se tomará según la dirección

perpendicular a la placa (tomando z = 0 en el plano medio).

Con esos ejes de coordenadas las tensiones según las dos

direcciones perpendiculares de la placa son:

Donde:

, es el segundo momento de área por unidad de ancho.

 es el espesor de la placa.

, son los momentos flectores por unidad de ancho, que pueden

relacionarse con el campo de desplazamientos verticales w(x,y) mediante las siguientes

ecuaciones:

Para encontrar la flecha que aparece en la

ecuación anterior es necesario resolver

una ecuación en derivadas parciales que es el

análogo bidimensional a la ecuación de la curva

elástica:

Page 6: Flexión mecánica

El factor:

se llama rigidez flexional de placas donde:

 son las constantes elásticas del material: módulo de Young y coeficiente de Poisson.

 es el espesor de la placa.

[editar]Teoría de Reissner-Mindlin

La teoría de Reissner-Mindlin es el

análogo para placas de la teoría de

Timoshenko para vigas. Así en esta

teoría, a diferencia de la teoría más

aproximada de Love-Kirchhoff, el vector

normal al plano medio de la placa una

vez deformada la placa no tiene por qué

coincidir con el vector normal a la

superficie media deformada.

[editar]Referencias

[editar]Bibliografía

Timoshenko, Stephen ; Godier J.N..

McGraw-Hill. ed. Theory of

elasticity.

Ortiz Berrocal, Luis. McGraw-Hill.

ed. Resistencia de Materiales.

Aravaca (Madrid). ISBN 84-7651-512-3.

Monleón Cremades, S., Análisis de

vigas, arcos, placas y láminas, Ed.

UPV, 1999, ISBN 84-7721-769-6.

Page 7: Flexión mecánica

TracciónPara otros usos de este término, véase Tracción (desambiguación).

En el cálculo de estructuras e ingeniería se denomina tracción al esfuerzo interno a que está sometido

un cuerpo por la aplicación de dos fuerzas que actúan en sentido opuesto, y tienden a estirarlo.

Lógicamente, se considera que las tensiones que tiene cualquier sección perpendicular a dichas fuerzas

son normales a esa sección, y poseen sentidos opuestos a las fuerzas que intentan alargar el cuerpo.

Contenido

  [ocultar]

1 Deformaciones

2 Resistencia en tracción

3 Comportamiento de los materiales

4 Véase también

[editar]Deformaciones

Un cuerpo sometido a un esfuerzo de tracción sufre deformaciones positivas (estiramientos) en ciertas

direcciones por efecto de la tracción. Sin embargo el estiramiento en ciertas direcciones generalmente

va acompañado de acortamientos en las direcciones transversales; así si en un prisma mecánico la

tracción produce un alargamiento sobre el eje "X" que produce a su vez un encogimiento sobre los ejes

"Y" y "Z". Este encogimiento es proporcional al coeficiente de Poisson (ν):

Cuando se trata de cuerpos sólidos, las deformaciones pueden ser permanentes: en este caso, el

cuerpo ha superado su punto de fluencia y se comporta de forma plástica, de modo que tras cesar el

esfuerzo de tracción se mantiene el alargamiento; si las deformaciones no son permanentes se dice que

el cuerpo es elástico, de manera que, cuando desaparece el esfuerzo de tracción, aquél recupera su

longitud primitiva.

La relación entre la tracción que actúa sobre un cuerpo y las deformaciones que produce se suele

representar gráficamente mediante un diagrama de ejes cartesianos que ilustra el proceso y ofrece

información sobre el comportamiento del cuerpo de que se trate.

[editar]Resistencia en tracción

Artículo principal: Ensayo de tracción.

Page 8: Flexión mecánica

Como valor comparativo de la resistencia característica de muchos materiales, como el acero o la

madera, se utiliza el valor de la tensión de fallo, o agotamiento por tracción, esto es, el cociente entre la

carga máxima que ha provocado el fallo elástico del material por tracción y la superficie de la sección

transversal inicial del mismo.

[editar]Comportamiento de los materiales

Son muchos los materiales que se ven sometidos a tracción en los diversos procesos mecánicos.

Especial interés tienen los que se utilizan en obras de arquitectura o de ingeniería, tales como las rocas,

la madera, el hormigón, el acero, varios metales, etc.

