Transcript
Page 1: Determination of Extraterrestrial Solar Spectral Irradiance from a Research Aircraft

Determination of Extraterrestrial Solar SpectralIrradiance from a Research Aircraft

John C. Arvesen, Roy N. Griffin, Jr., and B. Douglas Pearson, Jr.

Results are presented of an experiment to determine extraterrestrial solar spectral irradiance at theearth's mean solar distance within the 300-2500 n wavelength region. Spectroradiometric measure-ments were performed during eleven research flights on board a NASA CV-990 aircraft at altitudesbetween 11.6 km and 12.5 km. Precision of the measurements was better than d 1%. Absoluteaccuracy of the resultant extraterrestrial solar spectral irradiance is approximately 4t3% over most ofthe measurement range. A listing of results is presented at intervals varying from 0.1 n throughoutmost of the uv-visible Fraunhofer region to 5 nm in the continuum region of the ir. Additionally, alisting of solar spectral irradiance, smoothed over the detailed Fraunhofer structure, is presented forengineering use.

1. Introduction

The National Aeronautics and Space Administration(NASA) has a strong interest in a more accurate deter-mination of the total and spectral intensity of sunlightin space. This interest stems from the fact that ab-sorbed solar radiation constitutes the primary source ofpower and heat for spacecraft. In addition, the de-grading influence of solar uv radiation on materialsused in spacecraft construction requires that this im-portant spectral region be known to a higher accuracythan at present. Research currently under way atNASA in solar physics, terrestrial and atmosphericphysics, and meteorology also requires accurate knowl-edge of solar spectral irradiance at the top of the earth'satmosphere.

The present knowledge of extraterrestrial solarspectral irradiance has been obtained primarily throughground-based measurements from various locationsaround the world during a period of over fifty years.In performing these measurements, the observer hasbeen severely handicapped by atmospheric opacity andvariability due to the presence of smoke, haze, dust,water vapor, and other constituents found near ground

The authors are with the Ames Research Center, NASA,Moffett Field, California 94035.

Received 13 January 1969.

level. The extrapolation to outside the atmosphereinvolves performing measurements through differentamounts of atmosphere corresponding to different timesof day; thus, variable transmittance significantly affectsthe accuracy of the results.

A way to partially circumvent the problems encoun-tered in ground-based experiments is to perform mea-surements from an altitude where atmospheric trans-parency and constancy allow accurate extrapolation toextraterrestrial conditions. A platform suitable forthese measurements is the CV-990 jet aircraft (com-mercial designation: Convair CV-990) owned byNASA and specially modified for use in astronomicaland space sciences research.

Recent advances in spectroradiometry, including theestablishment of a Standard of Spectral Irradiance bythe National Bureau of Standards 2 and an improvedunderstanding of subtle errors in spectral irradiancemeasurements, 3 have made possible significant im-provements in instrumentation with resultant improve-ments in accuracy. The improved instrumentation,coupled with the ability to perform measurements fromaltitudes where variable components, such as watervapor and aerosol, are reduced to an insignificant level,gave promise that a significant reduction in the uncer-tainty of solar spectral irradiance could be achieved.To this end, an experiment was designed and flown on aseries of eleven flights in the summer and autumn of1967 to perform solar spectral irradiance measurementsas part of a total effort directed toward reducing presentuncertainties in total and spectral solar irradiance.This paper presents the most significant results of thatexperiment.

November 1969 / Vol. 8, No. 11 / APPLIED OPTICS 2215

Page 2: Determination of Extraterrestrial Solar Spectral Irradiance from a Research Aircraft

2.4

N 2.0

0 I .6

< 1.2

L .8-J

E .40r

2 0200

Fig. 1. Comp

Fig. 2. NAS)

II. PresenSpectral Iri

The absohsun has beenmeasuremenhave been rearth-basedlack of adec250 nm, thestive basis ant

In 1954, Johnson published an analysis of availablesolar measurements and a listing of extraterrestrial solar

JOHNSCON (REF. ) spectral irradiance at the earth's mean distance fromNICOLET tREF. 8) the sun. This listing has been in wide use to the present

time. The data in different spectral regions are attrib-utable to different researchers whose instrumentationand absolute accuracy varied widely. At wavelengthslonger than 600 nm, values based on Moon'sanalysis9 of previous measurements, primarily those

600 1000 1400 nm 1800 2200 2600 performed by the Smithsonian Institution, 0 were used.WAVELENGTH, nm Moon's results contain the assumption that the sun

parison of solar spectral irradiance, Johnson and radiates as a 6000-K greybody for all wavelengthsNicolet. beyond 1250 nm. The measurements of Dunkelman

and Scolnik,"1 adjusted upward 9% to agree with theSmithsonian data at 600 nm and to incorporate a radio-metric scale change, covered the spectral region down to318 nm. Rocket spectrograph measurements obtainedby the Naval Research Laboratory' 2 were used to 220nm. These short-wavelength data were obtained on arelative energy scale and were adjusted to the Dunkel-man and Scolnik data at 318 nm. Further rocket mea-surements' 3 with improved instrumentation and calibra-tion procedures have revised these early data. How-ever, the subsequent measurements were still adjustedto the revised Dunkelman and Scolnik data in the 300-330 nm spectral region.

kA CV-990 jet aircraft showing upper and side In 1951, Nicolet derived extraterrestrial solar spectralobservation windows. irradiance by noting that the intensity at the center of

the disk could be closely approximated by a smooth7200-K continuum with superimposed Fraunhoferabsorption. He applied corrections for the fraction

It Knowledge of Solar attenuated due to Fraunhofer absorption and for the

radiance variation from the center to the limb of the disk. In

ite spectral intensity of radiation from the the region below 300 nm, he used early NRL rocket dataL obtained primarily through ground-based directly.ts. Rocket spectrograph measurements A major problem associated with Nicolet's analysis is

iade in uv spectral regions inaccessible to that the continuum cannot be directly located in regions

observations. However, because of the of intense Fraunhofer absorption. This is particularly[uate spectral standards in the uv below important in the region between 300 nm and 450 nm and

se measurements were performed on a rela- is reflected in a greater uncertainty in this region than at] adiusted to around-based data in a region longer wavelengths. A comparison of solar spectral

of overlap. When a comparison of existing measure-ments is made, it is apparent that discrepancies, espe-cially in the uv below 400 nm, exist as large as 20-30%.In addition, most of the measurements on an absoluteenergy scale are integrated over 10-nm bands. Whilethis resolution is adequate for certain purposes, ameasurement of spectral irradiance on an absolutescale with greatly improved resolution would be bene-ficial in many areas.

Several excellent reviews of the present state ofknowledge of solar spectral irradiance in the 200-7000nm wavelength range are available in the literature.4 ' 5

In addition to outlining the historical aspects of theprincipal measurements, the reviews present a criticalevaluation of the possible uncertainties existing in themeasurements and the analyses based on the measure-ments. Therefore, only a brief discussion will be pre-sented herein concerning the principal contributionsthat are finding widest acceptance today. These arethe contributions of Johnson' and Nicolet.7' 8

Table I. Flight Parameters

SolarFlight zenithdate Type of angle, Altitude,1967 flight deg. km Air mass

Aug. 3 Afternoon 56.4-72.5 11.7 0.368-0.672Aug. 8 Sunset 51.7-80.0 11.6 0.329-1.180Aug. 10 Sunrise 79.9-60.2 11.6 1.150-0.410Aug. 14 Afternoon 34.3-50.0 11.6 0.247-0.318Aug. 16 Solar transit 27.8-31.0 11.6 0.231-0.238Aug. 19 Afternoon 28.3-43.4 11.6 0.232-0.281Aug. 22 Solar transit 23.5-26.0 11.6 0.193-0.227Oct. 10 Solar transit 33.5-34.3 11.6 0.245-0.247Oct. 12 Solar transit 29.8-30.4 12.0 0.219-0.237Oct. 22 Solar transit 22.7-23.5 12.2 0.205-0.204Nov. 1 Solar transit 53.6-64.0 12.5 0. 374-0.403

2216 APPLIED OPTICS / Vol. 8, No. 11 / November 1969

Page 3: Determination of Extraterrestrial Solar Spectral Irradiance from a Research Aircraft

Fig. 3. Flight paths during 1967 solar observations.

irradiance as derived by Nicolet and Johnson is shownin Fig. 1.

Ill. Solar Spectral Irradiance MeasurementsThe measurements performed from the NASA CV-

990 aircraft circumvented many of the difficulties en-countered by previous investigators. The excellentobservational conditions at flight altitude allowed thespectroradiometer system to be used to its full capa-bilities.

A brief description of the aircraft and the observa-tional conditions during the experiment will be pre-sented to illustrate the suitability of high-altitude air-craft for solar studies. This description will be followedby a discussion of the spectroradiometer system andthe data reduction technique.

A. Aircraft and Observational Conditions

A specially modified four-engine jet aircraft was usedfor the experiment. Figure 2 is a photograph of theaircraft in flight. With an equipment payload of 7000kg, the aircraft is capable of providing 4 h of stableobservation at 11 km or 2 h at about 12 km at a speedof approximately 900 km/h. During solar observation,the aircraft heading is 900 to the solar vector and canbe maintained to within 4°. The stability in roll iswithin . The overall stability is well within the

j 30 required for the measurements.Flights were made at various times of day to achieve

a wide variation in atmospheric path length so that themeasurements could be extrapolated outside the atmo-sphere. Latitude and longitude of the observationswere measured at 10-min intervals to an accuracy of 1min of arc. From these data, and tabulated ephemerisdata, 14 a continuous determination of solar zenith anglevs time was computed. All observational data wererelated to Universal Time as a reference base. Infor-mation pertinent to the flights is given in Table I.

The flight paths during observational periods areshown in Fig. 3. The primary base of operations wasMoffett Field, California, near San Francisco. Atypical data flight profile would include a climbingoutbound leg to the starting point of observations andan observation run at constant solar bearing on the

homeward leg. One exception was the final 1 Novem-ber solar transit flight that originated on the east coastof the United States and terminated on the west coast.

Figure 4 shows the arrangement within the aircraft ofthe spectroradiometer and mirror used in the experi-ment. Solar observations were made from the leftside of the aircraft through either an upper (650 eleva-tion) window or a side (140 elevation) window, depend-ing on the solar zenith angle. The windows were 2.5-cm thick fused-silica flats (Corning 7940) with clearapertures of 30 cm by 36 cm and 25 cm by 36 cm for theupper and side, respectively. Windows were cleanedprior to takeoff and externally sealed with removableshutters until observational altitude was achieved.Warm air from the cabin air conditioner was directedover the interior of the windows to prevent the conden-sation of cabin moisture, since the outside air tempera-ture is about -500C. The mirror was a 40-cm diamaluminized optical flat. An accurate calibration of thereflectance of the mirror and the transmittance of thewindows as a function of wavelength and angle of inci-dence is extremely important for absolute intensitymeasurements. A detailed discussion of the calibrationprocedures for the windows and mirror is presented inAppendix A.

Spectral irradiance measurements were made frompressure altitudes between 11.6 km and 12.5 km duringeleven data flights. Pressure altitude, rather thangeometric altitude, was used in the data analysis as it isindicative of the total amount of atmosphere above theflight level. In general, the atmosphere showed ex-cellent clarity and stability. The atmospheric trans-mission values derived from the data clearly bear outthis point. At these altitudes, the observer is above80% of the permanent gases in the atmosphere andvirtually all variable components, including watervapor, clouds, smoke, haze, and dust. Measurementsof atmospheric precipitable water vapor above theflight level indicated a total path length ranging from8 X 10-4 precipitable-cm to 14 X 10-4 precipitable-cm.

Fig. 4. Aft view showing arrangement of spectroradiometer andmirror within the aircraft for observations through the upperwindow (00 < z < 45°) and side window (450 < z < 90°). Inset

shows spectroradiometer location within the aircraft.

November 1969 / Vol. 8, No. 11 / APPLIED OPTICS 2217

Page 4: Determination of Extraterrestrial Solar Spectral Irradiance from a Research Aircraft

Fig. 5. Standard of spectral irradiance mounted in its holder.

PHOTOMULTIPLIER PbS CELLPRISM SOLAR

RADIATION

- | ROTATING/INTEGRATING

_____/_____________ MOTOR

GRATING REFERENCE<i/SOURCE

Fig. 6. Optical schematic drawing of Cary spectroradiometershowing rotating integrating sphere for alternate viewing of

reference and solar radiation.

Approximately 4 X 10-4 precipitable-cm was in thepath of observation within the aircraft. The correc-tions due to such low amounts of water vapor hadnegligible effect on the results. The total CO2 contentabove flight altitude was approximately 40 atm-cm,while 0.5 atm-cm was attributable to CO2 within theaircraft. Small corrections to the data were necessaryat the strong absorption bands centered at 1960 nm,2010 nm, and 2060 nm. The flights were conducted inthe summer and fall when the ozone concentration isnear minimum in its annual cycle. The total ozonecontent above an altitude of 11.6 km was derived fromatmospheric transmission measurements to be 0.24atm-cm, based on the ozone absorption coefficients ofVigroux. 15

B. Spectroradiometer System

The establishment of the Standard of Spectral Irra-diance in 1963 by the National Bureau of Standards 2

provided a common basis for spectral irradiance mea-surements that can be conveniently and accuratelyused. This Standard is a 1000-W lamp consisting of acoiled tungsten filament (3000 K) enclosed in a 1-cmby 7-cm quartz envelope containing a small amount ofhalogen gas. The Standard is issued at the presenttime through The Eppley Laboratory, Newport,

Rhode Island. Figure 5 is a photograph of the lamp inits holder. A calibration is performed over the 250-2500 nm wavelength interval at a distance of 50 cm fromthe lamp, based on the spectral radiance of a blackbodycomputed from Planck's equation.

The spectroradiometer used is a recently developedinstrument whose calibration is based directly on theStandard of Spectral Irradiance. A schematic drawingof the instrument is shown in Fig. 6 and a detaileddescription is given by Hedelman and Nelson.'6 Thespectroradiometer is a modification of the Cary Mode]14 ratio-recording spectrophotometer. It utilizes aprism-grating double monochromator, providing 1-nm/mm reciprocal dispersion in the uv and 3 nm/mm-reciprocal dispersion in the near ir. Resolving power is0.1 nm in the uv and 0.3 nm in the near ir. Stray lightis extremely low, less than 0.0001% throughout muchof its operating range.

The most significant feature of the spectroradiometeris the incorporation of a 5-cm diam rotating integratingsphere that alternately views the reference and solarsources at a frequency of 30 Hz (see Fig. 6). Theinterior of the sphere is coated with magnesium oxide todiffuse the incoming radiation and provide a source ofuniform intensity at the entrance to the monochroma-tor. This feature eliminates the different geometryexisting between collimated solar radiation and thedivergent radiation from the reference source. Thisdiffers from the widely used practice of reimaging thesource on the entrance slit, which has been determinedto be a primary factor contributing to the inaccuraciespreviously associated with spectral irradiance mea-surements.3 The rotating integrating sphere, in addi-tion to diffusing the incoming radiation, serves as anoptical chopper for the solar and reference beams.

Thus, the ratio between the two sources is measuredat 30 Hz, and all errors due to detector and amplifierdrift are minimized. The detector-amplification sys-tem is capable of measuring the ratio of the mono-chromatic intensities of the reference and solar sourcesto an accuracy of 0.2%.

A photograph of the spectroradiometer in operationduring one of the flights is shown in Fig. 7. A spectral

Fig. 7. Photograph of spectroradiometer system in operationduring solar observation.

2218 APPLIED OPTICS / Vol. 8, No. 11 / November 1969

Page 5: Determination of Extraterrestrial Solar Spectral Irradiance from a Research Aircraft

\ vv 0o X=330 nm3 r<2as T = .809

In SPECTRAL X =320 nmIRRADIANCE, 2 r .700In HX m

0X 310 nmT .445

-I - I ' l I I I 0 .2 .4 .6 .8 1.0 1.2 1.4

AIR MASS, m

Fig. 8. Extrapolation procedure based on the Langley method.

scan took approximately 2 h to cover the wavelengthrange from 290 nm to 2500 nm. A 1P28 photomulti-plier was used below 700 nm and a lead sulfide cell wasused at longer wavelengths. In addition to a real-timestrip chart display of the data, spectral irradiance,wavelength, and slitwidth were recorded every 0.1-nmwavelength interval by a Datex Model SDS-1 digitaldata acquisition system and a Teletype Model BRPEhigh-speed paper-tape punch. Data were transferredto magnetic tape on a Honeywell 200 computer andsubsequently analyzed on IBM 7040-7094DCS andIBM System/360 computers.

The absolute air mass used in data reduction was ob-tained by the relationship

m = (P/Po)[secz + (P/P)(mk - secz)], (3)

where mk is the relative air mass at sea level as derivedby Kasten and P/Po is the ratio of the pressure ataltitude to the standard sea level pressure of 760 Torr.The pressure ratio P/Po was obtained with high preci-sion from one observation to another by means of theaircraft altimeter, which has resolution better than 1part in 2000. At altitudes above 11.6 km the correc-tion term, P/P (k - sec z), is smaller than 0.5% ofsec z for () < z < 780.

The spectral irradiance at observational altitude,Hx,7 was directly determined from the measured spec-tral irradiance within the aircraft, H*irm, by accountingfor attenuation at the window and mirror. A furthercorrection of the data to the earth's mean distance fromthe sun was also made. The result can be expressed as

Hxm = (ao2/pxrx)H*x,m. (4)

The values of window transmittance Tx and mirrorreflectance px were measured at their respective anglesof incidence by methods described in Appendix A. Thesolar radius vector ao was obtained from Ref. 14 for theparticular date of the measurement.

C. Data Reduction

The classical Langley method 7 was used to extrapo-late the measurements to extraterrestrial conditions.This method, in addition to giving the extraterrestrialspectral irradiance level, yields atmospheric transmis-sion coefficients from flight altitude to space.

The spectral irradiance at flight altitude, Hm, isrelated to the extraterrestrial spectral irradiance level,Hx,O, by

H,m = Hx,oe mkX (1)

lnHxm = lnH,o - mkx. (2)

The absolute air mass m is defined as the path length ofatmosphere between the observer and the sun relativeto the vertical path length at sea level. The atmo-spheric attenuation coefficient k indicates the degreeof absorption and scattering above the observationalaltitude.

