Download - Eye Movements

Transcript
Page 1: Eye Movements

Eye Movements

Page 2: Eye Movements

1. The Plant

Page 3: Eye Movements

The Oculomotor Plant ConsistsOf only 6 muscles in 3 pairs

Page 4: Eye Movements

This Yields 3 degrees ofMechanical Freedom

Page 5: Eye Movements

Neural ConstraintsReduce this to2 degrees of freedom

Donder’s Law/ Listing’s Law

Page 6: Eye Movements

3-D eye movements• Donder’s Law

– Relates torsion to eye position

• Listing’s law– Torsion results from rotation of

eye around perpendicular axis

• Listing’s plane– Plane orthogonal to line of sight

• Does not apply when head is free

Page 7: Eye Movements

Kinematics vs DynamicsIn the Oculomotor System

Rotations about theCenter of Gravity

No Loads

No Inertia

Force = Position

Page 8: Eye Movements

Oculomotor muscles and nerves• Oculomotor nerve (III)

– Medial rectus

– Superior/Inferior recti

– Inferior oblique

• Trochlear nerve (IV)– Superior oblique

• Abducens nerve (VI)– Lateral rectus

• Medial longitudinal fasciculus

Page 9: Eye Movements

2. The BehaviorsGaze Holding:

VOROKN

Gaze Shifting:SaccadesVergence

Smooth Pursuit

Page 10: Eye Movements

Classes of eye movements• Reflexive – gaze stabilization

– VOR• Stabilize for head movements

– Optokinetic• Stabilize for image motion

• Voluntary – gaze shifting– Saccades

• Acquire stationary target

– Smooth pursuit• Acquire moving target

– Vergence• Acquire target in depth

Page 11: Eye Movements

Gaze During Nystagmus

Page 12: Eye Movements

Saccades

Page 13: Eye Movements
Page 14: Eye Movements

3-D Gaze Trajectory

Vergence

Page 15: Eye Movements
Page 16: Eye Movements

2. The Motor Neurons

Page 17: Eye Movements

Force Patterns

Robinson’s Lollipop ExperimentsStaticsDynamics

Page 18: Eye Movements

Oculomotor NeuronsDuring Static Gaze

Page 19: Eye Movements

Dynamics and Statics

Page 20: Eye Movements
Page 21: Eye Movements

3. VOR

Page 22: Eye Movements
Page 23: Eye Movements
Page 24: Eye Movements
Page 25: Eye Movements
Page 26: Eye Movements
Page 27: Eye Movements

Cupula and otoliths move sensory receptors

Cristae Maculae

Page 28: Eye Movements
Page 29: Eye Movements
Page 30: Eye Movements

Angular Position

Angular Acceleration

Angular Velocity

Cupula Deflection

Page 31: Eye Movements

Canal afferents code velocity

• Spontaneous activity allows for bidirectional signaling

• S-curve is common• Different cells have

different ranges and different dynamics

• Population code

Page 32: Eye Movements

Canal Output DuringSlow Sinusoidal Rotation

Page 33: Eye Movements

VOR With and Without Vision

Page 34: Eye Movements

rVOR gain varies with frequency

• Almost perfect > 1Hz• Low gain for low

frequencies (0.1Hz)• Sensory mechanisms

can compensate (optokinetic reflex)

Page 35: Eye Movements
Page 36: Eye Movements

Oculomotor muscles and nerves• Oculomotor nerve (III)

– Medial rectus– Superior/Inferior recti– Inferior oblique

• Trochlear nerve (IV)– Superior oblique

• Abducens nerve (VI)– Lateral rectus

Page 37: Eye Movements

The 3-Neuron ArcPrimary Effects of Canals on Eye Muscles

Canal Excites Inhibits

Horizontal Ipsi MR, Contra LR Ipsi LR, Contra MR

Anterior Ipsi SR, Contra IO Ipsi IR, Contra SO

Posterior Ipsi SO, Contra IR Ipsi IO, Contra SR

Page 38: Eye Movements

Robinson’s Model of the VOR

Page 39: Eye Movements

Robinson

Page 40: Eye Movements

4. OKN

Page 41: Eye Movements

Type I Vestib Neuron

Page 42: Eye Movements

Bode Plot of OKN

Page 43: Eye Movements
Page 44: Eye Movements

Bode Plot of VOR

Page 45: Eye Movements

Bode Plot of OKN

Page 46: Eye Movements

5. Saccades

Page 47: Eye Movements
Page 48: Eye Movements
Page 49: Eye Movements
Page 50: Eye Movements
Page 51: Eye Movements

Saccadic system

Page 52: Eye Movements

OPN Stimulation

Page 53: Eye Movements

Brainstem saccadic control• Paramedian pontine reticular formation (PPRF)

– Burst and omnipause neurons

– Aim to reduce horizontal motor error

– Project to directly to lateral rectus motor neurons

– Projects indirectly to contralateral medial rectus

– Medial longitudinal fasciculus

• Mesencephalic reticular formation– Also influenced by omnipause neurons

– Vertical motor error

– Projects to superior and inferior rectus motor neurons

Page 54: Eye Movements
Page 55: Eye Movements
Page 56: Eye Movements
Page 57: Eye Movements

Robinson’s Model of the VOR

Page 58: Eye Movements
Page 59: Eye Movements

Lee, Rohrer and Sparks

Page 60: Eye Movements

Jay and Sparks

Page 61: Eye Movements
Page 62: Eye Movements
Page 63: Eye Movements

5. Pursuit

Page 64: Eye Movements
Page 65: Eye Movements

Smooth pursuit• Track movement on part of retina

• Two theories– Motor (Robinson)

• Retinal slip only provides velocity

• Does not capture pursuit onset

– Sensory (Lisberger and Krauzlis)• Position, velocity and acceleration

Page 66: Eye Movements

Smooth pursuit system

Page 67: Eye Movements

Smooth pursuit brainstem• Eye velocity for pursuit medial vestibular nucleus

and nucleus prepositus hypoglossi– Project to abducens and oculomotor nuclei– Input from flocculus of cerebellum encodes velocity

• PPRF also encodes velocity– Input from vermis of cerebellum encodes velocity

• Dorsolateral pontine nucleus– Relays inputs from cortex to cerebellum and

oculomotor brainstem

Page 68: Eye Movements

Smooth pursuit cortex

• Visual motion areas MT and MST– Active in visual processing for pursuit– Stimulation influences pursuit speed– Projects to DLPN and FEF– Does not initiate pursuit

• Frontal eye fields– Stimulation initiates pursuit– Lesions diminish pursuit

Page 69: Eye Movements
Page 70: Eye Movements
Page 71: Eye Movements
Page 72: Eye Movements
Page 73: Eye Movements

Jergens

Page 74: Eye Movements

Scudder

Page 75: Eye Movements

Top Related