Cada material posee cualidades propias que definen su comportamiento ante la tracción. Algunas de

ellas son:

elasticidad  (módulo de elasticidad)

plasticidad

ductilidad

fragilidad

Catalogados los materiales conforme a tales cualidades, puede decirse que los de características

pétreas, bien sean naturales, o artificiales como el hormigón, se comportan mal frente a esfuerzos de

tracción, hasta el punto que la resistencia que poseen no se suele considerar en el cálculo de

estructuras.

Por el contrario, las barras de acero soportan bien grandes esfuerzos a tracción y se considera uno de

los materiales idóneos para ello. El acero en barras corrugadas se emplean en conjunción con el

hormigón para evitar su fisuración, aportando resistencia a tracción, dando lugar al hormigón armado.

Resistencia de materiales

3. Tracción

3.1. Tensión

En física e ingeniería, se denomina tensión mecánica al valor de la distribución de fuerzas por unidad de

área en el entorno de un punto material dentro de un cuerpo material o medio continuo.

Un caso particular es el de tensión uniaxial, que se define en una situación en que se aplica

fuerza F uniformemente distribuida sobre un área A. En ese caso la tensión mecánica uniaxial se representa

por un escalar designado con la letra griega σ (sigma) y viene dada por:

Page 9: Flexión mecánica

σ=F/A

Siendo las unidades [Pa] (pascal = [N/m²]), [MPa] = 106 [Pa] y también [kp/cm²].

3.2. Alargamiento unitario

Alargamiento unitario (ε) es la cantidad que alarga un cuerpo (δ) por unidad de longitud (L).

ε = δ/L (ε no tiene unidades)

3.3. Ley de Hooke

Existen materiales en los que la relacción entre tensión (σ) y alargamiento (ε) es constante. Se dice que

estos materiales cumplen la ley de Hooke.

σ1/ε1 = σ2/ε2 = σ3/ε3 = σ/ε = cte = E

La relación entre ambas magnitudes (σ/ε) se llama Módulo de elasticidad (E) o Módulo de Young. E =

σ/ε

3.4. Diagramas N, σ y ε

A partir de la barra de forma de la figura, el diagrama de esfuerzos normales tendrá la forma siguiente:

3.5. Alargamiento total para una pieza sometida a una fuerza externa

Para los alargamientos totales debido a la deformación producida por una fuerza externa (despreciando su

propio peso), la fórmula a utilizar es:

δ = PL/AE

(siendo δ, el alargamiento total; P, la fuerza que actua; L, la longitud; A, la sección y E, el módulo de

elasticidad.)

3.6. Tensión de un elemento suspendido y sometido a su propio peso

Cuando partimos de una barra y queremos hallar la tensión debida a su propio peso, tenemos que fijar

primeramente que el peso equivale al volúmen de la barra por el peso específico del material que la

compone. Como el volúmen lo podemos descomponer en la multiplicación del área por la longitud, tenemos

que:

Page 10: Flexión mecánica

W = A • L • Pe

Dado que la tensión es σ = P/A y que la fuerza actuante, para este caso es W, podemos poner que σ = W/A.

sustituyendo el peso en esta fórmula tenemos que σ = A • L • Pe/A. Quedando que la tensión máxima sería

σ = L • Pe

3.7. Alargamiento de una estructura debido a su propio peso

En el caso del estudio de alargamiento de una estructura debido a su propio peso, la fórmula a utilizar es:

δ = W L / 2AE

3.8. Elemento suspendido y sometido a su propio peso más una carga adicional

En el caso de que contemplemos el elemento sometido a su propio peso al que se aplica una carga adicional,

tanto la tensión como el alargamiento será suma de las correspondientes por separado, es decir,

contemplando el elemento con una carga adicional y sin peso, sumado al elemento sin carga adicional y con

peso, esto es:

Tensión (peso + carga): σ = L Pe

Alargamiento (peso + carga): δ = (W/2 + P) L/AE

3.9. Tensión admisible o tensión de trabajo

La tensión admisible es aquella que asegura las no deformaciones permanentes en los materiales y que por

tanto debe ser inferior a la tensión producida por las fuerzas exteriores.

Para que una estructura esté siempre en condiciones elásticas seguras se acostrumbra a escoger la tensión

admisible bastante inferior al límite de proporcionalidad.