The method of Kasten,' corrected for flight altitude,was used to evaluate the variation in relative air mass asa function of solar zenith angle. Air mass varies as thesecant of the solar zenith angle, z, with higher ordercorrections due to atmospheric curvature and refrac-tion. As shown by Kasten, the greatest contributionto these corrections results from the lower atmosphere.

Table II. Atmospheric Transmittance from Space to 11.6 km(Zenith Direction)

Wavelength, Wavelength,nm Transmittance nm Transmittance

298 0.036 650 0.960299 0.055 700 0.972300 0.083 757 0.976302 0.134 761 0.913304 0.195 768 0.980306 0.285 800 0.980308 0.371 900 0.988310 0.445 1000-1930 0.99+315 0.595 1940 0.972320 0.700 1950 0.935325 0.763 1960 0.920330 0.809 1970 0.988335 0.822 1980 0.99+340 0.840 1990 0.99+350 0.864 2000 0.889360 0.879 2010 0.887380 0.891 2020 0.982400 0.897 2030 0.99+450 0.925 2040 0.99+500 0.940 2050 0.966550 0.948 2060 0.920575 0.932 2070 0.959600 0.932 2080-2500 0.99+625 0.942

November 1969 / Vol. 8, No. 11 / APPLIED OPTICS 2219

Page 6: Determination of Extraterrestrial Solar Spectral Irradiance from a Research Aircraft

1.0--

.8-

zX - ,vpF 11.6 km- EXPERIMENTAL

Ir1, -

,? 4-

0 - SEA LEVEL"I .2- AFCRL ATMOSPHERIC

t; - / / ATTENUATION MODEL (REF 19)(SCATTERING AND 03ABSORPTIONONLY)

300 350 400WAVELENGTH, nm

(a)

l-I.O - - -~~~~"iI.6k m~~~ 0 3 2

- EXPERIMENTAL

Z 6- ~~ ~~~ SEA LEVEL< 6 AFCRL ATMOSPHERIC ATTENUATION

~ - MODEL REF 19)(SCATTERING AND 03 ABSORPTION

4 ~~~~~~~~~~ONLY)IixIIJ

01 2 -0 -

F 00500 600 700

WAVELENGTH, nm

800 900

(b)

Fig. 9. Atmospheric transmittance to space from an altitudeof 11.6.km: (a) uv region, (b) visible, near ir region.

El Equation (2) shows the linear relationship that existsbetween the natural logarithm of spectral irradiance andair mass. Extrapolations to zero air mass were per-formed by a least-squares linear fit to the data atselected wavelengths from 300 nm to 2500 nm. Figure8 illustrates the extrapolation procedure used. Datafrom each flight at several wavelengths in the Hartley-Huggins ozone bands are plotted to show the rapidlydecreasing transmittance in the uv due to ozone ab-sorption in the upper atmosphere. The variability ofthe ozone from flight to flight, although small, results insignificantly more scatter in the data below 340 nmthan at longer wavelengths. The ordinate interceptyields the natural logarithm of extraterrestrial solarspectral irradiance at the earth's mean distance fromthe sun, and the negative of the slope yields the atmo-spheric attenuation coefficient, kx.| Vertical atmospheric transmittance values fromspace to an altitude of 11.6 km (m = 0.204) were de-rived from the measured values of kx by the relationship

TX,m = emk-x. (5)

These values are tabulated in Table II and plotted inFigs. 9(a) and 9(b) for the uv and visible-near ir re-gions, respectively.

Atmospheric transmittance was found to be above0.99 for essentially all wavelengths longer than 1000 nmand greater than 0.90 for wavelengths longer than 410nm. The average deviation of the experimentalatmospheric transmittance values from a smoothedcurve varies from 0.02 in the ozone absorption regionbelow 340 nm to less than 0.005 at longer wavelengths.The Chappuis ozone band between 550 nm and 600 nm,

resulting in a decrease in atmospheric transmittance ofless than 2%, is readily seen in the measurements. Theonly atmospheric absorption detected, other than ozone,was 02 at 760 nm and CO2 at 1960 nm, 2010 nm, and2060 nm. Water vapor absorption at 1380 nm was notdetected due to the presence of absorption by thefused-silica window within the same wavelength region.As shown in Fig. 9(a), ozone absorption becomesapparent for wavelengths shorter than 340 nm andvirtually complete at wavelengths shorter than 295 nm.The practical limit of meaningful measurements is 300nm.

The advantage of performing measurements from anaircraft or other high-altitude platform is obvious whena comparison is made with the transmittance to sealevel. Such a comparison is made in Figs. 9(a) and9(b) between the experimental atmospheric transmit-tance values from 11.6 km altitude to space and thevalues from sea level to space predicted by the AFCRLAtmospheric Attenuation Model.' 9 For example, at340 nm the transmittance to space from 11.6 km is0.84 compared with a maximum of 0.33 from sea level.The high atmospheric transparency at all wavelengthsbeyond the primary ozone absorption region enablesextrapolation to zero air mass to be performed with ahigh degree of accuracy.

IV. Experimental Results

The resultant extraterrestrial spectral irradiance inthe 300-2500 nm wavelength interval, obtained from ex-trapolation of all measurements to zero air mass, is pre-sented in both tabular and graphical form in AppendixB. The wavelength interval in Table VII, which issomewhat representative of the spectral resolution ofthe data, varies from 0.1 nm over most of the uv andvisible to 5 nm in the smooth continuum region of their. This relatively high resolution allows identificationof the major Fraunhofer lines through the use of theRowland Table.2 0 The identities of selected majorabsorption lines are indicated in the spectrum.

Most applications of solar spectral irradiance do notrequire resolution as high as that presented in AppendixB. For that reason, the percentage of total irradianceat wavelengths shorter than the printout wavelength isincluded in the listing to provide a simple method ofcalculating the total irradiance or average spectralirradiance within an arbitrary wavelength interval.

A listing of extraterrestrial solar spectral irradiance,smoothed over relatively wide wavelength intervals,will be presented for engineering use and the uncertain-ties in the spectral irradiance values will be discussed inthe following sections.

A. Solar Spectral Irradiance Listing forEngineering Use

The engineering technology presently being appliedto space research does not, in general, require the rela-tively high resolution given in Appendix B. In manyinstances it is desirable to use values of solar spectral

2220 APPLIED OPTICS / Vol. 8, No. 11 / November 1969

Page 7: Determination of Extraterrestrial Solar Spectral Irradiance from a Research Aircraft

Table Ill. Extraterrestrial Solar Spectral Irradiance at theEarth's Mean Distance from the Sun

II,,, PA, I,, X. x A, | ! P A A' AW/m

2-ne, % n W/

2-n % nm W/e-nn % nm W/r

2-nm %

200' 0.012 0. 01 375 1.13 6.12 000 1.79 35.69 950 0.799 07.06205' 0.016 0.02 380 1.11 6. 56 610 1.78 36. 98 960 0.792 67.63210' 0.026 0.03 385 1. 05 6. 92 620 1. 72 38. 23 970 0. 781 68. 20215' 0.043 0.04 390 1. 10 7.32 630 1.70 39.47 980 0.776 68.76220' 0.0OS 0.06 305 1.21 7.71 640 1.67 40.68 000 0.758 69. 31

225: 0.062 0.08 400 1.54 8.19 650 1.61 41. 85 1000 0.741 69. 85230: 0. 064 0. 10 405 1.7 8.812 660 1. 56 42.9 IOS100 0. 69 72.319235 .0. 057 0.12 410 1.03 9.46 670 1.58 44. 13 1100 0.602 74.60240- 0.061 0. 14 415 1.88 10. 14 680 1.57 45.27 1150 0.546 76.72245' 0.069 0.17 420 1.85 10.82 690 1.49 46.36 1200 0.496 78.59

250' 0.068 0.19 425 1.76 11.47 700 1.50 47.45 1250 0.451 80.30255' 0.100 . 0.22 430 1.67 12.08 710 1.43 48.50 1300 0.419 81.06260' 0.125 [ 0.26 435 1.75 12.67 720 1.39 49.51 1350 0.379 83.30265' 0.178 0.31 440 1.92 13.34 730 1.37 50.51 1400 0.349 84.60270' 0.22 0.39 445 2.01 14.05 740 1.32 51.48 1450 0.320 85.81

275* 0.20 0.46 450 2.06 14.79 750 1.30 52.42 1500 0.296 86.91280' 021 0.54 455 2. 10 12.54 760 1.20 53.35 1600 0.253 88.88285' 0.30 0.63 460 2.11 16.30 770 1.22 54.25 1700 0.215 90.57290' 0.46 0.76 465 2.08 17.06 780 1.21 55. 12 1800 0.170 91.95295' 0.56 0. 95 470 2.07 17.80 790 1.19 55. 99 1900 0. 139 93.03

300 0. 56 1. 15 475 2. 11 18. 55 800 1. 16 56. 83 2000 0.119 93. 97305 0.59 1.35 480 2.10 19.31 810 5.12 57.64 2100 0.0945 94.74310 0.66 1.57 485 1.98 20.06 820 1.08 58.43 2200 0.0764 95.34313 0.73 1.83 490 1 1.96 20.74 830 1.06 59 20 2300 0.0644 95. 86320 0.75 2.10 495 2.00 21.47 840 1.02 5895 2400 0.0575 96.29

325 0.89 2.37 500 1.96 22.18 850 0.966 60.67 2500 0.0532 96.66330 1.04 2.74 510 1.97 23.60 860 0.961 61.36 3000t 0.0266 97.96335 1.02 3.12 520 1.85 24.94 870 0.942 62.04 3500' 0.0139 98.67340 1 .00 3.47 530 1.92 26.31 880 0.936 62.72 4000t 0.0094 99.05345 1.01 3.84 540 1.89 27.69 890 0.917 £63. 38 4500t 8. 0061 99.32

350 1 04 4.19 550 1.88 29.05 900 0.893 64.03 5000 0.0041 99.49355 1.02 4.58 560 1.83 30.38 910 0.866 64.66 7000t 0.0011 99.81360 0.98 4.93 570 1.85 31.70 920 0.842 65.28 1000 0.0003 99.92365 1. 15 5.29 580 1.88 33.05 930 0.840 65. 88 200000 0.0002 09.98370 1.15 5.75 590 | 1.83 34.38 940 0.818 |60.48 400008 0.0001 99. 99

'Adjusted NRL data (Ref. 13)t5800'K gybly

irradiance that have been smoothed over the detailedFraunhofer structure. Such a listing is provided inTable III as a solar spectral irradiance listing proposedfor engineering use.

The values of spectral irradiance in Table III corre-sponding to wavelengths shorter than 1000 nm havebeen integrated over a 10-nm interval centered at therespective wavelength. At longer wavelengths, thedata have been integrated over the printout interval.Integration was performed numerically at 0.1-nmincrements. A listing of the percentage PA of the totalsolar irradiance at wavelengths shorter than the print-out wavelength is also provided.

In the 300-2500 nm wavelength region, the resultsare from the present experiment. Below 300 nm, themost recent NRL rocket spectrograph measurements,reported by Tousey, 13 are used. These data, obtainedoriginally on a relative scale, have been normalized tothe present experiment in the overlap region 300-400nm. Beyond 2500 nm, a 5800-K greybody approxima-tion is believed to be an adequate representation of thesolar continuum.

The total irradiance, calculated from the integral ofthe spectral irradiance, is 1390 W/m2 (1.99 cal/cm 2 -min). This number represents the total solar irradi-ance incident on a surface in space oriented normal tothe sun at the earth's mean distance.

B. Uncertainty Limits of the ResultsThe measurements presented in this paper are based

on the standard of spectral irradiance maintained bythe National Bureau of Standards. The maximumuncertainty existing in the standard varies from approx-imately 5% at 300 nm to 3% in the visible and ir.2

Total irradiance could possibly be more accurate sinceintegration over a number of spectral data points tendsto cancel the random component of error. The degreeof systematic error is not known, although, as dis-cussed later, results indicate that it probably does notexceed 2%.

The precision of the measurements is better than 1%.The absolute accuracy of the resultant extraterrestrialsolar spectral irradiance can be determined from theindividual accuracies of each factor affecting the mea-surement. The uncertainty in the measurement of aquantity (X) whose value is a function of n indepen-dent variables XI, X2, .. ., X., each with an uncertaintyAXI, AX2, . A.., AXn, can be obtained by) + ( AX 2 ) + + ( dt A 7\1( X, 2X ax"

(6)

Equations (1), (4), and (5) may be combined to expressthe extraterrestrial spectral irradiance Ho in terms of

Table IV. Uncertainty Limits

Standard of Spectroradiometer Zero air mass Mirror Window TotalX, Spectral Irradiance, measurement, extrapolation, reflectance, transmittance, uncertainty,nm % % % % % %

300 5.0 0.8 24.0 0.5 0.5 25.0310 5.0 0.7 5.0 0.5 0.4 7.1320 5.0 0.7 3.0 0.5 0.4 5.9330 4.0 0.7 2.5 0.5 0.4 4.8350 4.0 0.6 1.2 0.5 0.4 4.3400 3.0 0.5 0.6 0.5 0.4 3.2500 3.0 0.5 0.5 0.5 0.4 3.1700 3.0 0.5 0.5 0.5 0.4 3.1

1000 3.0 0.5 0.3 0.5 0.4 3.11500 3.0 0.7 0.2 0.5 0.4 3.22000 3.0 0.8 0.2 0.5 0.4 3.22200 3.0 1.5 0.2 0.5 1.6 3.82500 3.0 2.0 0.2 0.5 0.9 3.8

November 1969 / Vol. 8, No. 11 / APPLIED OPTICS 2221

Page 8: Determination of Extraterrestrial Solar Spectral Irradiance from a Research Aircraft

1800 2200 2600

Fig. 10. Comparison of solar spectral irradiance, present ex-periment and Johnson.

5 -

03- / BOUND-FREEU / (REF. 21) \

F- 2 - \0.

0FREE-FREE

'71 - (REF. 22) .- -

C 400 600 800 1000 1200 1400 1600 1800 2000 2200WAVELENGTH. nm

Fig. 11. Spectral variation of absorption coefficient of the nega-tive hydrogen ion (H-).

the measured spectral irradiance H*xm, atmospherictransmittance TXm, distance from the sun a, mirrorreflectance Px, and window transmittance rx:

= aH*xm (7)TX,mPXrX

The fractional uncertainty in Hxo can now be expressedin terms of the fractional uncertainties in the individualfactors:

AHx,o _FAH*X,m\2 1 ATm\2 + (2Aao)2HAXO H / A \m TX,m ao

+ (p) + (A.A)2]} (8)\PX / PX /

Table IV lists the individual uncertainties and the totaluncertainty in HAo at various wavelengths from 300 nmto 2500 nm. The uncertainty associated with distancefrom the sun is small enough to be neglected with respectto the others and was not included in the table.

The largest total uncertainty occurs in the region ofhigh ozone absorption below 320 nm. The uncertaintyquickly decreases at longer wavelengths as the atmo-spheric transmittance increases and remains approxi-mately 3% throughout the entire visible and ir. Theprimary uncertainty at wavelengths longer than 320

nm is due to uncertainty in the Standard of SpectralIrradiance.

V. Comparison With Previous Studies

A comparison between the values of spectral irradi-ance listed in Table III and Johnson's values' is shownin Fig. 10. In general, the results are relatively closeconsidering the diverse data used by Johnson in hisanalysis. The primary region of discrepancy is in theuv where the results of the present experiment indicatea uniform 11% lower irradiance between 300 nm and400 nm. There are regions of slight discrepancy in thevisible and near ir and a broad region between 1300 nmand 1900 nm where the continuum is significantlyhigher than Johnson's level.

In the ir at wavelengths beyond 1250 nm, Johnsonaccepted the assumption that the sun radiated as a6000-K greybody. This means that the spectralabsorptance of the solar atmosphere is assumed to beindependent of wavelength. This is not the case, and,in fact, as shown in Fig. 11, the absorptance of the solaratmosphere has a minimum in the same ir region as theresults from the present experiment indicate higherirradiance. *

The lower intensity level in the spectral region below600 nm is in good agreement with recently published

E 2.4r

2.0-E - PRESENT EXPERIMENT

1,6 - ! \ ---- NICOLET (REF. 8)

< 1.2 -

t.8-

.4r \

200 600 1000 1400 1800 2200 2600WAVELENGTH, nm

Fig. 12. Comparison of solar spectral irradiance, present ex-periment and Nicolet.

* The data in Fig. 11 were obtained from Refs. 21 and 22 andrepresent known spectral variations in the opacity of the solaratmosphere. Most of the continuum absorption is due to thenegative ion of hydrogen (H-), which absorbs energy througheither "bound-free" transitions or "free-free" transitions whichare functions of wavelength. The minimum in the total absorp-tion coefficient between 1300 nm and 1900 nm means that theradiation is emanating from a higher temperature region deeperwithin the solar atmosphere. Beyond 2500 nm, the free-freeabsorption coefficient continues to rise, with the result that theeffective greybody temperature of the sun decreases at longerwavelengths. The exact relationship between the absorptioncoefficient and the effective solar temperature in the ir is nosknown, however, since the effect is small, the assumption inmade in the present experiment that a 5800-K solar temper-ature is an adequate representation at wavelengths longer that2500 nm.

2222 APPLIED OPTICS / Vol. 8, No.11 / November 1969

c IES

_j0:

U�11a.

- PRESENT EXPERIMENT- JOHNSON (REF 6)

600 1000 1400WAVELENGTH, nm

Page 9: Determination of Extraterrestrial Solar Spectral Irradiance from a Research Aircraft

E

I 2. PRESENT EXPERIMENT

1.6 -X LABS AND NECKEL (REF 24)

D 1.2-

200 600 1000 1400 1800 2200 2600WAVELENGTH, nm

Fig. 13. Comparison of solar spectral irradiance, present ex-periment and Labs and Neckel.

E 2.4

PESENT EXPERiMENT1.6 C o of s GSFC (REF , 25)

c 1.2 a

200 600 1000 1400 1800 2200 2600WAVELENGTH, nm

Fig. 14. Comparison of solar spectral irradiance, present experi-ment and Goddard Space Flight Center (GSFC).

results of measurements between 310 nm and 530 nm byStair and Ellis obtained at the Mauna Loa Observatory,Hawaii.2 3 Using Johnson's values of spectral irradi-ance at wavelengths longer than 530 nm, they con-cluded that the total irradiance is approximately 2%less than Johnson's value of 1395 W/m2 . However, theresults of the present experiment indicate that thehigher level of spectral irradiance in the ir would nearlycompensate for the lower level in the uv and visible,with the result that the value of total irradiance shouldbe virtually the same as Johnson's value.

