Transcript
Page 1: CS 1031 Linked Lists Definition of Linked Lists Examples of Linked Lists Operations on Linked Lists Linked List as a Class Linked Lists as Implementations

CS 103 1

Linked Lists

• Definition of Linked Lists

• Examples of Linked Lists

• Operations on Linked Lists

• Linked List as a Class

• Linked Lists as Implementations of Stacks, Sets, etc.

Page 2: CS 1031 Linked Lists Definition of Linked Lists Examples of Linked Lists Operations on Linked Lists Linked List as a Class Linked Lists as Implementations

CS 103 2

Definition of Linked Lists

• A linked list is a sequence of items (objects) where every item is linked to the next.

• Graphically:

data data data data

head_ptr tail_ptr

Page 3: CS 1031 Linked Lists Definition of Linked Lists Examples of Linked Lists Operations on Linked Lists Linked List as a Class Linked Lists as Implementations

CS 103 3

Definition Details

• Each item has a data part (one or more data members), and a link that points to the next item

• One natural way to implement the link is as a pointer; that is, the link is the address of the next item in the list

• It makes good sense to view each item as an object, that is, as an instance of a class.

• We call that class: Node• The last item does not point to anything. We set its

link member to NULL. This is denoted graphically by a self-loop

Page 4: CS 1031 Linked Lists Definition of Linked Lists Examples of Linked Lists Operations on Linked Lists Linked List as a Class Linked Lists as Implementations

CS 103 4

Examples of Linked Lists(A Waiting Line)

• A waiting line of customers: John, Mary, Dan, Sue (from the head to the tail of the line)

• A linked list of strings can represent this line:

John Mary Dan Sue

head_ptr tail_ptr

Page 5: CS 1031 Linked Lists Definition of Linked Lists Examples of Linked Lists Operations on Linked Lists Linked List as a Class Linked Lists as Implementations

CS 103 5

Examples of Linked Lists(A Stack of Numbers)

• A stack of numbers (from top to bottom): 10, 8, 6, 8, 2

• A linked list of ints can represent this stack:

10 8 6 2

head_ptr tail_ptr

8

Page 6: CS 1031 Linked Lists Definition of Linked Lists Examples of Linked Lists Operations on Linked Lists Linked List as a Class Linked Lists as Implementations

CS 103 6

Examples of Linked Lists(A Set of Non-redundant Elements)

• A set of characters: a, b, d, f, c

• A linked list of chars can represent this set:

a b d c

head_ptr tail_ptr

f

Page 7: CS 1031 Linked Lists Definition of Linked Lists Examples of Linked Lists Operations on Linked Lists Linked List as a Class Linked Lists as Implementations

CS 103 7

Examples of Linked Lists(A Sorted Set of Non-redundant Elements)• A set of characters: a, b, d, f, c

• The elements must be arranged in sorted order: a, b, c, d, f

• A linked list of chars can represent this set:

a b c f

head_ptr tail_ptr

d

Page 8: CS 1031 Linked Lists Definition of Linked Lists Examples of Linked Lists Operations on Linked Lists Linked List as a Class Linked Lists as Implementations

CS 103 8

Examples of Linked Lists(A Polynomial)

• A polynomial of degree n is the function Pn(x)=a0+a1x+a2x2+…+anxn. The ai’s are called the coefficients of the polynomial

• The polynomial can be represented by a linked list (2 data members and a link per item):

a0,0 a1,1 a2,2 an,n

head_ptr tail_ptr

Page 9: CS 1031 Linked Lists Definition of Linked Lists Examples of Linked Lists Operations on Linked Lists Linked List as a Class Linked Lists as Implementations

CS 103 9

Operations on Linked Lists• Insert a new item

– At the head of the list, or– At the tail of the list, or– Inside the list, in some designated position

• Search for an item in the list– The item can be specified by position, or by some value

• Delete an item from the list– Search for and locate the item, then remove the item,

and finally adjust the surrounding pointers

• size( );• isEmpty( )

Page 10: CS 1031 Linked Lists Definition of Linked Lists Examples of Linked Lists Operations on Linked Lists Linked List as a Class Linked Lists as Implementations

CS 103 10

Insert– At the Head• Insert a new data A. Call new: newPtr

List before insertion:

• After insertion to head:

data data data data

head_ptr tail_ptr

A

data data data data

head_ptr tail_ptr

A

•The link value in the new item = old head_ptr•The new value of head_ptr = newPtr

Page 11: CS 1031 Linked Lists Definition of Linked Lists Examples of Linked Lists Operations on Linked Lists Linked List as a Class Linked Lists as Implementations

CS 103 11

Insert – at the Tail• Insert a new data A. Call new: newPtr

List before insertion

• After insertion to tail:

data data data data

head_ptr tail_ptr

A

data data data data

head_ptr tail_ptr

A

•The link value in the new item = NULL•The link value of the old last item = newPtr

Page 12: CS 1031 Linked Lists Definition of Linked Lists Examples of Linked Lists Operations on Linked Lists Linked List as a Class Linked Lists as Implementations

CS 103 12

Insert – inside the List• Insert a new data A. Call new: newPtr

List before insertion:

• After insertion in 3rd position:

data data data data

head_ptr tail_ptr

data

data A data data

head_ptr tail_ptr

data

•The link-value in the new item = link-value of 2nd item•The new link-value of 2nd item = newPtr

Page 13: CS 1031 Linked Lists Definition of Linked Lists Examples of Linked Lists Operations on Linked Lists Linked List as a Class Linked Lists as Implementations

CS 103 13

Delete – the Head Item• List before deletion:

• List after deletion of the head item:

data data data data

head_ptr tail_ptr

data data data data

head_ptr tail_ptr

data

•The new value of head_ptr = link-value of the old head item•The old head item is deleted and its memory returned

data

Page 14: CS 1031 Linked Lists Definition of Linked Lists Examples of Linked Lists Operations on Linked Lists Linked List as a Class Linked Lists as Implementations

CS 103 14

Delete – the Tail Item• List before deletion:

• List after deletion of the tail item:

data data data data

head_ptr tail_ptr

data data data

head_ptr tail_ptr

•New value of tail_ptr = link-value of the 3rd from last item•New link-value of new last item = NULL.

data

datadata

Page 15: CS 1031 Linked Lists Definition of Linked Lists Examples of Linked Lists Operations on Linked Lists Linked List as a Class Linked Lists as Implementations

CS 103 15

Delete – an inside Item• List before deletion:

• List after deletion of the 2nd item:

data data data data

head_ptr tail_ptr

data data

head_ptr tail_ptr

•New link-value of the item located before the deleted one = the link-value of the deleted item

data

data datadata

Page 16: CS 1031 Linked Lists Definition of Linked Lists Examples of Linked Lists Operations on Linked Lists Linked List as a Class Linked Lists as Implementations

CS 103 16

size() and isEmpty()

• We need to scan the items in the list from the head_ptr to the last item marked by its link-value being NULL

• Count the number of items in the scan, and return the count. This is the size().

• Alternatively, keep a counter of the number of item, which gets updated after each insert/delete. The function size( ) returns that counter

• If head_ptr is NULL, isEmpty() returns true; else, it returns false.

Page 17: CS 1031 Linked Lists Definition of Linked Lists Examples of Linked Lists Operations on Linked Lists Linked List as a Class Linked Lists as Implementations

CS 103 17

Searching for an Item

• Suppose you want to find the item whose data value is A

• You have to search sequentially starting from the head item rightward until the first item whose data member is equal to A is found.

• At each item searched, a comparison between the data member and A is performed.

Page 18: CS 1031 Linked Lists Definition of Linked Lists Examples of Linked Lists Operations on Linked Lists Linked List as a Class Linked Lists as Implementations

CS 103 18

Time of the Operations

• Time to search() is O(L) where L is the relative location of the desired item in the List. In the worst case. The time is O(n). In the average case it is O(N/2)=O(n).

• Time for remove() is dominated by the time for search, and is thus O(n).