Dado que es dificil determinar este punto, se toman los puntos de fluencia o de rotura como base para

determinar la tensión admisible.

σadm = σFl/n1 y σadm = σR/n2

Donde n1 y n2 son coeficientes de seguridad.

Page 11: Flexión mecánica

3.10. Tensiónes de origen térmico

Cuando a un sistema se le aplica un incremento de temperatura que hace que se dilate, y hay alguna causa

que impide el alargamiento (debido a la dilatación) aparecen unas tensiones denominadas de origen térmico.

El alargamiento para un cuerpo suponiéndole sin rozamiento con el suelo, al que se le aplica un aumento de

temperatura, se produce un alargamiento determinado por:

δ = α L ΔT

(siendo ΔT = incremento de temperatura, α = Coeficiente de dilatación yL = Longitud)

La tensión, en cambio, vendrá determinada por la siguiente fórmula:

σ = E α ΔT

3.11. Deformaciones en el estado simple, doble y triple de tensiones.

Consideremos el caso de un sólido en equilibrio bajo la acción de cargas exteriores

y aislemos del interior del cuerpo un cubo elemental de aristas dx, dy y dz, de manera que las cargas pueden

orientarse según el sistema de referencia.Sobre cada una de las caras existirá un vector tensión total de

manera tal que el cubo elemental se encuentre en equilibrio. Estos vectores pueden proyectarse según los

ejes de referencia de manera que en cada una de las seis caras tendremos en general una tensión normal y

dos tensiones tangenciales perpendiculares entre si. Un estado de tensiones de estas características se dice

que es un “estado triple o espacial”.

Page 12: Flexión mecánica

En determinadas circunstancias las cargas actuantes sobre el cuerpo hacen que las tensiones sobre el cubo

elemental queden ubicadas dentro de un plano. Este estado se denomina “doble o plano”.

Cuando los vectores tensión son paralelos a un eje, el estado se denomina “simple o lineal”.

En realidad, la definición de un estado como simple, doble o triple no solo depende de estado de cargas

actuante sino de la orientación del cubo elemental. Como veremos mas adelante, el estado simple puede

pasar a ser un estado doble si el elemento diferencial tiene una rotación, inclusive puede convertirse en un

estado triple. El proceso al revés no siempre es factible. Es decir, si tenemos un estado doble, por ejemplo,

es probable que no encontremos, por rotación del elemento, una posición para el cual el estado sea lineal.

3.12. Problemas de aplicación.

Problema 3.1. Tenemos una viga de acero AB con 2 mm de diámetro y 0,4 m de largo. Está articulado con

la viga CD y diseñado para que la punta D toque el pulsador ¿A qué distancia tiene que estar el peso de 25

Kg para que la punta D toque al pulsador?. E = 200 GPa

Problema 3.2. Con las condiciones que se detallan en el dibujo, determinar el peso máximo que podemos

colocar en W para no sobrepasar la tensión máxima del acero, ni del bronce.

Problema 3.3. Un bloque de hormigón de peso W está sujeto por dos vigas de acero y de aluminio tal como

se indica en la figura. Calcular la relación de las secciones de las dos vigas para que siga mateniéndose en la

misma forma.

Problema 3.4. Sabiendo que las barras de la figura son de acero, calcular el alargamiento o la compresión

que se produce en las barras AD y EB.

Problema 3.5. Partiendo de los datos que se presentan, hallar las tensiones producidas en A y B.

Problema 3.6. Determinar la carga que puede resistir una barra de acero de sección circular de 20 mm de

diámetro, si trabaja a 800 kg/cm2. Calcular también los alargamientos total y unitario, si la longitud de la

barra es de 10 m. E = 2 x 106 Kg/cm2

http://ibiguridp3.wordpress.com/res/tracc/

Page 13: Flexión mecánica

Esfuerzo de compresión

El hormigón es un material que como otros materiales cerámicos resiste bien en compresión, pero no tanto

entracción.

El esfuerzo de compresión es la resultante de las tensiones o presiones que existe dentro de un sólido

deformable o medio continuo, caracterizada porque tiende a una reducción de volumen del cuerpo, y a

un acortamiento del cuerpo en determinada dirección.