The spectral irradiance values of Nicolet are com-pared with those of the present experiment in Fig. 12.There is general agreement in the visible and ir, exceptin the 500-600 nm region, where Nicolet's values appearto be an average of 3% higher than the present results.The primary region of discrepancy is in the uv. Thedifficulty of determining the true level of Fraunhoferabsorption in this region, a necessary factor in Nicolet'smethod, is felt to be the probable cause of the discrep-ancy.

The results of Labs and Neckel,2 4 obtained at theJungfraujoch Scientific Station, Switzerland (altitude3.6 km), are shown i Fig. 13. Their data are theresults of measurements of the spectral radiance at thecenter of the solar disk in the 330-1250 nm wavelengthregion adjusted for center-limb variations and lineblanketing to obtain mean spectral radiance. In theuv below 330 nm, they adjusted the data given byTousey"3 and, in the ir, used the normalized continuum

from solar models with corrections for the ratio of meanto central intensity and line blanketing. The agree-ment with results from the present experiment is veryclose except in the region below 500 nm where theresults of Labs and Neckel average about 5% lower.Possible explanations for this discrepancy includeinaccuracies in the evaluation of the higher degree ofatmospheric attenuation experienced in their observa-tions and inaccuracies in the determination of thecenter-limb variations and line blanketing coefficients.The value of total irradiance obtained by Labs andNeckel is 1366 W/m2 .

Researchers from the NASA Goddard Space FlightCenter (GSFC), participating with independent instru-mentation during seven of the CV-990 flights, havepublished values2 5 of extraterrestrial solar spectralirradiance obtained from weighted averages of measure-ments from four instruments: (1) Perkin-Elmer model112 monochromator; (2) modified Eppley filter radiom-eter; (3) Carl Leiss monochromator, and (4) Blockmodel P-4 polarization interferometer. The measure-ments obtained with the latter two instruments were ona relative basis due to calibration difficulties. A com-parison between the GSFC results and the results fromthe present experiment is presented in Fig. 14. Theagreement is close, except in the spectral region between500 nm and 800 nm, where the GSFC results indicateconsiderably lower spectral irradiance. The reason forthis discrepancy is not clear at the present time, al-though, as shown in Ref. 25, the differences between theindividual GSFC instruments in this spectral region areof this magnitude. The value of total irradiance ob-tained by GSFC is 1351 W/m2 .

The value of total irradiance obtained from the pres-ent experiment, 1390 W/m 2 , can be compared to arecently published value of 1360 W/m 2 based on theInternational Pyrheliometric Scale. This value is theresult of a total radiometer experiment by Jet Propul-sion Laboratory and Eppley Laboratory aboard theX-15 aircraft.26 The relatively close agreement be-tween the two total irradiance values, which are basedon completely different radiometric standards, indicates

Fig. 15. Apparatus for measuring transmittance of fused silicawindows.

November 1969 / Vol. 8, No. 11 / APPLIED OPTICS 2223

21

Page 10: Determination of Extraterrestrial Solar Spectral Irradiance from a Research Aircraft

Table V. Transmittance of 2.5-cm Fused Silica as a Function of Wavelength and Angle of Incidence (Unpolarized Radiation)

Wavelength, Angle of incidence Wavelength, Angle of incidence

nm 0° 200 300 nm 00 200 300

290 0.860 0.856 0.850 1410 0.873 0.869 0.859

295 0.864 0.860 0.855 1420 0.898 0.896 0.890

300 0.877 0.873 0.869 1430 0.916 0.915 0.912

320 0.910 0.909 0.906 1500 0.942 0.941 0.940

350 0.926 0.925 0.923 1600 0.943 0.943 0.943400 0.937 0.937 0.937 1700 0.940 0.940 0.940450 0.939 0.939 0.939 1800 0.936 0.936 0.935500 0.939 0.939 0.939 1900 0.937 0.937 0.937550 0.940 0.940 0.940 2000 0.937 0.937 0.937600 0.941 0.941 0.941 2100 0.929 0.929 0.927700 0.942 0.942 0.942 2140 0.898 0.895 0.889800 0.942 0.942 0.942 2160 0.833 0.826 0.809900 0.942 0.942 0.942 2180 0.753 0.744 0.715

1000 0.943 0.943 0.943 2200 0.398 0.362 0.2751100 0.944 0.944 0.944 2220 0.292 0.249 0.1451200 0.944 0.944 0.944 2250 0.423 0.389 0.3061300 0.938 0.938 0.938 2270 0.535 0.508 0.443

1340 0.925 0.924 0.923 2300 0.710 0.695 0.658

1350 0.920 0.919 0.917 2350 0.827 0.820 0.8021360 0.912 0.911 0.907 2400 0.828 0.821 0.803

1370 0.862 0.857 0.845 2420 0.781 0.771 0.7451380 0.740 0.727 0.696 2450 0.714 0.699 0.6631383 0.705 0.690 0.653 2470 0.680 0.663 0.621

1390 0.730 0.716 0.683 2480 0.593 0.570 0.514

1400 0.816 0.808 0.789 2500 0.514 0.486 0.417

that the systematic error in the values of extraterrestrialsolar spectral irradiance is probably no greater than 2%.

The actual degree of systematic error in the measure-ments will be resolved when a measurement of totalsolar irradiance is performed in space by an absoluteradiometer such as described in Ref. 27. This radiom-eter, the JPL Standard Total-Radiation AbsoluteRadiometer, is capable of better than 1.0% absoluteaccuracy. A direct total irradiance measurement ob-tained in space by such an instrument would justify arevision of the spectral irradiance data contained in thisreport if a significant discrepancy is found.

VI. Concluding Remarks

The NASA CV-990 aircraft afforded an excellenthigh-altitude platform from which to perform measure-ments of absolute solar spectral irradiance. Observa-tional conditions such as stability of the aircraft andconstancy of the atmosphere allowed measurements tobe made with good resolution and high precision. Ataltitudes greater than 11.6 km, the aircraft is above 80%of the atmosphere and virtually all dust and watervapor. Therefore, the amount of atmospheric scatter-ing was greatly reduced and the variability in atmo-spheric transmittance was virtually eliminated.

The primary purpose of the experiment was to reducethe uncertainties in the present knowledge of extra-terrestrial solar spectral irradiance at the earth's meandistance from the sun. The measurements covered aspectral region encompassing over 95% of the totalenergy emitted by the sun, using a single instrument of

high precision. The results of the measurements aredirectly traceable to the NBS Standard of SpectralIrradiance and possess an absolute accuracy, over mostof the wavelength range, of approximately 3% andresolution to 0.1 nm. These measurements, integratedover relatively wide spectral intervals, form the basisfor a solar spectral irradiance table (Table III) pro-posed for engineering use.

The solar spectral irradiance data in Table VII, cover-ing the 300-2500 nm spectral interval with resolutionto 0.1 nm, are available to any organization that hasneed for such information. The data may be obtainedas a listing on either cards or tape from National SpaceScience Data Center, Code 601, Goddard Space FlightCenter, Greenbelt, i\Iaryland 20771.

Fig. 16. Apparatus for measuring mirror reflectance.

2224 APPLIED OPTICS / Vol. 8, No. 11 / November 1969

Page 11: Determination of Extraterrestrial Solar Spectral Irradiance from a Research Aircraft

.98

.96 -

U .94

. 920CD 0~ OE

C .90 -

0

2 .88 -

.86 -

.84 - '300 400

Fig. 17.

0

O FLIGHT MIRROR

0 HASS (REF 30)A SENNETT (REF 31)

500 600 700 800 1000 1200 1500 2000 2500 3000WAVELENGTH, nm

Spectral reflectance of flight mirror.

Table VI. Reflectance of Front-Surface Aluminum Mirror as aFunction of Wavelength and Angle of Incidence

(Unpolarized Radiation)

Wavelength, Angle of incidence

nm 00 350 450 550

300 0.898 0.897 0.896 0.894350 0.909 0.907 0.904 0.898400 0.914 0.912 0.910 0.904450 0.918 0.916 0.914 0.909500 0.917 0.916 0.914 0.908550 0.915 0.915 0.913 0.907600 0.905 0.904 0.901 0.894650 0.900 0.898 0.895 0.889700 0.891 0.889 0.886 0.878750 0.879 0.877 0.873 0.865800 0.863 0.861 0.857 0.848825 0.856 0.854 0.850 0.841850 0.867 0.865 0.861 0.852900 0.892 0.890 0.886 0.878950 0.918 0.917 0.914 0.907

1000 0.933 0.932 0.930 0.9261100 0.948 0.947 0.945 0.9411200 0.957 0.956 0.954 0.9501500 0.968 0.967 0.966 0.9632000 0.972 0.971 0.970 0.9672500 0.974 0.973 0.972 0.970

considerations. Reflectance from the aluminized turn-ing mirror for unpolarized radiation would thus be inerror only 0.15% at its maximum incidence angle of550. It is, therefore, sufficient to use transmittanceand reflectance coefficients for unpolarized radiation inanalysis of the data.

A. Measurement of Window Transmittance

The spectral transmittance of the fused silica windowwas determined by two independent procedures. Thefirst utilized a Carl Leiss double-prism monochromatorin conjunction with a 20-cm diam magnesium oxideintegrating sphere and a Brower model 129 phase-lockamplifier. A collimated beam of light was directedthrough an aperture in the sphere (see Fig. 15) andmeasurements were made with the window in and outof the light beam at each wavelength setting of themonochromator. Since the entire beam always enteredthe sphere, it was not necessary to correct for the differ-ences in optical path length with the window inserted orremoved. The lamp exhibited a 12% polarization,which resulted in a negligible error (0.1% for 30° inci-dence) in the measured transmittance.

Appendix A. Determination of Transmittance ofWindows and Reflectance of Mirror

An accurate determination of the transmittance ofthe fused silica windows and the reflectance of the mirrorused in the measurements is highly important since anerror in these values is a direct error in the measuredvalue of solar spectral irradiance. Direct solar radiationat 11.6 km was found to be natural or unpolarized withindetection limits of 40.2%. This determination wasmade by rotating a polarizer while the solar vector wasat normal incidence to the upper aircraft window. Atthe maximum solar incidence angle of 31°, the degree ofpolarization of the solar radiation transmitted throughthe window was 2%, as expected by Fresnel reflection

-. -IT lkHt-hVBy ro4t

L-- -- t A4 Ji;t4 t

87 5, 5 555 555 555~~~~~~.1 11S 55 55 5S 7

Fig. 18. Extraterrestrial solar spectral irradiance at the earth'smean distance from the sun (Table VII).

November 1969 / Vol. 8, No. 11 / APPLIED OPTICS 2225

T41`�` -A

11, -� - --f-f I -I i i

i I -- +- -- __1__1 � - iiI L t1. 1. - 51. I.o

Page 12: Determination of Extraterrestrial Solar Spectral Irradiance from a Research Aircraft

Table VIL. Extraterrestrial Solar Spectral Irradiance at the Earth's Mean Distance from the Sun (300-2500 nm)

11 H.,. I ~,.I lHX.13'o.. Hx1 P. H P~, l. H I 1 'x.I x. I HX, X P._ I .I I _ I ,; 1 I I I I 551 j86/ei~ejJ Sm Jw~z~ss~j%~ Smjvo~et~s~- I %I~, j __ P., ee I_ j"' I 5" I P1 _ /s-ssJ

300 00300.4800.8301.2301 .6302 .0

902 .8I03. 230 3.6

304.0304.4304.8305.2505.6306.0306.4306.8307.2107.6

308.030 8.4308.8109.2309.6310.0310. 4310.8

31.6

312.0312.4

313.2313.6

14.0314.4

314.8

3 16.06

316.4116.8117.2

317. 638.0

318.4318.83 19. 2319.6

320.0320.:4320.8321.2321.:6322.0322.4322 8323. 232 3. 6

324. 0324.4324.8325.2325.6326.0326.4326.8327.2327.6

328.0328 432 8.8329.2329.6330.0330.4330.8331.2

3 32.03 32.:4332.8333.23 33.63 34.0334.43 34.81135.23 35. 6

0.5450.5040.5460.6160.7490.5760.4 850.5410.5900.635

0.56 30.5220.5520.6280.6460.4900.55?70.6220.7180.746

0.-6 720.63 10.6200.53 30. 5140. 5360. 5400 7070_.7920.793

0 7060.6590.74 70.7 590.7060.7550.7 740.6510.82 20.800

0.6290 5 160.7440.8410.9 170.8050.6 200.7 390.8 70.721

0.7860.8610.92 50.86 70.6910.7790.8560.7470.6 190.657

0.6 200.68 70.69 70.6680.77 31.0291 .1891. 19

1.0 34

1.0040.9281.0001.0091.1931.22 31.1871.0140. 9931 .0322

105 71.0 74

.0301. 0621 .0760. 9 301.04 71.1791.03 31.119

1 151.16

1.181.19i1.211.23

1. 261. 281. 30

1.33

1.361.381.40

1.431.451.47

1.491 511 531.541.561.571.591.611.631 .65

1691

1.713

1. 75

1.801. 821.841.86

1.901.921.941.971.992 .0 12. 032.062. 08

2.12.122. 152.1I82. 202. 222.242. 272. 292. 30

2. 322. 342. 362. 382.402. 432.462. 492.532.56

2.592 612.642.672 702.742 772.802.832.86

2. 892.922.952.983.013.043.073.103.1336

336.0 1.131 3.20336.4 0.698 3.22336.8 0.909 3.24337.2 086 3. 27137.6 0.827 3.30

338.0 0.988 3.32838.4 0.938 35

338 .8 L.0 39 3.38339 .2 1.0 91 3.41339 .6 1.0 05 3.44

340.C340.i340.3340.340.341.34 1.341.'341.341.0

342342.2~3 42.342.342.34 3C34 3.234 343 43 .034 3.8

344.6344.2344 .4344 .0344 .834 5.0345 .2345 .4345 .6345 .8

346.03 46.2346 .4346 .6346 .834 7.034 7.2347 .434 7.634 7.8

3 48.0348.2348 .4348 .634 8.83 49 .0349 .2349 .4349 .6349 .8

3 50.0350.23 50.43 50.63 50 .83 51 .035 1.235 1.435 1.635 1.8

352.03 52 23 52 .4352 .63 52 .835 3.03 53 .23 53 .435 3.63 53 .8

354.0354.23 54 .43 54 .63 54 .83 55 .03 55.23 55.43 55.63 55 .8

3 56.03 56.23 56 .43 56 .63 56 .83 57 .03 57 .23 57.43 57 .63 57. 8

35. 2

3 58.63 58.83 59 .03 59 .23 59 .43 59 .63 59 .8

1,039

1. 1471.07 81.0 131.0281.0 841.0 720. 899

0.9721 1041. 2071. 1331. 04 71. 03 5

.1011.20 71. 1631.095

1.02 30. 9050. 6700. 6240. 7700. 8991.0731.1891. 0681.095

1.0850 89 70.8180.9011.0 650.9881.0991.16 31.0820.87 3

0.9091.04 60.9790.9151.0201. 0200. 9000. 8700. 942

1.0881. 1601. 2101. 17 31. 0591. 0581. 0080. 8991. 002

1. 1281.09 60. 9360. 8210. 9351. 0461. 108

1.13

1. 1961.20 31 .197

.1951.21 31 1661. 0521. 0461. 051

1. 0381.0551.09 70. 8610. 7680. 7800.8a610. 9390. 98 70. 94 3

0.7263 5 750.56 30.5820.7550 9761.11 71.1L651. 2101. 20 7

3.4 73.4 83.503.523.533.559.563.583.593 61

3.623 643.653.673.693.7039.723.733.753.77

3.783 803.813 823.833.843.853.873.883.90

3. 923.9 33 943.953.973.984.004.014.034.05

4.064 074.084.104.14.134.144.154.174.18

4.194.2 14.224.244.264.284.294.314.324.33

4.354 364.384.394.404.424.434.454.474.48

4.504 524.534.554.574.984.604.624.634.65

4.664.684.694. 714.724.7 34.744.754.774 78

4. 804.80o4.814 824.834.844.864.874.894.91

360.0360.2340.4360.6360.8361.0361.2361.4361.6361.8

362.0362.2362.4362.6362.8363.0363.2363.4363.6363.8

364.0364 2364.4364.6364.8365.0365.2365.4365.6365.8

366.0366.2366.4366.6366.8367.0367.2367.4367.6367.8

368.0368.2368.4368.6368.8369.0369.2369.4369.6369.8

3 70.0370.2370.4370.63 70. 8371.0371.2371.4371.6371 .8

372.0372.2372.4372.63 72.83 73.037 3.237 3.437 363 73. 8

374.0374 2374.43 74.63 74.83 75.0375.23 75.43 75.63 75.8

376.0376.2376.43 76.6376.837 7.037 72377.437 7637 7.8

378.0378.2378.4378.63 78.8379.0379 2379.4379.6379.8

11601.09

1.440.97990.91600.97 10.98 10.9410.7990.6.75

0 9681.10 31. 166

1.06

1.013

1.12

1.152116

1.941.2 311. 35

1.3 511.3197

1.410

1 3001. 2691.2 591. 2841. 3051.2481. 154

1.:096

1.11. 281.3121.:366,

13161. 2581. 2791. 35 5

1.3711.1940.9960 97 31.0911. 2091. 32 71. 4431. 3220.9q81

0. 72 10.95 11 2201. 2281. 1761.01610. 9310. 7810. 67 70. 908

1. 1751.09 30. 9260. 73 50. 62 30. 7141. 0511. 2191. 109.59

1911. 190I.19

1.211.63

1.3321.90

1.4181. 455

1. 5151.5471. 5131. 4261. 2281. 07 31. 0621. 0561.01191.011

4.934.944.964.974.995.005.015.035.045.05

5.065.0 75.095.105.125.145.155.175.185. 20

5.225.2 35.255.265.285.295 315.335.355.37

5. 398 415.425.445.465.485.505.525.545. 55

5.5 75.585.605.625.645.665.675.695.715.73

5.755 775.785.805.15.835.855.875.895.90

5.925.9 35.945.965.985.996.016.026.036.04

6.066.076.096.106.16.126.136.156.176.18

6.206.216.23

6.286. 306. 326. 346. 36

6. 386.416.436.456.4 76.486.506.5 16.536.54

380.0

380. 2

380.5380.6880.7380.8380.9

381. 3381.4381.5381. 6381. 7

382.1382.2382.33 82 .438 2.5382.6 382. a382.89

383.383.1383.2338 3.338 3.4383.538 3.638 3.7383.8

383.9

384.01384.1384.2384.3384.45384.5384.6384.7384.8

386. 0

385.123 85.2385.3

385.5385.63857386 .8385.9

386.0386 1386.2386.3386.4386.5386.6386 7386.8386.9

387.0387 138 7.238 7.338 7.43 87.5387.6387.7387.8387.9

388.03 88.:1388.2

38.388.4388.5388.6388.73 88.8a388.9

1.641.2161.2601.3041. 348

1.387'1.4061.4261.446

1.4461 341

1.132104 3

1.:05 71.0711085

1.01 7

0.9420 86 70.7940.7440.6950.64 50.5960.6400.6840.72 8

0.7 380. 74 70.75 70.7240.6890.6540.6890.7 310.7930.725

0.65 70 80 30.9 781.15 31.1 861 .2I1. 1991.21 11.2241 .23 7

12 511.:2651.2791.2411.81.1331.1 031.08a1

0. 993

0.9080 8240.8450.9 170.9 891.061

11251.0 70

0.9620.9290.9 110.8930.9691.11 7

13001.2 391.17 7

11161.:0581.004

0.92 80.9410.9540.9 860. 9 791 .022

6.566.576.586.6.596.606.616.626 636.64

6 656.666.676.686.696.706 716.716.726.7 3

6 746.746.756.756.766.766.776.776.786.78

6 796.796.806.806.816.816.826.826.836.83

6 846.846.856.866.876.886.886.896.906.91

6.926 936.946.956.956.966.976.986.996.99

7.3007.017. 017. 027.037 037.047.057.067.06

7.077. 08

7.09

7. 117. 117.127 137 .14

7.17.:1 67. 177. 177.187 197. 197.207. 217. 21

389.0 1.106 72389.1 .89 72389.2 1.256 7.24389 .3 1.29 8 7.25389.4 1.340 7.26389.5 1.379 7.27389.6 1.414 7.28389 .7 1.448 7.29389.8 1.452 7.30389 .9 1..3 96 7.31

