Transcript

[email protected]

Estimation of spectra

• Fourier Transform• Periodogram• Spectral leakage & resolution & bias• Tapered Periodogram• Welch‘s method• Confidence Intervals

Further reading on spectral analysis:Bendat & Piersol: Random data, Wiley 2000Percival & Walden: Spectral analysis for physical applications, Cambridge 1993

[email protected]

Periodogram

[email protected]

Spectral leakage & resolution

randn('state',0)fs = 1000; % Sampling frequency 1000 Hzt = (0:fs/10)/fs; % 100 samplesA = [1 2]; % Sinusoid amplitudesf = [150;140]; % Sinusoid frequenciesxn = A*sin(2*pi*f*t) + 0.1*randn(size(t));Hs = spectrum.periodogram;psd(Hs,xn,'Fs',fs,'NFFT',1024)

randn('state',0)fs = 1000; % Sampling frequency 1000 Hzt = (0:fs/15)/fs; % 67 samplesA = [1 2]; % Sinusoid amplitudesf = [150;140]; % Sinusoid frequenciesxn = A*sin(2*pi*f*t) + 0.1*randn(size(t));Hs = spectrum.periodogram;psd(Hs,xn,'Fs',fs,'NFFT',1024)

L = 100 samples L = 67 samples

0 50 100 150 200 250 300 350 400 450 500-70

-60

-50

-40

-30

-20

-10

0

Frequency (Hz)

Pow

er/fr

eque

ncy

(dB

/Hz)

Periodogram Power Spectral Density Estimate

0 50 100 150 200 250 300 350 400 450 500-80

-70

-60

-50

-40

-30

-20

-10

0

Frequency (Hz)

Pow

er/fr

eque

ncy

(dB

/Hz)

Periodogram Power Spectral Density Estimate

[email protected]

Leakage introducesAuto regressive process AR(4)

θθ −= }ˆ{Ebias

4,4,44,34,24,14, 9238.06535.28106.37607.2 tttttt XXXXX ε+−+−= −−−−

)1(,,1,0,1}ˆ{ )( −±±=⎟⎟⎠

⎞⎜⎜⎝

⎛−= NlagnsobservatioNs

NsE p Kτ

τττ

[email protected]

Noisy data

randn('state',0)fs = 1000; % Sampling frequency 1000 Hzt = (0:fs/10)/fs; % 100 samplesA = [1 2]; % Sinusoid amplitudesf = [150;140]; % Sinusoid frequenciesxn = A*sin(2*pi*f*t) + 2*randn(size(t));Hs = spectrum.periodogram;psd(Hs,xn,'Fs',fs,'NFFT',1024)

0 50 100 150 200 250 300 350 400 450 500-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

Frequency (Hz)

Pow

er/fr

eque

ncy

(dB

/Hz)

Periodogram Power Spectral Density Estimate

[email protected]

Tapered Periodogram I

10 20 30 40 500

0.2

0.4

0.6

0.8

1

Samples

Ampl

itude

Time domain

0 0.2 0.4 0.6 0.8-150

-100

-50

0

50

Normalized Frequency (×π rad/sample)

Mag

nitu

de (d

B)

Frequency domain

Rectangular

Hamming

Hanning

fs = 1;t0 = 25;t = [-t0:1/fs:t0];L = numel(t);wvtool(rectwin(L),hamming(L),hanning(L))

[email protected]

Tapered Periodogram II

randn('state',0)fs = 1000; % Sampling frequency 1000 Hzt = (0:fs/10)/fs; % 100 samplesA = [1 2]; % Sinusoid amplitudesf = [150;140]; % Sinusoid frequenciesxn = A*sin(2*pi*f*t) + 0.1*randn(size(t));Hs = spectrum.periodogram('rectangular');psd(Hs,xn,'Fs',fs,'NFFT',1024)

randn('state',0)fs = 1000; % Sampling frequency 1000 Hzt = (0:fs/10)/fs; % 100 samplesA = [1 2]; % Sinusoid amplitudesf = [150;140]; % Sinusoid frequenciesxn = A*sin(2*pi*f*t) + 0.1*randn(size(t));Hs = spectrum.periodogram('Hamming');psd(Hs,xn,'Fs',fs,'NFFT',1024)

0 50 100 150 200 250 300 350 400 450 500-80

-70

-60

-50

-40

-30

-20

-10

0

Frequency (Hz)

Pow

er/fr

eque

ncy

(dB

/Hz)

Periodogram Power Spectral Density Estimate

0 50 100 150 200 250 300 350 400 450 500-80

-70

-60

-50

-40

-30

-20

-10

0

Frequency (Hz)

Pow

er/fr

eque

ncy

(dB

/Hz)

Periodogram Power Spectral Density Estimate

[email protected]

Welch‘s method (WOSA)Welch‘s overlapping

segment averaging

[email protected]

Welch‘s methodThe signal is divided into overlapping segments

randn('state',1)fs = 1000; % Sampling frequency 1000 Hzt = (0:0.3*fs)/fs; % 301 samplesA = [1 2]; % Sinusoid amplitudesf = [150;140]; % Sinusoid frequenciesxn = A*sin(2*pi*f*t) + 5*randn(size(t));Hs = spectrum.periodogram('rectangular');psd(Hs,xn,'Fs',fs,'NFFT',1024)

randn('state',1)fs = 1000; % Sampling frequencyt = (0:0.3*fs)./fs; % 301 samplesA = [2 8]; % Sinusoid amplitudes (row vector)f = [150;140]; % Sinusoid frequencies (column vector)xn = A*sin(2*pi*f*t) + 5*randn(size(t));Hs = spectrum.welch('rectangular',150,50);psd(Hs,xn,'Fs',fs,'NFFT',512);

nseg = 1 nseg = 3

0 50 100 150 200 250 300 350 400 450 500-25

-20

-15

-10

-5

0

5

10

Frequency (Hz)

Pow

er/fr

eque

ncy

(dB

/Hz)

Welch Power Spectral Density Estimate

0 50 100 150 200 250 300 350 400 450 500-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Frequency (Hz)

Pow

er/fr

eque

ncy

(dB

/Hz)

Periodogram Power Spectral Density Estimate

[email protected]

Chi2 Confidence interval

{ }( ){ }

nsegPP

PPE

afP

xx

xx

xx

xx

xx

/1,21

211

ˆvar

ˆ2

)(ˆ

2

2

≈−

≤≤+

=

=

εεε

υ

χυ

[email protected]

34.00209249354920432534

46.0035514998383138543432

37.2043119238544651424

meanBootstrap samples

384142924665313425

2045535515434969

51544298744454493281

Original sample

Bootstrap Confidence intervalhttp:\\people.revoledu.com\kardi\tutorial\bootstrap\


Top Related