Contenido

  [ocultar]

1 Introducción

2 Ensayo de compresión

3 Esfuerzos de compresión en piezas alargadas

4 Compresión volumétrica

5 Materiales cerámicos

[editar]Introducción

En general, cuando se somete un material a un conjunto de fuerzas se produce tanto flexión,

como cizallamiento o torsión, todos estos esfuerzos conllevan la aparición de tensiones tanto

de tracción como de compresión. Aunque en ingeniería se distingue entre el esfuerzo de compresión

(axial) y las tensiones de compresión.

En un prisma mecánico el esfuerzo de compresión puede ser simplemente la fuerza resultante que

actúa sobre un determinada sección transversal al eje baricéntrico de dicho prisma, lo que tiene el

efecto de acortar la pieza en la dirección de eje baricéntrico. Las piezas prismáticas sometidas a un

esfuerzo de compresión considerable son susceptibles de experimentar pandeo flexional, por lo que su

correcto dimensionado requiere examinar dicho tipo de no linealidad geométrica.

[editar]Ensayo de compresión

Page 14: Flexión mecánica

Los ensayos practicados para medir el esfuerzo de compresión son contrarios a los aplicados al de

tracción, con respecto al sentido de la fuerza aplicada. Tiene varias limitaciones:

Dificultad de aplicar una carga concéntrica o axial, sin que aparezca pandeo.

Una probeta de sección circular es preferible a otras formas.

El ensayo se realiza en materiales:

Duros.

Semiduros.

Blandos.

[editar]Esfuerzos de compresión en piezas alargadas

En una pieza prismática no-esbelta, y que no sea susceptible de sufrir pandeo sometida a compresión

uniaxial uniforme, la tensión el acortamiento unitario y los desplazamientos están relacionados con el

esfuerzo total de compresión mediante las siguientes expresiones:

Donde:

 es la tensión de compresión

 el acortamiento unitario o deformación unitaria.

 el campo de desplazamientos a lo largo del eje baricéntrico del prisma.

 el módulo de elasticidad longitudinal.

[editar]Compresión volumétrica

Para un material confinado en un volumen la compresión uniforme está relacionada

con la compresibilidad y el cambio de volumen:

Donde:

 según la compresión se de en condiciones isotermas o adiabáticas.

 compresibilidad.

 traza del tensor deformación o deformación volumétrica.

[editar]Materiales cerámicos

Page 15: Flexión mecánica

Los materiales cerámicos, tienen la propiedad de tener una temperatura

de fusión y resistencia muy elevada. Así mismo, su módulo de

Young (pendiente hasta el límite elástico que se forma en un ensayo de

tracción) también es muy elevado (lo que llamamos fragilidad).

Todas estas propiedades, hacen que los materiales cerámicos sean

imposibles de fundir y de mecanizar por medios tradicionales (fresado,

torneado, brochado...). Por esta razón, en las cerámicas realizamos un

tratamiento de sinterización. Este proceso, por la naturaleza en la cual

se crea, produce poros que pueden ser visibles a simple vista. Un

ensayo a tracción, por los poros y un elevado módulo de Young

(fragilidad elevada) y al tener un enlace iónico covalente, es imposible

de realizar.

Cuando se realiza un ensayo a compresión, la tensión mecánica que

puede aguantar el material puede llegar a ser superior en un material

cerámico que en el acero. La razón, viene dada por la compresión de los

poros/agujeros que se han creado en el material. Al estos comprimirlos,

la fuerza por unidad de sección es mucho mayor que cuando se habían

creado los poros.[cita requerida]

Maleabilidad

La maleabilidad del oro permite obtenerpan de oro.

Page 16: Flexión mecánica

Rollo de papel de aluminio, conmicrómetro mostrando un espesor de 0,013 mm.

La maleabilidad es la propiedad de un material sólido de adquirir una deformación metálicamediante

una compresión sin fracturarse. A diferencia de la ductilidad, que permite la obtención de hilos, la

maleabilidad favorece la obtención de delgadas láminas de material.1

El elemento conocido más maleable es el oro, que se puede malear hasta láminas de una diezmilésima

de milímetro de espesor. También presentan esta característica otros metales como el platino, la plata,

el cobre, el hierro y el aluminio

FragilidadLa fragilidad se relaciona con la cualidad de los objetos y materiales de romperse con facilidad. Aunque

técnicamente la fragilidadse define más propiamente como la capacidad de un material de fracturarse

con escasa deformación, a diferencia de los materialesdúctiles que se rompen tras sufrir

acusadas deformaciones plásticas.