393010 1.341 J 7.32390.11 I 293 7.3

1.:26312 3 3

1 .11091.0311. 0091. 157'1. 304

1.:42 914761.52 31.5511.50 31.4541.4101.391

1.34 7

1. 28 3

1.15 31.099

1.1371. 06 70.850o

0.7134

0.5030. 4380. 3720.3120. 42 50.5380.6540. 794

0. 9341.0501.0761102

1.2511.3511.4001.3741.348

1. 35 31 30

142 71. 45 31. 47 31 49 31.45 31. 3851. 31 81. 224

1. 12 2I.0210. 9660. 91 70.81690.8200. 600. 5200. 3700.426

0.4840. 5410.7040.86 7I.0311. 1161. 1"1. 2821. 4361. 592

1 7481.6951. 63 51. 574

16561. 6991. 7621.8261.890

18491.8261.8011. 7761. 7501 .6701. 58 71. 5031. 590

7.347 347.357.367.377. 387. 387. 39

7.407 417.427.447.457.467 477.487.497.50

7. 517.527 527.537.547.557.567.577.577.58

7.597 597.597.607.607.60

7.61

7.62

7.6 37 637.647 657.667.667.677.687.697.70

7. 717 727.737.747.757.767.787.797.807.80

7.817 827.837.837.847.857.857.867.867.86

7.877 877.877.887.897.897.907.917.927.93

7.947.967.977.987.998.00

8028. 0383.048. 05

8.078.088.098.I118.128.138.148.168.1718.18

390.2390 3390.4390.5390.6390.7390.8390.9

391.0391.1391.23 91.3391.4391.5391.63 91.7391.83 91.9

392.0392.1392.2392.3392.4392.5392.6392.7392.8392.9

39 3.0393 13 93.239 3.339 3.439 3539 3.639 3.739 3.8393.9

394.0394. 1394. 2394. 3394.4394. 5394.63 94 .7394. 8394. 9

395.0

39 5.2

395.4395.5395.63 95.7395 .8395.9

396.0396.1396.23 96 .3396 .4396 .5396 .63 96 .7396 .8396 .9

397.0397 1397 .23 97 .339 7.439 7.539 7.6397 7397 .839 7.9

398.0398.:13 98 .2398.3398.4398 .5398 .6398 .7398 .8398 .9

399.0399 13 99 .2399 .3399 .4399 .5399 .6399 .7399 .8399 .9

403.0 1.69240.1 1.791400.2 1.844400.3 1.892400.4 1.939400.5 1.781400.6 1.604400.7 1.426403.8 1I508400.9 1.61 7

401.0 1726401. 1796401.2 1.86 340 1.3 1. 929.40 1.4 1 .950401.51 1.966401.6 1.982401.7 1.978401.8 1.920401.9 1.862

402 .0 1. 83 3402. 1.0402.2 1782402.3 1. 779402.4 1. 779402.5 1. 779402.6 1. 831402.7 1. 892402.8 1. 952402.9 1. 802

403. 1.7403.1l 1.433403.2 1. 459403.3 1.522403.4 1.585403.5 1.733403.6 1.897403.7 2.060403.8 2.010403.9 1.920

404.0 1.829404.1 1.889404.2 1.980404.3 2.072404.4 1.769404.5 1. 384404.6 0. 998404.7 1. 176404.8 1.478404.9 1.780

405.0 1822405.1 1.805405 .2 1. 787405 .3 1. 736405 .4 1. 676405 .5 1. 617405 .6 1. 573405.7 1.533405.8 1494405 .9 1. 602

406.0 1.749406.1 1.897406 .2 1. 792406 .3 1. 619406 .4 1. 446406 .5 1. 433406.6 1.:467406.7 1501406 .8 1. 643406 .9 1. 818

407.0 1.992407.1 2.007407 .2 1.973407 .3 -1. 939407 .4 1. 859407 .5 1. 765407 .6 1. 671407 .7 1. 703407 .8 1. 777407 .9 1. 851

408.0 1.876408.1 1.885408 .? L.893408 .3 1. 874408 .4 1. 845408 .5 1. 817408 .6 1. 881408 .7 1. 980408 .8 2.078408 .9 2.080

409.0 2.045409.1 2.010409 .2 1.995409 .3 1. 989409 .4 1. 983409 .5 1. 918409 .6 1. 829409 .7 1. 740409 .8 1. 655409.9 1.573

8.198 208.228.238.248.268.278.288.2980

8.318.3 38.348.358.378.388.398.418.428.44

8.458.468.488.498.508 518.538.548.558.57

8.58a

8 598.608.618.628.648.658.668.688. 69

8. 708.728.7 38.758.768.778.788.798.808.81

8.828 838.858.868.878.888.908.918.928.93

8.948 958.978.988.999.009.019.029.0 39.05

9.069.0 79.099.09.:129.1L39 149.59. 179. 18

9. 199. 219.22

9.2 59.269.2 79.299.309.32

9.3 39 359.369.3 79.399.409.429.4 39.449.45

~, H~ P,,~

410.0 1.40 9.46

410.1 1471 9.47410.2 1. 478 9.484003 1. 486 9.50410.4 1. 540 9.51410.5 1.8613 9.52410.6 1. 687 9.53410.7 1. 900 9.54410.8 1. 890 9.56410.9 1. 879 9.57

411. 1.893 9.584111 I.919 9.80431.2 1. 945 9.61411.3 1.984 9.62401.4 2.029 9.44411.5 2.075 9.64116 1.979 9.7411.7 1. 812 9.68411.8 1. 645 9.694t1.9 1.8667 9.71

412.0 1787 9.72412.1 1.907 9.73412.2 1.951 9.75412.3 1. 953 9.76432.4 1. 956 9.77412.5 1. 944 9.79412.6 1. 924 9.8412.7 1.904 9.82412.8 1.900 9.83412.9 1. 904 9.84

413.0199 984131 1862 98413.2 1. 784 9.8413.3 1.706 91.90413.4 1.748 9.1413.5 1. 863 9.92413.6 1. 977 9.93413.7 2. 050 9.95413.8 2.098 9.96413.9 2. 146 9.8

414.0 2.094 9.99414.1 1.978 10.01414.2 1. 862 10.02414.3 1.83 I0.04414.4 1.68 10.05414.5 1.9 01 10.06414.6 1.9 63 10.08414.7 2.046 10.09414.8 2.128 10.11414.9 2.1 12 10.12

415.0 2.028 10.14415.1 1.944 10.15415.2 1. 852 10.16415.3 175 10.18415.4 1655 10.19415.5 1. 652 10.20415.6 1. 719 10.21415.7 1. 785 10.23415.8 1.8964 10.24415.9 1. 953 10.25

416.0 2.043 102416.1 2.116 10.:28,416.2 2.1 77 10.30416.3 2.38 10.31416.4 2.22 10.33416.5 2.1 62 10.35416.6 2.097 10.36416.7 2.0167 10.38416.8 2.067 10.39416.9 2.068 10.41

417.0 1.976 10.42417.1 1.30 1043412 1.41 10.45417.3 1.601 10.46417.4 1.670 10.47417.5 1.739 10.48417.6 1.761 10.49417.7 1.742 10.51417.8 1.722 10.52417.9 1.7 22 10.53

418.0 1.7910.54

418.1 7.55 10.56418.2 1. 791 10.57418.3 1. 845 10.58418.4 1. 898 10.60418.5 1. 858 10.61418.6 1. 728 10.62418.7 1. 597 18.64181.8 1. 647 10.65418. 1. 875 10.866

419.0 2.103 10.67419.1 2.223 10.89409.2 2.233 10.70409.3 2.243 10.72419.4 2.202 10.74419.5 2.108 10.75419.6 2.013 10.774191.7 I1732 10.7,8419.8 1736 10.79419.9 1. 740 10.80

2226 APPLIED OPTICS / Vol. 8, No. 11 / November 1969

continued

Page 13: Determination of Extraterrestrial Solar Spectral Irradiance from a Research Aircraft

Table VII. (continued)

P~, ~ ,, H., I P,, I ), I H).I P, , I ,.. PX, X ,~ H, I P, I f, H),, 1 P,, 1 x,. H55I's.sI% I 5 Ws.s4% 1555 - -w.Zssji ___ , Iwss __ I __ /.. % -f' we.e % Sm I8c~

450.0450 1450.2450.3450.4450.5450.6450.7450.8450.9

451.0451 1451 .2451.3451.4451.5

451.1451.8451.9

452.0452 1452.2452.3452.4452.5452.6452.7452.8452.9

453.0453 1453.2453.3453.4453.5453.6453.7453.8453.9

454.0454 1454.2454.3454.4454.5454.6454.7454.8454.9

455.0455 1455.2455.3455.4455. 5455.6455. 7455.8455.9

456.0456. 1456.2456. 346445456 .6456 .7456.8'456.9

457.045 71457 .2457 .3457 .4457 .5457 .6457 .7457 .84 57 .9

4 58.0458 14 58.2458 .3458 .4458 .5458 .6458 .745.8 458.9

459.04 59 14 59.2459.3459.44 59.5459.6459.7459.8459.9

2.0232.0 742.1492.2442.3452.3302.2862.2512.2 192.25 3

2.3052.2 542.1742.1322.1022.1242.1632.1692.1652.195

2.2 372 1592.0442.0362.0641.9741.8451.812

1. 821

1.8 351.9 362.0682.0021.8631.9662.1582. 172.1302.085

2.0422.0942.185

2.12 72.1002.08 12.0241.95 11.918

2 .07 52.0992.0952.0408.9611 .9852.056

2. 141

2.:1212.492 .202. 155

2.06 12.0 692.1282. 1692. 20 12. 169

2.10 3

2. 16 32. 1962. 2202.-2 322. 2 382. 2002. 1372. 072

2.0052.0452.1492. 1392. 0592. 0572. 1052. 1622. 2242. 22 3

2. 122.382.09 12.08 32. 0992. 0742. 0192. 0382. 1092.067

14.7914.8014.8214.8314.8514.8614.8814.9014.9114.93

14.9514.9614.9814.9915.0115.0215.0415.0615.0715.09

15.115 1215 .1315 .1515. 1615.18

15.1915.2015.2215.23

15.2415 2615.2715.2915.3015.3115.3315.3415.3615.37

15.3915.4015.4215.4415. 4.515.4715.4815.5015.5115.52

15.5415 5515.5715.5815.6015.6115.6315.6415.6615.67

15.69115.7015.7215.7315.7515.7615.7815.8015.8115.83

15.8615.87

15.8915.9015.9215.94

15.9515.9715.98

.16.0016 0116.0316.0416.0616 0716.0916.1016.1216.13

16. 1516 1716.816. 2016. 2116.2316. 2416. 2516. 2716.8

460.0460.1460 .2460 .3460 .4460 .5460 .6460 .7460 .8460 .9

461.0461.1461.2461.34 61.4461.5461.6461.7461.8461.9

462.04 62 1462.2462.3462.4462.5462.6462.7462.8462.9

46 3.0463.1

463.3463.4463.5463.646 3746 3.846 3.9

464.0464.1464.2464.3464.4464.5464.6464.7464.8464.9

465.0465.1465.24 65.346 5.44 65.5465.6465.7465.8465.9

466.0466.1466.2466.3466.4466.5466.6466.7466.8466.9

46 7.0467.1467.2467.3467.4467.546 7.6467.74 67.8467.9

4 68.0468 14 68.24 68.34 68.44 68.5468.6468.7468.8468.9

469.0469.1469.2469.3469.4469.5469.6469.7469.8469.9

194 61936

2.00 82. 0792.0862 .0462.0842 .1822. 2802.24 8

2.1142. 07 72.1172.1572. 1972. 1752.10 12.0562. 0342. 078

2. 1792.892.12 22. 1202.175

2.2002.2002. 1692. 1102.12 7

2.2142. 1922.0692.0482.1242.85I12. 1312. 12 02.1

2. 1692.572.0942.0792. 1152. 086

1.:'9111 .9542. 02 7

2.0702. 0802.0622.01 31. 9992.0262.08 62.18 52.23 12.214

2.1702.0922.0722.12 12.09 41.9701.8671.789I.8292.021

2.1202. 0922.0842.10 52.12 62. 1492. 13 12. 05 31. 9871.936

1.9121.9291.9762.0702.124

2. 1282. 1252.09 7

2.0862. 1022.0912.03 32.0502.1892.2192.0611.9711. 999

16 3016.3116.3 316.3416.3616.3716.3918.4016.4216.4 3

16.4516.4616.4816.5016.5 116.5 316.5416.5616.5716. 59

16.6016. 62I6.6 316. 6516.66

16.6816.6916.7116.7 316. 74

16.7616 7716.:7916.8016.8216.831'6.8516.8616.8816.89

16 9116.9216.9416.9616.9 716.9917.0017.0 117.0 317.04

17.0617.:0717.0917.1017. 1117. 1317. 1417. 1617.1,81 7.19

17.2117.2 217.2417.2517.2717.2 817.3017.3 117.3217.34

1 73517.3717.3817.4017.4 117.4 317.4417.4617.4 717.49

17 5017.5I17.5 317.5417.56t7.5 717.5917.6017.6217.6 3

17.6 517.6617.6817.6917.7 117.7217.7417.7517.771 7.78

470.1470 .2470 .3470.4470.5470.6470 .7470 .8470 .9

471.0471.147 1.2471 .347 1.447 1.547 1.647 1.747 1.8471.9

472.0

472 .2472 .3472 .4472 .5472 .6472 .74 72 .8472. 9

473.0473.1L47 3.2473 .3473 .4473 .5473 .647 3.7473 .8473. 9

474.0474 1474.2474.3474.4474.5474.6474.7474.8474.9

47 5.0475.147 5.2475.3475.4475.475.647 5.7

475.8475.9

476 1476.2476.3476.4476.5476.6476.7476.8476.9

477.04 77 147 7247 7347 7.44 77.5477.647 7.7

47 7.9

478.0478 147 8247 8.3478.4478.5

478.7478.84 78.9

479.0479.1L479.2479.3479.4479.5479.6479.7479. 8

2.0021.9591.9391.9621.99 22. 0382.0411.9641.93 72.00 5

2.0632. 1002.09 82.0 181.9882.0612.1 312. 194

2.23 32. 220

2.20 72 1892. 1722.1762.2 252.2242.10 72.02 72.03 22.01 2

193 31. 91 32.0 3 72 .1322. 1512. 14712. 0322 .1032 .1462 .11 6

2.2882.0642.0592.1052. 1262. 0742. 0582. 14 72. 2062. 175

2 1492.402. 1242. 0892.05 72. 0362. 0292. 0692.12 12. 2193

2.2 682 1992.13 12.07 72.07 52. 06 32. 008

2.12 8

2.1082. 0862.0 582.0622.19 52.29 32.2 422.1972.17 52. 164

2.19 82.2 082.1022.0292.1092. 1642. 0992. 0452. 0472.05 7

2.02.:1 532. 1692. 1892.2 322.2 652.2 3 32. 2002. 164

17.8217.8417.8517.8 717.8817.9017.9 117.92

17.9417.9517.9717.9818.0018.0 118.0318.0418.06I8.08

18.0918.1218.1418.15

18.1718.19L18.20

1823

18.2418.2618.2718.2918.3018.32

18.3318.3518.3618.38

18 3918.4118.4218.4418.4518.47

18.4818.5018.5118.53

18.5518 5618.5818.5918.6118. 6218.:6418.6518.6618.68

18.70o

18.7118.7 318. 74

18761877

18.71918.80o18. 82

18 8618.8818.8918.91I8.9218.9418.9618.9718.99

19.0019.0219.0319. 0519.0619.0819.0919.119 1219.4

19. 1519.1LI719.119.20

19.2219.2 319.2519.26

19. 28479.9i 2.131 I19g.29

480.1480.21480.3480.4

480.5

480.7

480.9

481.0

48.1

481.3481.4481.5481.648 1.7481.81481.9

482.0482 1482.2482.3482.4482.5482.6482.7482.8482.9

483.0

4833.2463.3483.448 3.5483.6483.7483.8483.9

404.0484.1484.2484.3484.4484.5484.6484.7484.84834.9

485.0485 1485.2485.3485.4485.5485.6485.7485.8485.9

486.0486 1486.2486.3486.4486.5486.6486.7486.8486.9

487.0487 1487.2487.3487.4487.5487.648j7.748I7.8487.9

488.048.1488.2488. 3488.4488.5488.6488.7488.8488.9

2.02.1472.1732.10 12.0 402.06 12.0 792.0 772.07 3

2.0 52

2.033

2.04 72.1132.1762.2202.2562.2 252.19 3

2.1602.11 92. 0051. 9122.0 452.16 7

2. 0822. 024

2.0 352.0442.02 42.01 12.I 062.19 52. 1992.I9 72. 09 31. 995

1.9912. 0 302.0682. 08 3

2 .0982 .0 872.0 76

2.05 82.042

2.0 762.1L092.0862.0601.9 141.770O1.802

1.6 851.37

1. 2821. 02 8

1.879I1.72 8

1.8 65

2.066

1. 768

1.9 291.9 081.9"5

2.068 2.134

I:.9712.0222.0 741.9411.8071.8791.9511.9321. 9 14

489.0 1.719489.1 1.525489.2 183L48 9. 3 2. 13848 9.4 2. 15048 9.5 2. 16248 9.6 2. 16 748 9.7 2. 17 3489 .8 2.151 48.9 2.1 28

P3).