• Time for insert at head or at tail is O(1).• Time for insert at other positions is dominated by

search time, and thus O(n).• Time for size() is O(1), and time for isEmpty() is O(1)

Page 19: CS 1031 Linked Lists Definition of Linked Lists Examples of Linked Lists Operations on Linked Lists Linked List as a Class Linked Lists as Implementations

CS 103 19

Implementation of an Item

• Each item is a collection of data and pointer fields, and should be able to support some basic operations such as changing its link value and returning its member data

• Therefore, a good implementation of an item is a class

• The class will be called Node

Page 20: CS 1031 Linked Lists Definition of Linked Lists Examples of Linked Lists Operations on Linked Lists Linked List as a Class Linked Lists as Implementations

CS 103 20

Class Node Design for Item• The member variables of Node are:

– The data field(s)– The link pointer, which will be called next

• The functions are:

Function Action Why Needed

getNext( ) returns the link. for navigation

getData( ) returns the data for search

setNext(Node *ptr) sets link to ptr for insert/delete

setData(type x) sets data to x. to modify data contents

Page 21: CS 1031 Linked Lists Definition of Linked Lists Examples of Linked Lists Operations on Linked Lists Linked List as a Class Linked Lists as Implementations

CS 103 21

Class Node Type• class Node {

private:int data; // different data type for other appsNode *next; // the link pointer to next item

public: Node(int x=0;Node * ptr=NULL); // constructor

int getData( );Node *getNext( );void setData(int x);void setNext(Node *ptr);

};

Page 22: CS 1031 Linked Lists Definition of Linked Lists Examples of Linked Lists Operations on Linked Lists Linked List as a Class Linked Lists as Implementations

CS 103 22

Class Node Implementation

• Node::Node(int x, Node *p){ data=x; next=p;};• int Node::getData( ){return data;};• Node * Node::getNext( ){return next;};• void Node::setData(int x) {data=x;};• void Node::setNext(Node *ptr){next=ptr;};

Page 23: CS 1031 Linked Lists Definition of Linked Lists Examples of Linked Lists Operations on Linked Lists Linked List as a Class Linked Lists as Implementations

CS 103 23

Implementation of Linked List

• A linked list is a collection of Node objects, and must support a number of operations

• Therefore, it is sensible to implement a linked list as a class

• The class name for it is List

Page 24: CS 1031 Linked Lists Definition of Linked Lists Examples of Linked Lists Operations on Linked Lists Linked List as a Class Linked Lists as Implementations

CS 103 24

Class Design for List• The member variables are:

– Node *head_ptr; Node *tail_ptr;– int numOfItems;

• Member functions– Node * search(int x); Node * itemAt(int position);– void removeHead(); void removeTail();

void remove(int x);– void insertHead(int x); void insertTail(int x);

void insert(Node *p, int x) // inserts item after the item // pointed to by p

– int size( ); Node *getHead( ); Node getTail( );– bool isEmpty( );

Page 25: CS 1031 Linked Lists Definition of Linked Lists Examples of Linked Lists Operations on Linked Lists Linked List as a Class Linked Lists as Implementations

CS 103 25

Class List Type• class List {

private:Node *head_ptr; Node *tail_ptr; int numOfItems;

public:

List( ); // constructorint size( ); Node *getHead( ); Node *getTail( );

bool isEmpty( );Node *search(int x); Node *itemAt(int position);

void removeHead(); void removeTail();

void remove(int x); // delete leftmost item having x

void insertHead(int x); void insertTail(int x); void insert(Node *p, int x);

};

Page 26: CS 1031 Linked Lists Definition of Linked Lists Examples of Linked Lists Operations on Linked Lists Linked List as a Class Linked Lists as Implementations

CS 103 26

Implementation of Class List• List::List( ){head_ptr= NULL; tail_ptr=NULL;

numOfItems=0;};• int List::size( ){return numOfItems;};• Node * List::getHead( ) {return head_ptr;};• Node * List::getTail( ) {return tail_ptr;};• bool List::isEmpty() {return (numOfItem==0);};

Page 27: CS 1031 Linked Lists Definition of Linked Lists Examples of Linked Lists Operations on Linked Lists Linked List as a Class Linked Lists as Implementations

CS 103 27

Implementation of search( )• Node *List::search(int x){

Node * currentPtr = getHead( );while (currentPtr != NULL){

if (currentPtr->getData( ) == x)return currentPtr;

else currentPtr = currentPtr->getNext();

} return NULL; // Now x is not, so return

NULL };

Page 28: CS 1031 Linked Lists Definition of Linked Lists Examples of Linked Lists Operations on Linked Lists Linked List as a Class Linked Lists as Implementations