La rotura frágil tiene la peculiaridad de absorber relativamente poca energía, a diferencia de la rotura

dúctil, ya que la energía absorbida por unidad de volumen viene dada por:

Si un material se rompe prácticamente sin deformación las componentes del tensor deformación   

resultan pequeñas y la suma anterior resulta en una cantidad relativamente pequeña.

[editar]Fragilidad, ductilidad, dureza y tenacidad

Existen otros términos frecuentemente confundidos con la fragilidad que deben ser aclarados:

Lo opuesto a un material muy frágil es un material dúctil.

Page 17: Flexión mecánica

Por otra parte la dureza no es opuesto a la fragilidad, ya que la dureza es la propiedad de alterar

solo la superficie de un material, que es algo totalmente independiente de si ese material cuando se

fractura tiene o no deformaciones grandes o pequeñas. Como ejemplo podemos citar

el diamante que es el material más duro que existe, pero es extremadamente frágil.

La tenacidad puede estar relacionada con la fragilidad según el módulo de elasticidad, pero en

principio un material puede ser tenaz y poco frágil (como ciertos aceros) y puede ser frágil y nada

tenaz (como el barro cocido).

Ductilidad

Esquema de la respuesta de una barra cilíndrica de metal a una fuerza de tracción de dirección opuesta a sus

extremos. (a) Fractura frágil. (b) Fractura dúctil. (c) Fractura totalmente dúctil.

La ductilidad es una propiedad que presentan algunos materiales, como las aleacionesmetálicas o

materiales asfálticos, los cuales bajo la acción de una fuerza, pueden deformarse sosteniblemente sin

romperse,1 permitiendo obtener alambres o hilos de dicho material. A los materiales que presentan esta

propiedad se les denomina dúctiles. Los materiales no dúctiles se clasifican de frágiles. Aunque los

materiales dúctiles también pueden llegar a romperse bajo el esfuerzo adecuado, esta rotura sólo se

produce tras producirse grandes deformaciones.

En otros términos, un material es dúctil cuando la relación entre el alargamiento longitudinal producido

por una tracción y la disminución de la sección transversal es muy elevada.

En el ámbito de la metalurgia se entiende por metal dúctil aquel que sufre grandes deformaciones antes

de romperse, siendo el opuesto al metal frágil, que se rompe sin apenas deformación.

Page 18: Flexión mecánica

No debe confundirse dúctil con blando, ya que la ductilidad es una propiedad que como tal se manifiesta

una vez que el material está soportando una fuerza considerable; esto es, mientras la carga sea

pequeña, la deformación también lo será, pero alcanzado cierto punto el material cede, deformándose

en mucha mayor medida de lo que lo había hecho hasta entonces pero sin llegar a romperse.

En un ensayo de tracción, los materiales dúctiles presentan una fase de fluencia caracterizada por una

gran deformación sin apenas incremento de la carga.

Desde un punto de vista tecnológico, al margen de consideraciones económicas, el empleo de

materiales dúctiles presenta ventajas:

En la fabricación: ya que son aptos para los métodos de fabricación por deformación plástica.

En el uso: presentan deformaciones notorias antes de romperse. Por el contrario, el mayor

problema que presentan los materiales frágiles es que se rompen sin previo aviso, mientras que los

materiales dúctiles sufren primero una acusada deformación, conservando aún una cierta reserva

de resistencia, por lo que después será necesario que la fuerza aplicada siga aumentando para que

se provoque la rotura.

La ductilidad de un metal se valora de forma indirecta a través de la resiliencia.

La ductibilidad es la propiedad de los metales para formar alambres o hilos de diferentes grosores.

Los metales se caracterizan por su elevada ductibilidad, la que se explica porque los átomos de los

metales se disponen de manera tal que es posible que se deslicen unos sobre otros y por eso se

pueden estirar sin romperse.

Cuando se selecciona un material para construir un edificio o una máquina, es necesario conocer sus propiedades mecánicas, así como su capacidad para soportar esfuerzos. Las propiedades mecánicas de los materiales se determinan en diferentes pruebas de laboratorio entre las que podemos mencionar: la dureza, la maleabilidad, la ductibilidad. La capacidad de los materiales para soportar esfuerzos se obtiene en pruebas o ensayos en las que se les aplican cargas (tensión, compresión, torsión) y se observa su comportamiento.