19. 31t9.3219.3419.3619.3719.3919.4019.4219.4319.45

19.:4619.4719.4919.5019.5219.5319.5519.5719.58

19.61

19.6319.8419.1619.67

19.919.7019.7219.7I319.7I5

19.7819.7919.8 119.8219.8419.8519.8 719.8819.90

19.91

199319.9419.9619.9 7

19.9920.0020.0220.0320.05

20.062 0.0820.0920.I120 .1220 .132 0. 1520 .1620 .8720 .18

20.1920 2020.2 120.2220.2 320.2 520.2620.272 0.292 0.30

20.3120.3 320.3420.352 0.3720.3820.3920.4 120.4220.44

20.4520 4720.482 0.5020.5 120.5220.542 0.5520.562 0.58

2 0.5920.6020.6220.6320.8420.8620.82 0.6920.7 120.72

continued

November 1969 / Vol. 5, No. 11 / APPLIED OPTICS 2227

10.82to0.8310 .8410 .8510 .8710 .81 0. 8910 .9110 .9210.94,

12.0812.0912.1012.11I12. 1212.I112. 1412. 1412. 1512. 16

420.0420 1420.2420.3420.4420.5420.6420.7420.8420.9

421.0421 1421.2421.3421.4421.5421.6421.7421.8421.9

422.0422. 1422. 2422.03422.4422.-5422. 6422. 7422.8422.9

423. 0423. 1423. 2423. 3423. 4423 542 3.642 3.742 3.842 3.9

424.0424 1424 .2424 .3424 .4424 .5424 .6424 .7424 .8424 .9

425.0425 1425.2425 3425 .4425 .5425 6425~ 7425 .8425 .9

426.0426.1i426.2426.3.426.4426.5426.6426.7426.8426.9

427.0427 142 7.2427.3427.4427.542 7.6427.742 7.8427.9

428.0428 1428.242 8.3428.4428.5428.6428.7428.8428.9

429.0429 1429.2429.3429.4429.5429.6429.74 29.8429.9

I.687172931.8991.9691.9982.02 72.039

2.0302.0202.0 172.0222.02 72.0051.9511.89 71.8991.975

2.0512.0501.9461.8421.6701.4051.1411.11 71.4 301.-743

1.18691 .8271. 75 81.6521.5451.5251.6391.7521.834

1.8661.81981.9492.0322.L142 .1071.95 11.7961.6861.:655

1.:62416101.6281.6451718

1. 8922 .0662.0791.:7931.506

1.4021.6 501.89 72.0552.0 352.0 141.9741.89 31.8121.718

1.51971475

1.4191.5071.5951.6951.82 31.95 12.0 151 .93 1

1.8:1471794

1.8 18I.841I.8541.84LI.8281.7611.6651.568

1.6021.68 31.7291.6761.6241.5361.3481.1601.032

430.04 30 14 30 .2430 .34 30 .44 30 .5430 .64 30 .74 30 .84 30 .9

431.0

431.24 31.34 31.4

431.9

432.04 32.:14 32.24 32.34 32.44 32.54 32.64 32.74 32. 84 32.9

43 3.04 33 143 3.243 3.3

4 33.84 33.9

4 34.0434. 14 34.24 34. 34 34. 44 34. 54 34. 64 34. 74 34 .8434.9

435 .0435. 14 35.24 35. 34 35.4

435.57435 .6

435.9

4 36.04 36 14 36 .24 36 .3436 .4436 .54 36 .64 36 .74 36 .84 36 .9

43 7.04 3 7.14 37 .24 3 7.34 37 .44 37 .5437 .64 3 7.74 3 7.84 3 7.9

4 38.04 38.:14 38 .24 38 .34 38 .44 38 .54 38.64 38 .74 38 .84 3 8.9

4 39.0439 14 39 .24 39 .34 39 .44 39 .5439 .64 39 .7439 .8439.9

1.0801 12 71.173

1.21 51. 2561.2621.1561. 049

0.98191.079

1 1691.27 31.42 44

15741. 7321. 9192. 1062. 2342.1L432.052

1. 9381.73 51 53 31.3841.:445

15061. 5841.7371 8892. 015

2. 0252. 0362. 0442.04 32. 04 32. 00 71. 8051.6 031.4381. 45 8

1.47 7I:.51 11. 6211. 7301. 82 91. 8761. 9221. 94 81. 8561. 764

1.6941.7591. 82 51. 8871. 92 91. 97 01. 9998

1. 8611. 810

1.9592.0302. 06 72.1052.1 352.1 002.0 652.0 291.9 88

1.94 71.9011. 8061.7ILIL. 63 11. 7051. 92 61. 9221. 9191. 898

1.67 9L.4591.268L. 4601. 65 31. 83 21. 8041. 77 71. 7521. 778

1.80 51 8301.8141. 7981. 78 81. 9072. 02 62. 1362. 0011. 866

440.0440.1440 .2440 .3440 .4440 .5440 .6440 .7440 .8440 .9

441.044 1.1441.2441.344 1.4441.5441.6441.7441.8441.9

442.0442 1442 .2442 .3442 .4442 .5442 .6442 .7442 .8442 .9

443.0443 1443 .2443 .3443 .4443 .5443 .6443 .744 3.8443 .9

444.0444.1444 .2444 .3444 .4444 .5444 .6444 .7444 .8444 .9

445.0445 1445 .2445 .3445 .4445 .5445 .644 5.7445 .8445 .9

446.0446 1446 .2446 .3446 .4446 .5446 .6446 .7446 .8446 .9

447.0447 144 7.2447 .3447 .4447 .5447 .6447 .7447 .8447 .9

448.0448 1448 .2448 .3448 .4448 .5448 .6448 .7448 .8448 .9

449.0449 1449 .2449 .3449 .4449 .5449 .6449 .7449 .8449 .9

1. 735.7 141.6931.67 51.7701.865

1.95 81.9822.0052. 029

2.0992. 1682. 2371.9691.7011.840

1.9812.07812.1762 .138

2.0991.:9791.85 81.9942. 13 52 .1022 .0642.0662 0681.98 7

1.9021.9602. 02 31.8741.7151.8592.01 82.0572 .0902. 07 3

2.054

19772.1592.112. 0472.0682.0962. 124

2.1592.196

1.7651.796

1.351.81661.898

1.98 12. 0682.1562.1 052.0 362.0 192.0 091.95171.9 211.9 57

2.00 32. 0362.06 72.1252.1872.2082.2 222.2052.1 832.0 34

1.91 3

2.0012.0922.1842. 2 3 82.2 852.1421. 9622.016

21152 1 392.1 472.0 691.9 741.9 912.0.322.0 682.1032.0 71

10.-9710.981 0.9911.01

.. 021 1.0411. 0511. 0611.08

110911. 1211. 1411. 1511. 1611.1711.18a

11.1911.20

11 2111.2211.214L11.2511. 2611. 2711L.29111. 3011. 3111. 32

11. 311.3511. 3611.31811.39 11. 41

11. 4311. 4511. 46

1 1.4711.48

11.49 11.511 1.53

11541156

11L.59

11.60

1 1.621163

1 1.651 1.66

1 1.691 1.710

1. 72

1 1.73L11741 1. 7511. 7611. 77

1180

11.84

11 87

1 1.921 1.9 31 1.941 1.91611. 97

I1.9912.0012. 0112. 031 2.041 2.0512.061 2.0712.08

1 3.3413.3513.3713.3813.3913.4013.4213.4313.4513.46

13.4713.4913.51

13.5213.5313.5513.5613.581 3.5913. 61

13.6213.6413.6513.6613.6813.691 3.7113 7213.7413.75

13 7713.781 3.791 3.8113. 8213.8 313.8513.8613.8813.89

13.9113.9213.9413.9513.9613.9 81 3.9914. 0114.0214.04

14.0514.0714.0814.10

141414.1514 1614.18

14 1914.2114.2 214.2414.2514.2 714.2 814.2914.3 114.32

14 3414.351 4.3 714.3814.4014.4 114.4314.4414.4614.47

14.4914.5014.5214.5 314.5514.5614.5814.5914.6 114.62

14.6414.6514.6 714.6814.7014.7 114.7 314.7414.7614.7 7

12 17

12.2012. 211212.2412.2

12.28

12 3012.3112.3212.3312.3412.3512.3612.3812.3912.40

12. 4212.4312.4512.4612.4812.4912.5012.5212.5312.54

12. 5512.5612.5712.5812.5912.6112.6212.6412.6512.66

12. 6712.6912.7012.7112.7312.7412.7512.7712.7812.80

12.8112.8212.8412.8512.8712.8812.9012.9112.9312.94

12 9612.9712.9813.0013.0113.0213.03

13.051 3.0613.07

13.09

13.11 13. 12

131413. 1513. 1713. 1813.1L9

13.2 113.2213.2313.2413.2613.2713.281I.3013.3113.33

Page 14: Determination of Extraterrestrial Solar Spectral Irradiance from a Research Aircraft

Table VIH. (continued)

H, . P . [H,.1 P, 1 H, I .I ~' I . H,* . T .F H,,. P~ 1 . j Hli. Ps . I . H,.Sm I I I IWss J .I % I . I W.s -% W s -ss~ _5 I jW/mZs .I.5 _5 IL .. I % _ __, .. I I _ ~ I 'J-20.7420.7920.7 720 7820.8020 .8120.8a320.8420. 8620 .87

'20.8920 9020.9220.9320.9520.9620.9820.9921.0021. 02

21.0321.0421.0521. 0721. 08

21. 1121. 12

21.1I5

21.1~7

21.1821.2121.2321. 2421.26

2 1.2"921 30

2 13121.33

21.36

21.3921.4021. 4221.4421.45

21.4 721.4821. 5021.51t21. 5221. 5421. 5521. 5621. 582 1.59

2 161216221.6321.6521.6621.6821.6921.7121.7221.74

2 1.7821.80

21 .421.86

21.9021.9221.9321.9421.9521.3721.982 2. 0022.0 12 2.03

2 2.042 2.0522.0722.0822.1022.11

22.1I422.622 .17

900.00500 1500 .2500 .3500 .4500 .55 00.6500 .7500 .85 00 .9

501.0

50 1.2501I.350 1.450 1.550 1.650 1.7

50 1.9

502.0502.1502.2502.35 02.4502.5502.6502.7502.8502.9

50 30503 150 3.250 3.35 03.45 03.550 3.650 3.7s o0 9 .850 3.9

504.0504 15 04.2504.3504.45 04.55 04.6504.75C4 8504.9

50 5.0505 1

505.25 0 5 3

50 5.4505.55 05.65 05.7505.8505.9

506.0506 15 06.25 06.3506.4506.550 6.6506.7506.8506.9

50 7.0507 1507.250 7.350 7.450 7550 7.650 7.750 7.8a50 7.9

508.0509 1508.2506.3508.4508.5508.6508.75 08.8508.9

509.0509 1509 .2509.3509.4509.5509.6509.7509.8509 .9

192711910

1.89 31.89 31.8941.895

1.8961.9922. 088

2.03 71. 985

1.8821.8301.85 71.88 51.8941.904

1.:92219 31

1.9401.9792.018I1. 9671.916

1.99

2.012

2.0302. 04 82.0752.1031.98 31. 8641. 9061.94 8

1. 682

1.:6681654

1. 88 72.it192. 0962. 0 732. 0502. 02 72. 0051.982

1. 975

2. 012.039

2.0I7

2. 171

2. 12 82. 0862.04 32.0001.9381.87 3

1.9061. 96912.03 3

1.9892.051t2. 0782. 1062. 02 11.93 71.8241.71 2

1:.814

1 .9222.0262. 0462.0652.0592. 0 3

2.0622 0722.11 72. 1612.1I032.04 61. 9681. 8911.8512I.8 13

22.1 82 2.2022.2 122.2 322.2422.2522.2 722.2822.292 2.31

2 2 32

2 2. 352 2.3722. 382 2.3922. 4122. 4222.4 322.4 5

22.4622.4 722.4922.502 2.5222.5 32 2.542 2.562 2.5 722.59

22.6022 6222.6 322.6522.6622.6 722.6922.7022.7 12 2.7 3

2 2.742 2.752 2.762 2.7 82 2.792 2.8 12 2. 8222 .8422 .8522.8a7

22.8822 9022.9 122.922 2.9422.9522.9 72 2.982 3.002 3.0 1

2 3.032 3.042 3.062 3.0712 3.092 3.102 3.112 3.182 3. 142 3. 16

23.1

23. 202 3.2123. 232 3.242 3.2 62 3. 272 3. 292 3.30

23.3 12 3.322 3.342 3.352 3.362 3.38253.19

2 3.4 1293.4 22 3.44

2 3.452 3.4 72 3.4 82 3.502 3.5 12 3.5 32 3.542 3.562 3.5 72 3.5 8

510.0

510.2

510.4

510.6510.7

51 10

511t.3511I.4511.5511.