CS 103 28

Implementation of itemAt( )• Node *List::itemAt(int position){

if (position<0 || position>=numOfItems)

return NULL;

Node * currentPtr = getHead( );

for(int k=0;k != position; k++)

currentPtr = currentPtr -> getNext( );

return currentPtr;

};

Page 29: CS 1031 Linked Lists Definition of Linked Lists Examples of Linked Lists Operations on Linked Lists Linked List as a Class Linked Lists as Implementations

CS 103 29

Implementation of removeHead( )

• void List::removeHead( ){

if (numOfItems == 0)

return;

Node * currentPtr = getHead( );

head_ptr=head_ptr->getNext( );

delete currentPtr;

numOfItems--;

};

Page 30: CS 1031 Linked Lists Definition of Linked Lists Examples of Linked Lists Operations on Linked Lists Linked List as a Class Linked Lists as Implementations

CS 103 30

Implementation of removeTail( )• void List::removeTail( ){

if (numOfItems == 0)return;

if (head_ptr == tail_ptr){ head_ptr=NULL; tail_ptr= NULL;

numOfItems=0; return; }Node * beforeLast = itemAt(numOfItems-2);beforeLast->setNext(NULL); // beforeLast becomes last

delete tail_ptr; // deletes the last object tail_ptr=beforeLast; numOfItems--;

};

Page 31: CS 1031 Linked Lists Definition of Linked Lists Examples of Linked Lists Operations on Linked Lists Linked List as a Class Linked Lists as Implementations

CS 103 31

Implementation of remove( )• void List::remove(int x){

if (numOfItems == 0) return;if (head_ptr==tail_ptr && head_ptr->getData()==x){ head_ptr=NULL; tail_ptr= NULL; numOfItems=0; return; }Node * beforePtr=head_ptr; // beforePtr trails currentPtrNode * currentPtr=head_ptr->getNext();Node * tail = getTail();while (currentPtr != tail) if (currentPtr->getData( ) == x){ // x is found. Do the bypass beforePtr->setNext(currentPtr->getNext()); delete currentPtr; numOfItems--; } else { // x is not found yet. Forward beforePtr & currentPtr. beforePtr = currentPtr; currentPtr = currentPtr->getNext(); }

};

Page 32: CS 1031 Linked Lists Definition of Linked Lists Examples of Linked Lists Operations on Linked Lists Linked List as a Class Linked Lists as Implementations

CS 103 32

Implementation of insertHead( )

• void List::insertHead(int x){Node * newHead = new

Node(x,head_ptr);

head_ptr= newHead;

if (tail_ptr == NULL) // only one item in list

tail_ptr = head_ptr;

numOfItems++;

};

Page 33: CS 1031 Linked Lists Definition of Linked Lists Examples of Linked Lists Operations on Linked Lists Linked List as a Class Linked Lists as Implementations

CS 103 33

Implementation of insertTail( )

• void List::insertTail(int x){

if (isEmpty())

insertHead(x);

else{

Node * newTail = new Node(x);

tail_ptr->setNext(newTail);

tail_ptr = newTail; numOfItems++;

} };

Page 34: CS 1031 Linked Lists Definition of Linked Lists Examples of Linked Lists Operations on Linked Lists Linked List as a Class Linked Lists as Implementations

CS 103 34

Implementation of insert( )• // inserts item x after the item pointed to by p

• void List::insert(Node *p, int x){Node *currentPtr = head_ptr;while(currentPtr !=NULL && currentPtr != p)

currentPtr = currentPtr->getNext();if (currentPtr != NULL ) { // p is found Node *newNd=new Node(x,p->getNext()); p->setNext(newNd); numOfItems++;}

};

Page 35: CS 1031 Linked Lists Definition of Linked Lists Examples of Linked Lists Operations on Linked Lists Linked List as a Class Linked Lists as Implementations

CS 103 35

For your Work in the Lab

• Make the necessary modifications to the List class implementations so that no two Nodes have the same data value. This is useful when using linked lists to implement sets.

• Make the necessary changes to the List class so that the Nodes are in increasing order of data values. In particular, replace all the insert methods, and replace them with insert(int x), which inserts x in the right position so that the List remains sorted.


Top Related