Page 19: Flexión mecánica

 

El diagrama que representa la relación entre esfuerzo y deformación en un material dado es una característica importante del material. Para obtener el diagrama esfuerzo - deformación de un material, se realiza usualmente una prueba de tensión a una probeta del material. En la figura 1 se muestra uno de los tipos de probeta que se utilizan. El área de la sección transversal de la parte cilíndrica central de la probeta ha sido determinada exactamente y dos marcas se han inscrito en esa porción a una distancia Lo. La distancia Lo es conocida como la longitud base de la probeta.

Figura 1

La probeta se coloca en la máquina de prueba que se usa para aplicar la carga central P. Al aumentar P, la distancia L entre las dos marcas se incrementa (véase la figura 2). La distancia L puede medirse con el instrumento mostrado y la elongación  = L - Lo se registra para cada valor de P. Un segundo medidor se usa frecuentemente para medir y registrar el cambio en el diámetro de la probeta. De cada par de lecturas P y ,se calcula el esfuerzo dividiendo a P por el área de la

Page 20: Flexión mecánica

sección transversal inicial Ao de la muestra, y la deformación  dividiendo el alargamiento   por la distancia original Lo entre las dos marcas mencionadas. El diagrama esfuerzo - deformación se obtiene tomando como abscisa  como ordenada.

Figura 2

Los diagramas esfuerzo - deformación para diferentes materiales varían considerablemente, y diferentes pruebas de tensión del mismo material pueden producir diferentes resultados, dependiendo de la temperatura de la muestra y de la rapidez de aplicación de la carga. Sin embargo, es posible distinguir algunas características comunes entre los diagramas esfuerzo - deformación de varios grupos de materiales y dividirlos en dos amplias categorías sobre la base de estas características. Materiales dúctiles y materiales frágiles.

 

Page 21: Flexión mecánica

Los materiales dúctiles, que comprenden el acero estructural y muchas aleaciones de otros materiales, se caracterizan por su capacidad parafluir a temperaturas normales. Cuando se somete la probeta a carga creciente, su longitud aumenta primero linealmente con la carga ya una tasa muy lenta. Así, la porción inicial del diagrama esfuerzo - deformación es una línea recta con una pendiente pronunciada (véase la figura 3). Sin embargo, después de que se alcanza un valor crítico del esfuerzo, la probeta sufre grandes deformaciones con un pequeño aumento de la carga aplicada. Esta deformación ocurre por deslizamiento del material en superficies oblicuas y se debe principalmente a esfuerzos cortantes.

Figura 3

Como puede notarse en los diagramas esfuerzo - deformación de dos materiales dúctil es típicos (véase la figura 3), el alargamiento de la probeta después de empezar a fluir puede ser 200 veces su alargamiento antes de fluir. Después de alcanzar determinado valor máximo de carga, el diámetro de una porción de la probeta empieza a disminuir debido a la inestabilidad local (véase ]a figura 4a), Esté fenómeno se conoce como estricción. Cuando la estricción se ha iniciado, cargas más pequeñas son suficientes para mantener a la muestra alargándose aún más, hasta que finalmente se rompe (véase la figura 4b). La ruptura ocurre a la largo de una superficie cónica que forma un ángulo de 45° con la superficie original de la probeta. Esto indica que los esfuerzos

Page 22: Flexión mecánica

cortantes son los principales causantes de la falla de materiales dúctiles y confirma el hecho de que, bajo carga axial, los esfuerzos cortantes son máximos en superficies que forman ángulos de 45° con la carga .El esfuerzo Y cual se inicia la fluencia es llamado resistencia a la fluencia del material, el esfuerzo U que corresponde a la carga máxima aplicada a la probeta es la resistencia última y el esfuerzo B, correspondiente a la ruptura, es la resistencia a la ruptura.