511.85t1.9

512.0512 15I2.2512.3512.4512.55I2.6512.7512.8512.9

51 3.0513 15I3.2513.3513.4513.5513.6513.7513.8513.9

514.0

514.2514.3514.4514.55I4.65I4.7514.8514.9

515.0

015.2515.3

515.4515.5515.6515.7515.8515.9

516.0516.1516.2516.3516.4516.5516.65116.7516.8516.9

51 70517 1517.2517.3517.4517.5517.6517.7517.8517.9

518.0518 1518.2518.35I8.4518.5518.6518.7518.8518.9

519.1519.2519.35191.4519.5519.6519.7519.8519. 9

1.92 72.042

2.02 12.0402.0602.0 1 21.964I.9151.867

1.97 32.0 7 82.0692.0592.0862.1 122.0862.0592.03 32.006

1.9801.9541.927

I.8741.8481.866

1.9011.919

1.95 31.98 7I.9461.905

1.9592. 0 1 31.95 31.8921.8021.7 73

1.:7727 7 1

1I9021.93619 7II.9141.85 71.8911.926

I.9361.8921.84 7

I.9082.00 72 .1072.0 341 .962

1.9611.9601.918

1.7471.6181.4751.3311.4751.638

1 62511.5761.5261.4761.596

2.0422.059

2004

1.9251.76711.6021.3911.1801.47 7I.7 731.8661.959

1.997

1.301.6641.72 71.791

1.8 101.8571.9041.949

23.602 3.6123. 632 3.642 3.652 3.672 3.682 3.732 3.7123.7 3

2 3.742 3.7523.7 72 3.782 3.802 3.8123.8 32 3.842 3.862 3.87

23.8923.902 3.9223.9 32 3.942 3.962 3.9723.98a24.0024.0 1

24.0224.0424.0524.0 724.0824.0924.I1124.1224.1424.15

24 1624.1724.1I924.2 024.2 124 .2324 .2424 .2624.2 724.2 8

24.3024 3124 .3224 .3424 .3524. 3624.38a24.3 924.4 124.42

24.4424.4524 .4624.4 824 .4924 .5024 .5124 .5224.5 324 .55

24.5624.5 724 .5824 .5924 .6024.6 124.6 324 .6424 .6624 .67

24.6924 7024. 124 .7224.7 324 .7424 .7524 .7724 .7824 .79

24.8124 8224.8 324 .8524 .8624.8 724 .8824 .9024.9 124. 93

520.0520.1I520 .2920 .3520 .4520 .5520 .6520 .7520 .8520 .9

521.052 1.152 1.252 1.352 1.452 1.552 1.652 1.7521.852 1.9

522.0522. 1522 252 2.3522 .4522 .5522 .6522 .7522.8522 9

52 30523 15 23.2523.3523. 452 3.552 3.652 3.752 3.852 3.9

524.0524 1524 .2524 .3524 .4524 .5524 .6524 .7524.8524 9

525.0525 1525 .2525 .3525 .45 25 .552 5.652 5.7525.85 25.9

526.05 26 1526 .2526 .3526.4526.5526 .6526 .7526 .8526 .9

52 7.35 27 1527 .2527 .35 27.452 7.552 7.652 7.752 7.852 7.9

528.0528 1528 .2528 .3528 .4528 .5528 .6528 .7528 .8528 .9

529.0529 1529 .2529 .3529 .4529 .5529 .6529 .7529 .85 29 .9

1.9942.0 122.0331.9761.922

1.8601 .946I1.924

1.9021.:9782.0542.044

2.0211.912

1.8211.916

2.Oil1.9781.9451.9621.9791.8741.7691.759I.7481.856

1.:96 31.9141.865

1.7861.8 151.8431.9662.08 82.018

1.:94 71.9431.9381.9451.9522.0082.0642.0021.9411.92 5

1.9101.92 31.9 3 71.94 71.9581.9621.9662.0412.1 162 .055

1.995

I.9031.8121.7201.6 721.6291.5861.6891.7921.642

1.:491170I

1.9101.82 71.82 71.7961.769

1.8952.0251 .975

1.9251.8 8018 341.828

1.926.029

2 .0292.0291 .998

1.9672.00 32.0 391.9 831.9261.938

I.8111.902

24.9424.952 4.972 4.982 5.0025.0 125.0225.0425.0525.06

25. 082 5.09

2 5 .122 5 .142 5 .152 5 .16

25 .1925.20

25.2225.2 325.242 5.262 5.2 725 .2925 .302 5 .3125 .322 5.34

25.3525 37251. 3825 .3925.4125 4225 .4325 .4525.4625 47

25.4925 5025 .5225 .5325 .5425 .5625 .5725 .5925.6025 62

25.6325 6425 .6625.6725.6925.7025 7125 .7325 .7425 .76

25S.7 72 5.7925.80o25 .8125. 822 5.842 5.8525 .8625 .8725 .88

25.9025.912 5.9225.9 325.9525.962 5 9725. 9926.0026.01

26.0326.0426.0626 .0726 .0826 .0926 .112 6 1 2~26.14I26. 15

26.-1726. 1526.2026.2L26. 2226.2426 252 6.2 726. 2826. 29

5 30.0530.15 30. 2530.3530.4530.5

530.6530.75 30 .8530.9

5 31.:0

5 31 .2531 .353 1.45 31.551.6

5 3 .531.85 31.9

5 32.05 32 15 32.2532.3532.4532.55 32.6532.7532.85 32.9

533 153 3.2533.353 3.453 3.553 3.65 33.75 33.8533.9

5 34.05 34.15 34.25 34.35 34.4534.55 34.65 34.7534.85 34.9

5 35.05 35.15 35.25 35.35 35.45 35.55 35.65 35.75 35.85 35.9

5 36.05 36 15 36.25 36.35 36.4536.55 36.6536.7536.85 36.9

5 37.0537.153 7.2537.353 7.45 37.5537.6537.7537.85 37.9

5 38.05 38 15 38.2538.3538.4538.5538.6538.7538.85 38 .9

5 39.05 39 15 39.25 39.35 39.45 39.55 39.6539.75 39.85 39.9

1.99 32. 01 32.0342.051,2.0682.0942.1202.09 72.0752.076

2 0522.02 71.9931. 9591. 92 71.86961. 94 71. 992.020

2.0421.9521. 86 31. 7981. 7421. 7541. 76 71. 7 731. 7791. 918

2.0562. 0342.0122.0102.00 8I.9701.93 31.882

1831

1.82 51. 8761.901o1.912 71. 94 61. 9651. 9781. 9902.001

2.0122.0242.0362.03 32.0292.0402.0502.04 92.0482.006

1. 964,1.9291. 89 31. 8911. 8591. 8501.64 11. 82 61. 8101. 749

1.7601. 8321. 87 91. 92 71. 9511. 9751. 92 51. 8751. 863

1. 85 11. 8491. 91 31. 9762. 03 72. 0982.05 12. 00 31. 934

1.81641.84 71. 8301. 83 31. 83 51. 8461.05 71. 8641. 8701. 861

26 3126.322 6.3426 .3526 .362 6.3826 .3926.4 126 .422 6.44

2 6.452 6.4 726.4 826.5026.5 126.5 326.5426.5526.5 726.58

26.602 6.612 6326.6426.6526.6626.,6826.6926.7026.72

26.7 32 6.7426.762 6.7726.7926.8026.8226.85326.8426.86

26.8 726. 8826.926.9t26.9226.9426.9526.9626.9826.99

2 7012 7.0227.0427.0527.0 727.0827.09

27.1227.14

27.1

27.1927. 2127.2 227.2 32 7.252 7.262 7.2 7

27.2927 3027 .3127.322 7.3427 .3527. 372 7. 3827. 392 7.4 1

2 7.422 7 4327.4527.4627.4727.4927.5027.5227.5327.55

2 7562 75 727.5927.6027.6127.6327.6427.6527.672 7.68

540.3540.1540.2540 .3540 .45403.55403.6540 .7540 .8540 .9

541.054 1 I 1541.2541.3541.4541.5541.6541.7541.:8541.9

542.0542.1542.2542 .3542.4542.5542 .6542 .7542 .8542 .9

543. 054 31543 25413.354 3.454 3.554 3.654 3.754 3.854 3.9

544.0544 1544 .2544 .3544 .4544 .5544.6544 7544 .8544 .9

545.0545 1545.254 5.35 45S.4.545 5545 .6545 .7545..8545 .9

546.0546 1546.2546.3546.4546.5546 .6546.7546 8546 .9

54 7.0547 154 7.2547.3547.454 7554 7.6547 .7547 .854 7.9

548.3548 1548 .2548 .3548.4548.5548.6548.7548.854 8.9

549.0549 1549 .2549 .3549 .4549 .554 9.6549.7549.8549 .9

18 51

1.7851.7 19

1.7431.819Ia8951.912

1.:9281907

1.8861.832

I.8511.8 30

1.8091.840

1a8711. 8961.9201.9301.9391.9661.9941.9191I84 51.850

1.418 56

1.85 81.819

1.82 7

1.93 72.0022.002

2.0021.9941.9851.929

1.8351.79 7

1.9501.95 3

8.94

1.810

I.830

1I8991.922

1 946

1.92 71 .9672.007I.99 11.975

1I966,I.960

1.8721.8 72

1.85 3

1.85 3

1.:799185 3

1.9081.9061.905

1.8 16"1.8221.82 71.864

1.901

1893,1.851.8851.6841.890

1.9171I.9401.945

27.692 77127.722 7.7327.7527.762 77727.7827.802 7. 81

2 7. 822 7.842 7852 7.8727.8827.8927.9027.9227.9327.94

27.962 7.9 727.9828.0028.0 126.0 328.0428.0528.0728.08

28.0928.1 128.1228.1328.1528.1628.17

28.1928.202 8.22

28.2 32 8.24268.262 8.27280.2928.302 8.3 1268.3 328.3428.3 5

28.3 728 3828.3928.4 128.4228.4 32 8.452 8.4628.4 728.49

28.502 8522 8.5 328.5428.5 628.5 72 8.5928.6028.6 128.6 3

28.6428 662 8.6 72 8.6828.7028.7 12 8.722 8.7428.7528.76

28.7828 7928.8028.8228.8 328.84

28.828. 8828.90

28.9128 9228.9428. 9528.962 8.9828.9929.0129.0229.33

550.0550.1550.2550 .3550.4590.,5550.6550. 7550.8550.9

551.:0551.1591.2551.13

551.5

55 1.9

552.0552 1552 .2552 .355 2.455 2.5552.6552 755 2.8552 .9

55 30598 159 3.255 3.3553 .455 3.555 3.655 3.755 3.8553.9

554.0554 155 4.2554 .3554 .4594 .5554 .6554 .7554 .8554 .9

555.0555 1555 .255 5.3555 .4555.5555.6555 .7555. 8555. 9

'556.0556 1556 .2556 .3556 .4556 .5556 .6556 .7556 .8556 .9

557.0557. 1

557.2557 3557.4557.5557.557 7557. 8557. 9

558.0558 1558 .2558 .3558.4558 5558 .655 8.7558 .8558 .9

559.0559.1I559 .2559 .3559 .4559 .5559 .6559 .7559 .8559 .9

1.84918 341.89

1.840t.8491. 8581

1. 888

1.9171.9 16

1.8811.8461.8 63

I1.8771.856

1.8 361.7681.7001.7041.70 8I.75 8

1 8 01.8341.60

1.9 1 21.9 631.93 1

1. 8991. 9061.9 141.9 04

1. 895

1.02

1.8.681.8 56

1.893

1.8921.876

1.8601.8861.9 1 21942

1.9621.95 11.911

1.8 711.6 31.85

1.8 49I.8 641.878 1. 79

1.8051. 774.74 31. 7921. 8411.8 391.8 361 .8 391.84 31. 39

1.:835

1. 881.758I1.69 3

1 7 15

I1.78 5

18 321.t8441.856.4 3

1.8 1311.839

1 .79 71. 75 5

29.052 9.0629.0729.0929.1029 .1129 .1329 .1429.129.1IS

29 189

29. 2129. 2229.2429.2529 2629.2829.2929.30

2 9.3229.3329 3429.3629.3729.3829.4029.4129.4229.43

29.4529.4629.4729.4929.5029.5129.5 329.5429.5529.57

2 9.582 9.6029.6129.8229.8429.6529.6629.829.6929.10

2 9.7229 7329.1429.7629.7729.7829.8029.8129.8 329.84

2 9.85

29.829 .8929.912 9.9229.9329.9529.9629.97

2 9.9930.0030.0130.0330.0430.0530.0730.0830.0930.11

30.130.1330 .1530 .1630 .1730.1830. 2030 .21

30.230. 20

3 0.2530 2630.27'30.2930.3030.3130.33

30.3530 37

continuoed

2228 APPLIED OPTICS / Vol. 8, No. 11 / November 1969

490.0490 1490 .2490 .3490 .4490 .5490 .6490 .7490 .8490 .9

491.049 1.149 1.249 1.349 1.449 1.549 1.649 1. 749 1.8491.9

492.0492 1492.2492.3492.4492.5492.6432.7492.6492.9

49 3.0493 149 3.2493.3493.449 3.549 3.649 37493.8U493.9

494.0494 1494.2494.3494.4494.5494.648 4.7494.8494.9

495.0495 1495.2495.3495.4495.5495.6495.7495.8495.9

496.0496 1496.2496.496.4496.5496.6496.7496.8496.9

49 70497 1497.2497.84 97.4497.549 7.649 7.749 7.849 7.9

498.0498 1498.2498. 3498.44 98.5498. 649 8.74 9 8.84 98.9

499.0499 14 99.2499.3499.4499.5499.6499.74 99.8499.9

2 1552.1822.0901.998

2.105

2.194

2. 02 3

1.:9311.401 .9832.126

2.1281.9 551 .7 821.6 75

I.74 71.926

2 .02

2 .0842 .018

2.0 35

2.0512.:1122.17 32.07 71.9 12.0 862. 0901. 946

2.0 3 32.:0982.1642.16 12. 1592. 0852. 0 02. 1182.21272.144

2.061

2.00 21.990

1.800

1.9 34

2. 0542.1 142.0852.0562.0552.0542.0532.0 522.0 39

2.02172. 0642.10 22.14 12.1I802.1I392. 0982. 0842. 0702. 002

1 8011.668I .755

1.9962.06 12.0412.024

2.0062.:0142.0 2 32.0 322.0 302. 0282.0271.991 .9721.94 5

1 p"

I I'.

Page 15: Determination of Extraterrestrial Solar Spectral Irradiance from a Research Aircraft

1.9001.:9612.02 31.9301.8371.8161.7961.8051.8151.831

1.8461.8601.8741.8481.8221.8391.8551a8571.8591.850

1.8411.8401.8691.8991.8561.8 131.8361.8160

I16617811797

1.790

1.81261.870I.8741a8791.877

1.8:76

1.8 48L.8791 .9 1 01.8941.8771.8521.8 27

1.8401.8241.8161.80 71.772

1.72 8I.7201.803

1:886191 1

1.9 361.88 31.8521. 8591.8651.8511.8371.83

1870

1. 7411. 76 71.793

1.82 5

598 .0 I1.857598. 1.830598.2 1.800598 .3 1 .784598.4 1.764598.51 1' 1.74598.6 1805598 .7 1.81598 .8 I.8 30598 .9 1.8 36

599.0 1.84 3599.1L 1.862539.2 1.8 81599 .3 1.8 35599 .4 1.789599 .5 1.7 71599 .6 1.7 53599 .7 L.761599 .8 1.769599 .9 1. 792

34.3834. 3534 .4034 .4234 .4334 .4434 .4634 .4734 .4834 .50

34.5 134 5234 .5434 .5534 .5634 .5834 .5934 .6034 .6234. 63

34.6434 .6634.6734.6834 7034.7134.7234. 7434.7534. 76

34.7834. 7934.8034.8134.8 334.8434.8534. 8734. 8834.89

34.9134. 9234.9334 9534. 9634 .9734.9935.0035.0 135.03

35.043 5. 0.535. 0735.083 5.0935.11L35S.1235.1335.143 5.16

35.13 518I35 .2035.213 5.2235.2435.2535.263 5.2 835.29

35.3035 3235.3335.3435.3635 3735.3835.4035.4135.42

35.4335 4535.4635.4735.4935.5035.5135.5235.5435.53

3 5.563 5.5835.5935.6075.6235.6335.6435.6635.6735. 68

600.0600.1600.2600.3600.4600.5600.6600.7600.8600.9

601.0601.1601.2601.3601.4601.5601.6601.7601.8601.9

602.0602.1602.2602.3602.4602.5602.6602.7602.8602.9

60 3.0603 1603.2603.3605.4603.5603.6603.7603.8603.9

604.0604.1604.26 04.3604.4604.5604.6604.7604.8604.9

605.0605 1605.2605.3605.4605.5605.6605.7605.8605.9

606.0606 1606.2606.3606.4606.5606.6606.7606.8606.9

607.060 7.1607.2607.360 7.4607.5

607.760 7.860 7.9

608.0608.1608.2608.3608.:4608.5608.6608.7608.:8608.9

609.06 09 1609.2609.3609.4609.5609.6609.7609.8609.9

18I3860

1.8461832

1.7991. 846

1.7741.7381.7021. 6911.6791.71 11.7431.744

1 746172 5

1.7041.6961.688I:.7581I8291.82 3

1.802

1.78 71. 78 7

17861.7841.8061.8291.82 91.8291.78 7

1.45172 71.7091.7061.7041.7121.72 01.738

1.785

1.17

1.8107.7951795

1.795I1860,1.951.900

.88 71I9001.8501.8081.8191.8311.832

1.8 143

1.7914

18 35

1.8761.8771.8731.869

1.897

1.88 0

16931.645

1. 3

1. 74E

1.7131

.71'1."1.70'

1. 3

191

35.6935 7135.7235.7 335.7535.7635.7735.7935.8035.. 8 1

35.8 335 84

35.893 5.90

35.94

35.95

35.9895. 9996.0036.0136.0236 0436.0536 06

36.0836 093 6.1 036. 1236. 11336. 1436. 1536. 1736. 1836. 19

36.2136.2 23 6.2 336.2436.2636.2 736. 2836.2936.3036. 32

36. 336.3436 369 6.3 73 6. 3836. 4036. 4136.4 236. 4436.4 5

36.4 636.4 83 6.4 93 6.5 03 6.5 23 6.5 33 6.5 43 6.5 63 6.5 73 6.5 8

36.5936.613 6.6 20 6.6 336.6 536.6 6

3 6.8570 36.87936.880

36.790

36.9243 6.936

0 36.9470 36.968

i36.97

610.2610.3610.4610.5610.6610.7610.8

61 1.616112611.3611.411 t.5

611.6611.7611.8611.9

612.0612 1612.2612.3612.4612.I;612.6612.7612.8612.9

61 3.0613 1613.2613.3613.4613.5613.6613.7613.8613.9

614.0614 1614.2604.3614.4614.5614.6614.7614.8614.9

615.0619.1619.2615.3615.4615.5615.6619.7615.8615.9

616.0616.1t616.2616.3616.4616.5616.6616.7616.8616.9

61 70617 1617.2617. 361 74617.5617.6617.7617.8617.9

618.0618.1618. 2618.3618.4618.5618.6

688618 .9

693.0

619.2619.3619 4

619.6619.7619.8619.9

I.7451.735L.758

1.784L.79 7

1.842

1873

1.750

1.7261.7241.7221.722

1.720

1.7161.722

1.7381.7781.7611.7451.7491.7521.729

1.:7061690

1.6741.7101.7451 .67'91 .61 21 .6591. 7061.722

1.7311

1.75 71.7921.76 31.7341.7381.7411.764

1.7881.78 21.7761.72 71.67 81.6861.695

1.77 11.702

1.6 341618

1.60 31.62

1651I.65 11651

1.6651.679

1.7681.785

1.7641.7 26

17 541746

1.7 641 .7901.7971.8031.770

1.726

1.32

1.7481.7711.7951.799

1.141.331.521.60

1 .8681 .31L

16.9817.0017.0 117.0237.0 33 7.0537.06?37.0 737.093 7. 10

37.157.1337.14

37.16

37.1937.2037.2137.22

37.24

37.2637.2737.2937.3037.3137.3237. 3437r.35

3 7.36

37.3937.:40374137.4237.4437. 4537.46,37. 47

37.483 7.503 7 5137. 5237 .5337.553 7.56

37' 5837.60

37.6137.:6237.6437.6537.6637.6737.6837.7037.7137.72

37.7 33 7.:7537.7637.7737.7837.7937.8037.8237.8337.84

37. 53 7.8 737.8837.8937.9037.9237.9337 .943 7.9537 97

37.9837.9938.3038.0238.338.0438.0538.0 738.3838.309

38 1038.23813I38 .1438.1638.7

3819382138 .2 2

6261616161616161

61

6

6;6,

6,6,6;6,6;

6,6.6;

6,6'6

6,

continued

November 1969 / Vol. 8, No. 11 / APPLIED OPTICS 2229

x . f H.,.1

Table WI. (continued)

590.0590 1590.2590.3590.4590.5590.6590.7590.8590.9

591.059I1591.2591.3591.6

591.5591.6591.7591.8591.9

592.0592 1592.2592.3592.45925592.6592.7592.592.9

593. 0593. 159 3.259 3.:3593.459 3.5593 659 3.7593.8593.9

594.0594.1L594.2594 3594.4594.5594.6594.7594.8594.9

595.0595 1595.2595.3595.4595.5595.659 5.7595.8595.9

596.0596 1596.2596.3596.4596.5596.6596.75 96.8596.9

597.0597 1597.2597.35933.4597.5597.6597.759 7.8597. 9

560.0560.1L560.2560.3560.4560.5560.6560.7560.8560.9

561.0561.1561.25613

561.5561.6561.7561.8561.9

562.0562.1L562.2562.3562.4562.5562.6562.7562.8562.9

563.05631 563.2563.3563.4563.5563.6563. 7563.8563.9

564.0564 1564.2564.3564.4564.5564.6564.7564.8564.9

565.0565.1L565.2565.3565.4565.5565.6565.7565.8565.9

566.0566.1L566.2566.5566.4566.5566.6566.7566.8566.9

567.0567.1L567.256?.3567.4567.5567.6567.7567.8567.9

568.0568.1568.2568.3568R.4568a.5568S.6560.7

568.9

561A.0569.1L569.2568.3569.'.569.5569.6569.7569.8569.9

.7 7 30.39

1. 723 30.401.796 30.421.873 30.431.876 30.441.883 30.461.881 30.471. 880 30.481.850 30.50

1.820 30.511.808 30.521. 795 30.541. 779 30.551. 762 30.561. 734 30.571. 705 30.591. 768 30.601. 830 30.611. 877 30.62

1.925 30.641.896 30.651.868 30.671. 846 30.681. 82'. 30.691. 859 30.711. 894 30.721. 886 30.731. 878 30.751.891 30.76

1.:905 30.77.916 30.791. 926 30.801. 928 30.811. 929 30.831. 899 30.841.89 30.861.847 30.876.825 30.81.837 30.85

1.849 30.911.880 30.921. 912 30.941.8 7 30.95

18 2 30.961834 30.981.846 30.991. 840 31.001. 835 31. 011. 851 31. 03

1.8167 31.041.885 31.031. 903 31. 071. 865 31. 081. 827 31.101. 81531.1I

1803 31.21. 778 31.131. 754 31.151. 797 31.16

1 .84 1 7 .11.814 31.:191.787 31.20O

1.820 31.241.814 31.281.8512 31.261.890 31.281.903 31.29

1.15 31.301.878 31321. 842 31. 331. 793 31. 341. 812 31. 361. 843 31. 371. 875 31. 381. 868 31. 401. 861 31. 41L. 837 31. 42

1.813 31.:44

1821 31. 461.813 31. 481.786 31. 491.782 31. 501.778 31. 511.782 31. 531.786 31. 541.817 31. 55

1.849 31.571.89231.:581.9 36 31.591.9,16 31611.8 9531. 621.9 10 31.631.9 25 31. 65

1.868~ 31.661 1 1 1681. 817 3 69

5 70.35 70 15 70.25 70.35 70.45 70.5573.65 70.75 70.85 70.9

5 71.0571.1571.2571.3571457155 71.6

57.571.85 71 .9

5 72.0572.15 72.25 72.35 72.45 72.55 72.65 72.:75 72.85 72.9

5 73.05 73 15 73.25 73. 35 73.45 73. 55 73.65 7 3.75 73.85 73.9

5 74.0574.15 74.25 74.3574.45 74.5574.6574.7574.815 74. 9

5 75.05375.15 75.25 75.35 75.4575.5575.65 75.7S75.85 75.9

5 76.3576.15 76.25 76.05 76.45 76.55 76.65 76.75 76.8576.9

577.0577.15 77.25 77 .35 77.45 77.55 77.65 77.75 77.857 7.9

5 78.0578.15 78.25 78.35 78.45 78.55718.65 78.75 78.85 78.9

579.05 79.1579. 25 79.3579.45 7955 79.6~5 79.579.8~5 79.9

18401. 858

1.7721. 7581. 7451.71 31.6801.678

1.7291. 7821. 8401. 89 71. 8891. 8811. 8991. 91 7I1.939

1.:961.981

2. 0002. 02 12. 0422.0091. 9 771. 9431. 9091. 886

1 86 31.87 71. 89 11.80681.8451. 83 31. 8211. 8791.9371. 94 1

1.:9451.915

1.1. 870

1.9021.93 31. 8931. 852L. 83 3

18141.8151.8531. 890

.9291. 9681. 9691.69

1.9511

1. 9321.88 31. 8341. 8241 .8551. 9061. 95 81. 9681. 9781. 92 6

1.80 71.2 11. 8241 .86 11. 8971. 8841 .8711. 896

1. 9221.9061.890197

1.8911900

1.9091.9562.0041.97 1

1.:9391881

1. 82 31. 82 71.8301.8501. 8701. 8471. 8241. 855

11.70011

01. 7401. 7501. 7711. 7801. 7911. 8001.82

11. 3914

31. 85'J.87

31. 831.8'931.913 1.9231.9331 .9 5

31.9631.93 1.99

3 2.0032. 0232.0 332.0532.0632.0832. 09

32.1

32 .1332 .1432 .1632.1732.132. 20

32. 22

32.2432.2 532.2 73 2.2832292.132.3232.3 332 3532.36

32.3792 3932.4032.4 132.4332.4432.4532.4792.4832.50

32.5 132 5232.5432.5532.56132.5832.5932.6032.6232.63

32.6532 6632.6732.6932.7032.7132.7332.7432.7532.77

32.7 832 7932.8132.8232.8 332.8532.8632.8832.8932.90

32.9232.:9 332.9532.9632.9732.9833.0033.0133.02313.04

580.0580.1580.2580.3580.4580.5580.6580.7

580.3

581.0581.1581.2581.3581.4581.5581.6581.7581.8581.9

582.2582.3582.4582.5582.6

582.8

582.9

58 3.1

583.2583.358 3.43583.5583.6

583.8

583.9

5843.0

584.1584.2L984.3584.4584.5584.6884.7584.8584.9

5849

585.1585.21585.3585.4585.4585.6585.7585.8585.9

586.1586.21586.3586.45 86.5586.6586.7586.8586.9

587.0

587.2

9 87.4587 5587.658 7.7

587.9

588.0588 1988.2588.3588.4588.5588.6588.7588.8588.9

589.3589 1589.2589.3589.4589.5589.6589.759.8589.9

.886 33.05.844 33.06.803 33.08.803 33.09.803 33.10.819 33 .12.836 33 .03.846 33 .14.855 33 .16.887 33 .17

919 33.18.943 33.20.967 33.21~.928 33.23.889 33.24

L.839 33.25L.788 33.271. 802 33.281.816 33.29L.850 33.30

1.8813 3 3.321880 33.33

L.877 33.35L.891 3 3.361.824 33.371. 831 33.381. 838 33.401. 849 33.411. 860 33.421.910 33.44

1.:960 33.45.902 33.47

1. 844 33.481. 835 33.491 .8273 33.5 1I. 862 33.521.8196 3.531.907 33.551. 919 133.961.934 33.57

1.949 33.591.974 33.601. 999 33.621.:970 33.63.941 33.641. 893 33.661 .846 ~33.6 71. 850 33.681. 854 33.701. 836 33.71

1.:818 33.72.832 33.74

1. 846 33.751. 857 33.761. 868 33.781.828 33.791.787 33.801. 814 33.821. 840 33.831. 898 33.84

1.:957 33.861944 33.87

1. 932 33.881. 879 38.901. 826 33.91L. 814 3 3.921. 80L 33.941. 848 33.951. 895 33.961. 914 33.98

1.932 33.99.911 34.01

1. 890 34.021. 874 34.031. 899 34.051. 945 34.061. 942 34.071.859 34.091. 829 34.101. 890 34.11

1.887 34.131.945 34.14t. 890 34 .161. 853 34 .171. 839 34 .181. 838 34 .201. 837 34.211. 846 34.221. 856 34.231. 568 34.25

1.281 34.261.488 34.271. 695 34.281. 725 34.291. 756 34.301. 581 34.321.406 34.331. 602 34.341. 797 34.351. 849 34.36

!0.0 1.79'.

!0.2 1.736.10.4 17070.6 173610.8 1.783'1.0 1.79201.2 1.802

14 12716 J.7511a1. 1.99

02.0 1.:8702.2 1716,72.4 1 .77202.6 I.,741

73.0 1.71332 1.973.4 1.13

73.6 1.673973.8 1.692

74.0 1.:69074.2 .62724.4 1 .59024.6 1. 59474.8 1. 68925.0 1. 69125.2 1. 67325.4 1.67425.6 .67525.8 .723

26. 1.726.2 1. 7 9Ž26.4 1.79 326.6 1. 78026.8 1. 73127.0 1. 75427.2 1.7 6627.4 1.7 1527.6 1.6 95.27.8 1.6.69

.28.0 1.6 70

.28.2 1.65428.4 1. 663.28.6 1. 705.28.8 1. 75529.0 1.743.29.2 J.7,1.29.4 1.731.29.6 1.6494.29.8 1.693

.30.01 1.651.30.2 1.649.30.4 1.4630.30.6 1. 688.30.8 1. 699.31.0 1. 649.31.2 1. 621.31.4 1. 620.31.6 1. 678.31.8 1. 711

M320 1.8M322 1771,32.4 1.756432.6 1.750O432.8 1.7643 3.0 1.716633.2 1.6 49633.4 1.6 17633.6 1 .64 7633.8 1.694.

634.0 1.682634.2 1674634.4 1. 683634.6 1. 698634.8 1.714635.0 1.692635.2 1. 627635.4 1. 620635.6 1.611635.8 1. 639

636.0 1.638636.2 1.67516,36.4 1.6811636.6 1.709636.8 1796.37.0 1.731637.2 1.91637.4 1.7456537.6 1.717637.8 1.658

638. 1.0638.2 1.:8036 38.4 1 .797638.6 1. 753638.8 1 .70 3639.0 1.707639.2 1.6766639.4 1.677639.6 1.676639.8 J.6 98

18.268

18.3 118.33110.36

38.4418.46

08.4958.5136. 5438.5608.5938.6138.6330.6638.68l38.7

3 8.7330.7638.7838.8038.3

38 .8738.9038 .9238 .95

3 8.973 9.00

39.0239.0539.0739.1039.12

39139. 20

39.223 9.2539.2739.2935.323q.34

39.3739.3939.423 9.44

39.6739.4939.5139.5439.5639.5939.6139. 6339.6639.68

39.7139.7339.7639.7839.8139.83

39 835.90

39.953 9.984 0.004 0. 24 0.054 0.0 74 0. 040.1240.1440.17?

40.1940.2 140.2440 2640.2940.3140 3440 .3640.83940.41

4 0.4440 4640.4940.5140.5440.5640.5940.614C.6340 .66

P,, I ,, H,,, I P,\ . . I P>,, I H�,

., I I 1,, I , H�,, P�, '. I_ I I I H�

" - I " .. I I

I I I - - --_-1. I ,I

11

11

11

I1II

I

i

Page 16: Determination of Extraterrestrial Solar Spectral Irradiance from a Research Aircraft

Table VII. (concluded)

, J Hx,. Px [I J Hx.j P,,, [I . ~ x P~x 1 , I H'I,'~'I I HX I x 1, I HxJ, Px,. x. Hx . P,_ I _V~'' 4[5 IW55 I5 "' I __ W/5 I55 __ I _j/5~5 __ /5.5j_ _1'", _I55Jw5~55

640.0640 2640 .4640 .6640 .8641 .064 1.2641 .664 1.664 1.8

642.0642 2642.4642.6642.8643.0643.2643. 4643.6643.8

644.0644 2644.4644.6644.8645.0645.2645.4645.6645.8

646.0646 2646.4646.6646.8647.0647.2647T.4647.6647.8

648.0648 2648.4648.6648.8649.0649.2649.4649.6649.8

650. 0650. 2650.4650. 66508

6 51.4651.6651.8

652.0652 26 52.4652.6652.865 3.0653 .265 3.46 53.6653. 8

6 54.0654 2654.46 54.6654.8655.06 55.2655.4655.6655.8

656.0656 26 56.46 56.6656.86 57.065 7.265 7.4657.6657.8

658.0658.26 58.46 58.6658 8659.06 59.2659.465 9.6659'.8

1.6851.686

I1.6201.642

1.64 3

1.642.6 70

1.72 7I.7141 .634-1.609

1. 5971.652

16I9

1 .69

.5641 .5991.6711.6601. 081.746

1.6971.6161.615

1.6561.626

I1.591.62 1

1.6 15.629

1.62 51.591I.54 2

1. 4431.4201.509

1556

1.6 1

16401.6061.600

1.626

1 7441.72 71.614

1.541

1.6781.7561.7191.643

1.599

1.5851.5981.6041.6 131.5701. 5261.514

1.414

1.209

1.4611.5981.62 7

1.5331.5 201 .542

1.60 81.6081.5911.5751.596

1.540

1.6 11

40.6840 7140.7340.7540.7840.8040.83240 8440. 740.89

40.9240 9440.9640.994 10141.0441.0641.0841.10

41.15S

41.2341.25S4 1. 274 .9"41.32

4 1 3941.4241.4441.4641.4941.5141.5341.5641.5841.60

41.6 341.6541.6741.6941.7241.7441.7641.7841.8041.82

4 18541.8741 .941.9241.94

41.94 2.014 2.0342 .06

42.0842. 1142. 1942 .1542.18a42 .2042. 2242. 264 2.2742 .30

42.3242.:3442 .3642.3942.414 2.434 2.4642.4842.5042 .52

4 2.5442 5642.5742.5942.6 142.6442.6642.6842.7T142. 73

42.7542.7 742.8042.8242.8442.642 .8942 .9142 .9.342 .9

660.0660.4660 .8661 .26 6 1.6662 .0662 .4662 .866 3.2663,.6

664.0664.4664.86 65.2665.66 66.0666.4666.8

667. 6

668.4668.8

669.2669.6670670.4670.

6 72.4

6 72.8675.26 73.66 74.06 74.46714.86 75.26 75.6

676.066.4

676. 86 77.26 77.6678.0678.4678.8

6 79.6

680.06 80.:4680.8681.2481668.2.06812.4682.868 326803.6

684.06 84. 46 84.86 85.26 85.6686.0686.4686.8687.26 87.6

6 88.06 88.4688.86 89.26 89.6690.0690.4690.8691.269 1.6

6 92.06 92.:4692.86 93.26593.66 94.0694.46 94.86595.2695.6

696.06 96.4696.869 7.269 7.66 98.0698.4698.8699.2699.6

1 60155 7

.613

1.6041S593

1. 65 3

1.65415 701.5801.62 71I6401.6361.58 91.5421.61 9

1. 5981.6501.5341.52 51.6401.6921.5611.589I.58 51.550

1.51281.5201.5381I5541.5981.6021.6641 631.5 7I.605

1558aI.5661.6041 6341.53 71.5591.564

1.574

1.6051.5541.52 71.58 11.578

1556151 8

1.570

1.51041.52 51.56 51.51 71.53 21.5661.5201.44 71.4411.454

1'. 49151.44 31.4541.4981.5121.5041.5481.508I.508I.51 3

.43 8151 31531.456153 9

1. 5341. 5201. 5741. 5581. 492

1.52,61.4661.536

1514

.518a

.4561.461

4 2.98

43.164 3. 214 3. 264 3.30

43.39

4 3.444 3.49

43.724 3.764 3.81

44. 0044. 0444.0 844. 1344.1844.2 244. 2744. 31

44.3644 4044.4 544.4944.5444.5 844.6 344.6844.244.7

44.8 144 8644.9044.954 5.0045.044 5.0945.1 345.18a45. 22

45.2 7

4 5. 3645. 4045.4545. 4945. 5445 .5845.6 345.6 7

4-5.7245 764 5.8045.8545.8945S.9445.9846.0246.0646.1

46.1

46 .2346.2 746.3246 3646.4046i.4546.4946.54

46.5846.6246.6646.7146.7546.7946.8446.8844.9 346.9 7

47.014 7.0647.1047 .1547 .1947.2347.2847. 3247.3 74 7.41

700.0702.0704.0706.0708.0

712.07 14.0716.0

720.0722. 0724.0726.0728.0

734.0736.0

740. 0742. 0744.0746.0748.0750. 0752.0

754 075 6.0758. 0

760.0762.:0764.0766.0769.:0770.07 72.0774.0776.07 78.0

780.0782.0784.0786.078 8.0790.0792.0794.0796.0798a.0

800.0802.:0804.0806.0808.0810.08312.08 14.016.0818a.0

82 0.082 2.0824.08 26.08278.0830.0832.0834.0

8 36.083,8.0

840.0842.0844.0846.0848.0850.0852.0854.085 6.0858a.0

860.0862.0864.0866.0868.08 70.0872.0874.0876.0878.0

880.0882.:0884.0886.088 8.0890.0892.0894.0896.0898.0

1.495.4 71

1.476I.450

1.455

1.4211.4061.39 3

1.3671.3196

14061.3921.3661. 36711.962

.35 91 .36 30. 332

t13161.302.306

1. 308.314

12 97.2 92

1.2691.2 72

1.226

1I1971.218

1 .2 11

1.202

.t60

1 . 1 721 .163

.148

I1. 1201.10 5

.1201 .0901. 086

1 0791.06 31.0821.07 81.0701.04 31.05 7.0 3a1.0291.048

1.02 7.0 301.000

1.010.0 2

0.97610.9160 .760.9480. 994

0.96 80. 9850.9210. 88 70. 9620.9600. 95 30.9560. 9580. 934

0.9 350. 92 30.9 3 70.92 20.9240.9200.901 0.9 142.9 192.894

47.4 54 7.664 7.8 748 .0848 .2948 .5048.7 148 .9149.I149 .32

49.5

49.9 1

50.3150.5150 7050.9051.1051. 29

51.6751. 8552.0452.2352.4252. 6152. 7952.-9853. 16

53 5353.7153.8954. 0754. 2554.4254.6054.7754.94

55 125 2 955.4755.6455.8255 .9956 .1556 .32

56. 4956.66

56.8 356.9957.1657.3257.4857.6457.8057.9658.1258.28

58.435 8.5858.7458.8959.0559.2059.35

59.5059. 6559.80

59.9560 1060.2460. 3860. 5360.6 760.8 160. 9461.08

61

61.5061.6461. 7661.8962.:0462.1 762. 3162.4562.58

62. 7262.8562.986 31263 2563.3863.5163.6463.7863.91

300.0902.:0904.0906.0'308.0910.0912.09L4.0916.0918..0

920.0922.:0924.0926.0928.09 30.09 32 .09 34.09 36. 04 38.0

940.0942 0944.0946.0948.0950.0952.0954.09156.0958.0

960.0962.:0964.0966.0968.0970.09712.09 74.0976.09 78.0

980.0982.0984. 0

38.09,90. 0992. 0994.0'396.0998.0

1000.01005.:0I010.01015.0

1020.01025 010830.010 35.01040.01045.0

1050.01055.01060.01065.010 70.010 75.010 80.01085.01090.01095.0

100.001105.0

1120.01 125.0113J0.011L35.01 140.01 145.0

1150.01155.11 60.01165.011 70.0L175.011 80.01185s.011 90.01 195. 0

1200.01205.01210.01215.01220.01225.01230.01235.01240.01245.0

0.89

0.8650.87 30a8650.8600.86 1

0.8 350.8280B8340.8390a8450a8400.8480.8350.8200.8328

0.8210.80603220.8 170.8010.80 30.796

0.7990.796

0.7920. 7910.7880.780

0.783

0. 76 7

0 7 720.7740.7760.7580.76 70.76 30.7540.7560.74 30.7431

0.74 10.72 50.72 30.7220.7 160.7250.7000.6950.6790.686

0.6680.6593.6500.6480.6400.6310.6210.6140.6120.99

0.6080. 60 10.6020.5880. 5780. 5680.5650.5620.5560.554

0.94 30 5520.5 380.5280.5 310.52 30.5 120.5090.50800.498

0.4920.4890.4840.4940.4 750.4 740.4 760.4680.466 0.45

64.0364 1664.2964.4264.5464.6664.7964.9 165.0465. 16

65.2865.4065.5265.6465.7665.8866.0066.1 366.2466.36

66.4866.6066.7 166.8366.956 7.0667.186 72967.4 167. 52

67. 6367T.756 7.866 7.9 768.0968. 20'68.3168. 4368. 546 8.65

68. 7668.8768 9869.0969.2069.3 169.42

69 5369 6469.7T4

69.8570 1170 .37T70. 6370. 8971. 157 14171.6571 .9072. 15

72.3972.6 372.867 3. 107 3.337 35573.7874.0074.2274.44

74.6674 8775.0975.307 5.5 175.7275.9276 1276.3276 52

76.7276 927 7.1 177.307 7.507 7.687 7.8 778.0578.2378.42

78.5978 7778.9579.1279.2979.4779.6479.8079 .9780. 14

12 50.012 55.01260.012 65.012 70.01275.01280.01285.01290.01295.0

13 00.01305.01310.01315.01320.013 25.0133'0

1340.01 345 .0

13 50.013 55.01360.013 65.013 70.01375.01380.0

1395 .0

14001405.01410.01415.01420.01425.014 30.014 35.01440.01445.0

14 50.014 55.01460.0146 5014 70.01475.01480.01485.0140.01495.0

1505.:0151.