Figura 4

Los materiales frágiles como fundición, cristal y la piedra se caracterizan porque la

ruptura ocurre sin que se presente antes un cambio importante en la tasa de

alargamiento (véase la figura 5). Así, para materiales frágiles no hay diferencia

entre resistencia última y resistencia a la ruptura. También, la deformación en el

momento de la ruptura es mucho más pequeña para materiales frágiles que para

materiales dúctiles. En la figura 6, se nota que no se presenta estricción en la

probeta en el caso de un material frágil y se observa que la ruptura ocurre en una

superficie perpendicular a la carga. Se concluye de esta observación que los

esfuerzos normales son los principales causantes de la falla de los materiales

quebradizos.  Se supone que las pruebas de tensión descritas en esta sección se

ejecutan a temperaturas normales. Sin embargo, un material dúctil a temperaturas

normales puede presentar las características de un material frágil, a temperaturas

Page 23: Flexión mecánica

muy bajas, mientras que un material normalmente frágil puede comportarse como

dúctil a muy altas temperaturas. A temperaturas distintas de las normales uno

debe referirse a materiales en estado dúctil o en estado frágil y no, a materiales

dúctiles o frágiles.

          

                                            Figura 5                                                           Figura 6

Los diagramas esfuerzo - deformación de la figura 3 muestran que el acero estructural y el aluminio, que son dúctiles, tienen diferentes características de fluencia. En el caso del acero estructural (véase la figura 3a), los esfuerzos permanecen constantes en un rango amplio de valores de la deformación, después de la aparición de la fluencia. Después, se debe incrementar el esfuerzo para que la probeta continúe alargándose, hasta que se llegue al valor máximo U. Esto se debe a la propiedad del material llamada endurecimiento por deformación. La resistencia a la fluencia del acero estructural puede determinarse durante la prueba de tensión, observando el indicador de carga. Después de aumentar continuamente la carga, se observa que cae súbitamente a un valor ligeramente inferior que se mantiene por algún tiempo mientras la probeta sigue alargándose. En un ensayo bien efectuado uno puede distinguir entre el punto de fluencia que corresponde a la carga alcanzada, justo antes de que empiece la fluencia, y el punto de fluencia

Page 24: Flexión mecánica

más bajo que corresponde a la carga requerida para mantener la fluencia. Como el punto de fluencia superior es transitorio, debe usarse el punto de fluencia inferior para determinar la resistencia a la fluencia del material.

 

En el caso del aluminio (véase la figura 3b) y de otros materiales dúctiles, el inicio

de la fluencia no está caracterizado por una porción horizontal de la curva

esfuerzo - deformación. En cambio, el esfuerzo sigue creciendo, aunque no

linealmente, hasta alcanzar la resistencia última. Entonces empieza la estricción y

eventualmente la ruptura. Para tales materiales se puede definir la resistencia a la

fluencia sY por el método de la línea compensada. El punto de fluencia al 0.2%

compensado, por ejemplo, se obtiene dibujando, por el punto del eje horizontal de

abscisa e = 0.2% (e = 0.002), una línea paralela a la parte lineal del diagrama

esfuerzo - deformación (véase la figura 7). El esfuerzo sY que corresponde al

punto Y obtenido de esta manera se define como la resistencia a la fluencia al

0.2% compensado.

Figura 7

Fluencia

Page 25: Flexión mecánica

Curva tensión-deformación.

La fluencia o cedencia es la deformación irrecuperable de la probeta, a partir de la cual sólo se

recuperará la parte de su deformación correspondiente a ladeformación elástica, quedando una

deformación irreversible. Mediante el ensayo de tracción se mide esta deformación característica que no

todos los materiales experimentan.

El fenómeno de fluencia se da cuando las impurezas o los elementos de aleación bloquean

las dislocaciones de la red cristalina impidiendo su deslizamiento, proceso mediante el cual el material

se deforma plásticamente.

Alcanzado el límite de fluencia se llegan a liberar las dislocaciones, produciéndose una brusca

deformación. La defomación en este caso también se distribuye uniformemente a lo largo de la probeta,

pero concentrándose en las zonas en las que se ha logrado liberar las dislocaciones (bandas de

Luders). No todos los materiales presentan este fenómeno, en cuyo caso la transición entre

ladeformación elástica y plástica del material no se aprecia de forma clara.

Se aprecia gráficamente en la curva tensión-deformación obtenida tras el ensayo de tracción: el periodo

de fluencia se sitúa en el 2.

http://es.wikipedia.org/wiki/Fluencia


Top Related