15 25.015 30. 015 35.01540.01545.0

15 50.015 55.015 60.01565.015 70.01575.015810.015 85.015 90.015 95.0

1600.01605.016 10.01615.01620.01625.016 30.016 35.01640.0I645.0

1650.0165 5.01660.01665.016 70.016 75.016 80.0168 5.01690.01695.0

1700.01705.01710.01715.01720.01725.01730.017 35.01740.01745.0

0. 4610.4510. 4320.4260.42 70.4410.4240.4260.4310.42 7

0.42 70.4t80.4090.4060.40 70.4020.3960.3920.3900.38 7

0.3800. 3750. 3720.3640.36 30.36 30.3590.35 90.3540.35 3

0.3490. 3460.34 30.3410. 3400. 3450.3350.32 90.32 50. 31 7

0.3220.3060.316

0. 3110.3070. 30 30.2990. 3040.301

0.29 70. 2960.2920.2920.2880.2920. 2840.27 70.2 7 80.27 7

0.2760 2 750.2 7 30.2670.2640.26 30.2590.2560.2500.251

0.23520. 2470.2490.24 80.2450.2490.2460.2420.23 80.2 39

0. 2380.23 80. 23 70. 2 3 30. 2 320. 2240. 22 50. 22 30.22 30. 218

10 .2210.2 160. 20 70.2160.20 90.2000.1940. 1930. 1950.1I89

80.3080 4780.6280.7 880.9 381.0981.2581.3981.5581.70

81.8682.0182.1 682.3082.4582.6082.7482.8883.0283. 16

8 3.308 3.4 38 35789.7083.8383.9684.0984.2284.3584.4 7

84.6084 7284.8

85.0985. 2285.3485 4685.5785 69

85. 818 5.9286.0 386.1486.2 586.3 786.4 786.5 886. 6986.80

86.987.018 7.128 7.2287.3 387I.4 38 7.548 764

87. 84

88 0388.1 388.2 388. 3288S.4 288.5861870838. 79

88.8 888.9789 0589.1489.2389.3289.4189.5089.9889.6 7

89.7589 8489 .9390 .0I90 .0990 .1890.2690 3490.4290.50

90.5790.6590.7390.8090.8890.9591.0391. 0991. 169L.23

1750.01755.01~60.01 765.0177T01775.01780.01785.01790.0I795.0

1800.01 805.01810.01815.01820.0

18 30.0

1840.018a45.0

185O001855.0186 01865.0

18 75.1880.01885.1890.01895.0

1900. 01 905.01910.01915.019120.0192 5.019 30.01935.01940.0194 5.0

1950.0195.01960.01965.01970.019 75.01980.0198 5.01990.01995.0

2000.02005.02010.02015.02020. 02025.020930.02035 02040.02045.3

205 0.02055 02 060.02065.02070 020 75.02080.02 085.02 090.02 095.0

2100.0

2105.2110.02115.02120.0212 5. 02 130.02 135.302140.02 145.0

2150.02155.02160.02165.02170.02175.02180.02185.02190.02195.0

2200.02205.02210.02215.02220.0222 5.022 30.022 35. 02240.02245.0

0.190.1880.1860.180

0.1740.17 30.1720.176

0.172

0.16 30.16 30.1620.1590.1590.5

0.5

0.1460.146

01380.14310.1410.1400.14 1

0.01360.1390.14 10.1390.13 7

0.350.1340.1320.130

0. 12 9

0.1280.1280.12 70.1320.12 70.1250.12 30.125

0. 11

0.I150I109

0.1060.1040.1020.09 7010 1010 30.0990. 0980.1000.09 3

0.0950 0950.0890.0920.2890.0890.0890.08a70.0920.084

0.08 30. 0810.0840.0820.0840.0790.07 70.0690.0740.075

0.0840.0770.07 70.0740.0790.07 70.07 70.0660.0610.07 3

91.30

91.4491.51

91.64

91.76

91.8

91.885

92.0192.0 792.1 392.1992. 2492 .3092. 3692.4192.4 7

92.5292 5892.6 392.6892.7 392.7892.8 392.8892.9 392.98

93.0 39 3089 3.1393.

9 3.2893.3 393.389 3.4 39 3.4 7

9 3.529 3 5793.6 19 3.6693.709 3.7593.809 3.849 3899 3.9 3

93.9 794.0194.06~94.1094 .1494 .1894. 2294.2694.3094 34

94.3894.4194.4594.4994.5294.5694.6094.6394.6794.70

94. 7494.7794.8094.81394.8794. 9094.9 394. 96915.0095.0 3

9 50695.0995.1295.1595 .1895. 2195.2 395 2695.2893.31

9 5.3495 3795.4095.4295.4595.4895.5195.5395.5595.58

225P.02 2,5802 260.02 265.02 270.02 275.02 280.02 285.02 290.02 295. 0

2 300.02 305.02 310. 02315.027-20.02 325. 02 330.02 335 0Ž340.02 345.0

2 350.02 355.02 3 60'.02365.02 370.02375.02 380.02 385.02390.02 395.0

2 400.02 405.:02410.02 415.02 420.02425. 02430.02435.02440.02445. 0

24 50.02 455.02460.02465.02470.024 75.02480.02 485.02490.02 495.0

.0 770.0 770.0 720.0 7 30.0660.0650.0700.06 7

0.066

0.06 70.0640.06 30.0590.0 540.0560.0560.0600.0590.061

0.0620. 0640.0660.0620.0620.0 580.0 560.061l0.0600.0 59

0.0550. 0560.0 570.0 540.05 80.0 550.0 590.0 550.0 520.050

0 0 510.0 520.0490.0 540.0490.0540.0 5 10.0480.0550.04 7

95.6195 6495 .6695.6995 7195.7395.7695.7895.8 195.8 3

9 5869 58895.909 59295.9495.9695.9896.0 196.0396.05

96.0796 0996.1 296.1496.1696.1896.2 096. 2296.2 596.2 7

96.2996 3196 .3396 .3596 .3796 .3996.4 196 .4396 .4596 .47

96.4896 5096 .5296 .5496 .5696 .589 6.5996.6 196.6796 .65

2230 APPLIED OPTICS / Vol. 8, No. 11 / November 1969

Page 17: Determination of Extraterrestrial Solar Spectral Irradiance from a Research Aircraft

The second procedure utilized the Cary spectroradi-ometer (see Fig. 6). An uncollimated high-intensitytungsten lamp was installed in the sample side50 cm from the limiting aperture. Polarization ofradiation from this lamp was less than 2%. The win-dow was placed into and out of the sample light pathand the ratio of signals noted. Measurements wereperformed at selected wavelengths for incidence anglesof 00, 200, and 30°. After correction was made for thedifference in optical path lengths for air and fusedsilica, the average disagreement in transmittance be-tween the two sets of measurements made with differentequipment was 4-0.006. After a smooth curve was fitthrough each set of data, the disagreement averagedd 0.004. There was no measurable difference in spec-tral transmittance between either of the windows usedduring the solar measurements. The tabulation oftransmittance as a function of wavelength and incidenceangle is given in Table V.

B. Measurement of Mirror ReflectanceThe spectral reflectance of the mirror was deter-

mined by a multiple reflection technique to obtainthe highest degree of accuracy. The method used issomewhat similar to the techniques of Strong2 8 orBennett and Koehler," which enable measurements tobe made to a precision of i 0. 1%.

During solar measurements, the incidence angle onthe turning mirror ranged from 250 to 550, dependingon the solar zenith angle. The mirror reflectanceexhibits at most a 2% variation in reflectance for un-polarized radiation over this range. Because of thissmall variation with incidence angle, measurementswere performed only at the angle most commonly en-countered during the measurements (350), and Fres-nel's equations for an aluminum-air interface were usedto obtain the variation with angle.

The apparatus used in the reflectance measurementsis shown in Fig. 16. Essentially the same instrumenta-tion was used as for the window transmittance measure-ments described previously. Two mirrors, preparedunder identical conditions, were placed opposite eachother at a separation distance of 6 cm. Collimatedradiation from a xenon-arc source was directed horizon-tally into the integrating sphere to obtain the referencesignal level, VR, and then directed onto the lower mirrorat an angle of incidence of 350. At this angle of inci-dence, the light beam undergoes seven reflections be-tween the two mirrors before entering the integratingsphere, which was rotated downward to accept thebeam, as shown in Fig. 16. The intensity of the radia-tion entering the integrating sphere is indicated by thesample signal level, V,. The reflectance R of the mirroris obtained by the seventh root of the signal ratio:

R = (V./VR)4. (Al)

Measurements were performed at each wavelengthwith the beam polarized both parallel (R,) and normal(Ru) to the plane of incidence through the use of aNicol prism. The spectral reflectance p for natural or

unpolarized radiation was calculated from the arithme-tic mean of the two component reflectances

px = (R, + R.)/2. (A2)

-The results of the measurements are shown in Fig. 17for 00 incidence and are listed in Table VI for incidenceangles 00, 350, 450, and 550°

In preparing the mirror, the aluminum was depositedat a rate of 50 nm/sec at a pressure of 5 X 10-5 Torr.The total thickness was approximately 500 nm. Alsoshown in Fig. 17 are the data of Hass3 0 for a freshaluminum surface evaporated at an extremely highevaporation rate (100 nm/sec) in good vacuum (1 X10-5 Torr) and the data of Bennett et al.3 1 for an alum-inum surface deposited at a slower rate and approxi-mately the same pressure level. In general, the presentmeasurements are very close to the previously pub-lished data. The 2% decrease in the uv near 300 nm isfelt to be due to the lower rate of deposition and higherpressure during evaporation than used by Hass. Thedata of Hass and Bennett were used beyond 1200 nmsince the low output of the xenon-arc source at longerwavelengths resulted in a low signal level. The mirrorreflectance indicated by the solid curve in Fig. 17 andthe listing in Table VI are felt to be within 40.5% ofthe true reflectance.

Appendix B. Extraterrestrial SpectralIrradiance from 300 nm to 2500 nm

The data presented in this section are representativeof the degree of resolution attained in the experimentalresults over the 300-2500 nm spectral range. All valuesare on an absolute spectral irradiance scale based on theStandard of Spectral Irradiance and can be used tocalculate total or average irradiance within arbitraryspectral bands.

A view of the Fraunhofer absorption in the solaratmosphere is shown in Fig. 18. The spectral regionfrom 300 nm to 700 nm has considerably greater struc-ture than the 700-2500 nm region and is shown inhigher detail. The identities of selected major absorp-tion lines are indicated in the spectra.

A tabular listing of the data is given in Table VII.The values of extraterrestrial spectral irradiance, H),,o,are averaged over the printout interval. A listing ofthe percentage Px of the total solar irradiance at wave-lengths shorter than the respective wavelength is alsoshown.

References1. M. Bader, L. C. Haughney, G. W. Stinnett, and R. A. Acken,

"Operational Report on the NASA 1965 Airborne SolarEclipse Expedition," NASA TM X-1234 (1966).

2. R. Stair, W. E. Schneider, and J. J. Jackson, Appl. Opt. 2,1151 (1963).

3. R. Stair, W. E. Schneider, W. R. Waters, J. J. Jackson, andR. E. Brown, "Some Developments in Improved Methodsfor the Measurement of the Spectral Irradiances of SolarSimulators," NASA CR-201 (1965).

4. A. J. Drummond, in Proceedings of International Symposiumon Solar Radiation Simulation, Los Angeles, 18-20 January

November 1969 / Vol. 8, No. 11 / APPLIED OPTICS 2231

Page 18: Determination of Extraterrestrial Solar Spectral Irradiance from a Research Aircraft

1963 (Institute of Environmental Sciences, Mt. Prospect,Ill., 1963), p. 55.

5. M. P. Thekaekara, "Survey of the Literature on the SolarConstant and the Spectral Distribution of Solar RadiantFlux," NASA SP-74 (1965).

.6. F. S. Johnson, J. Meteorol. 11, No. 6, 431 (1954).7. M. Nicolet, Ann. Astrophys. 14, 249 (1951).8. M. Nicolet, Ach. Meteorol. Geophys. Bioklimatol. BIII,

209 (1931).9. P. Moon, J. Franklin Inst. 230, 583 (1940).

10. C. G. Abbott, F. E. Fowle, and L. B. Aldrich, SmithsonianMisc. Coll. 74, No. 7 (1923).

11. L. Dunkelman and R. Scolnik, J. Opt. Soc. Amer. 49, 356(1959).

12. F. S. Johnson, J. D. Purcell, R. Tousey, and N. Wilson, inRocket Exploration of the Upper Atmosphere (Pergamon Press,London, 1954), p. 279.

13. R. Tousey, Space Sci. Rev. 2, 3 (1963).14. U.S. Nautical Almanac Office: The American Ephemeris and

Nautical Almanac for the Year 1967 (U.S. GovernmentPrinting Office, Washington, D.C., 1965), pp. 27-31.

15. E. Vigroux, Ann. Phys. 8, 709 (1953).16. S. Hedelman and D. C. Nelson, Appl. Opt. 5, 537 (1966).17. S. P. Langley, Proc. Amer. Acad. Arts Sci. 8, 342 (1881).18. F. Kasten, "A New Table and Approximation Formula for

the Relative Optical Air Mass," U.S. Army Materiel Com-mand, Cold Regions Res. and Engineering Lab. Rept. 136(1964).

19. L. Elterman, "Atmospheric Attenuation Model, 1964, in the

Ultraviolet, Visible and Infrared Regions for Altitudes to50 km," Air Force Cambridge Res. Lab. Rept. AFCRL-64-740.

20. C. E. St. John, C. E. Moore, L. M. Ware, E. F. Adams, andH. D. Babcock, Revision of Rowland's Preliminary Table ofSolar Spectrum Wavelengths (Carnegie Institution of Wash-ington, No. 396, 1928).

21. S. Geltman, Astrophys. J. 136, 935 (1963).22. S. Geltman, Astrophys. J. 141, 376 (1965).23. R. Stair and H. T. Ellis, Appl. Meteorol. 7, 635 (1968).24. D. Labs and H. Neckel, Z. Astrophys. 69, 1 (1968).25. M. P. Thekaekara, et al., in Proceedings of the IES/AIAA/

ASTM Third Space Simulation Conference, Seattle, Wash-ington, 16-18 September 1968, (Institute of EnvironmentalSciences, Mt. Prospect, Ill., 1968), p. 36.

26. A. J. Drummond, J. R. Hickey, W. J. Scholes, and E. G.Laue, Nature 218, 259 (1968).

27. J. M. Kendall, "The JPL Standard Total-Radiation AbsoluteRadiometer," Jet Propulsion Lab. Tech. Rept. 32-1263(1968).

28. J. Strong, Procedures in Experimental Physics (PrenticeHall, Inc., Englewood Cliffs, 1968).

29. H. E. Bennett and W. F. Koehler, J. Opt. Soc. Amer. 50,1 (1960).

30. G. Hass, in American Institute of Physics Handbook, D. Gray,Ed. (McGraw-Hill Book Company, 1963), Chap. 6, pp. 6-103.

31. H. E. Bennett, J. M. Bennett, and E. J. Ashley, J. Opt. Soc.Amer. 52, 1245 (1962).

University Science Planning and Policy Activities

The National Science Foundation is seeking grant proposals for re-search and education in the area of science planning and policy.The grants, which are for institution-wide multidisciplinary programs,are designed to (a) meet the urgent need to understand and solvethe many complex science policy issues which confront the nation;(b) stimulate academic institutions to use their intellectual resourcesto analyze, on an interdisciplinary basis, important issues in sciencepolicy and planning; (c) meet the need for a more adequate supplyof educated citizens and experts in this field; (d) bring a widerrange of informed viewpoints to bear on international, national,state, regional, and local science policy issues. Institutions cur-rently receiving grants under this program include Harvard, Massa-chusetts Institute of Technology, University of Virginia, University ofIllinois, State University of New York at Albany, Cornell, and the Uni-versity of Indiana. These grants help to support research andspecial seminars on science planning and policy related to suchproblems as the use of science in international affairs; scientific andtechnical manpower; environmental management; technology andthe city; nuclear energy, the law and international affairs; the effects!of new educational technology; effects of technology on economicgrowth; the organization of large-scale technological projects. Forfurther information write the Office of Planning and Policy Studies,

National Science Foundation, Washington, D.C. 20550.

2232 APPLIED OPTICS / Vol. 8, No. 11 / November 1969


Top Related