Transcript
Page 1: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija i fi ičk h ij kihfizičkohemijskih procesa

Prof dr Borivoj AdnađevićProf. dr Borivoj Adnađević

Page 2: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

• Microwave heating is a widely accepted, non-conventional energy source which is now gyapplied in numerous fields.

• Dramatically reduces reaction timesy• Increases product yields • Enhance product purities by reducing unwanted a ce p oduc pu es by educ g u a ed

side reactions

Page 3: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

The effect of microwave irradiation: • thermal effects - overheating (Baghurst & Mingos, 1992),

)• hot-spots (Zhang et. al., 1999), • selected heating (Raner et. al., 1993),

ifi i ff t ( )• specific microwave effects (Hoz et. al., 2005).

• The thermal effects are connected with the different characteristics of microwave dielectric heating andcharacteristics of microwave dielectric heating and conventional heating

Page 4: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

• The thermal effects are connected with theThe thermal effects are connected with thedifferent characteristics of microwave dielectricheating and conventional heating

MICROWAVE HEATING CONVENTIONAL HEATING

Energetic coupling Conduction/ convection

Coupling at the molecular level Superficial heating

R id SlRapid Slow

Volumetric Super ficial

Selective Non-selective

Dependant on the properties of the materials Less dependant on the properties of the materialsDependant on the properties of the materials Less dependant on the properties of the materials

Table 1. The basic characteristics of microwave and conventional heating

Page 5: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

Microwave heating (MWH) significantly:

• accelerates the rate of chemical reactions and physico-h i lchemical processes,

• gives higher yields and improve properties of the products.

Page 6: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

Microwave heating is a widely accepted non conventionalMicrowave heating is a widely accepted, non-conventional energy source for organic synthesis and different physico-chemical processes:chemical processes:

• sintering, nucleation and crystallization,• combustion synthesis, • calcination, • solvent-free reactions, • heterogeneous catalysis and

bi t i l h i t• combinatorial chemistry

Page 7: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

• The issue of specific microwave effects is still a controversial matter. Several theories have been postulated and also some predicted models have been publishedand also some predicted models have been published.

• Berlan et al., 1998, observed the acceleration of a cycloaddition reaction under isothermal microwave reaction conditions and explained the change in entropy of the reaction systemsreaction systems.

Page 8: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

• Microwave enhanced the imidization reaction of a sulfone and ketone group-containing polyamic acid, which Lewis et g p g p y ,al., 1992, elucidated with a mechanism based on “excess dipole energy”, in which it was proposed that the localized energy (temperature) of the dipole groups was higherenergy (temperature) of the dipole groups was higher compared to the non-polar bonds within these systems.

• Rybakov and Semenov, 1994, explained the effect of microwave reaction conditions on the kinetics of reactions in the solid state with the formation of a ponderomotive force, which influences the time-average motion of charged particles and enhances ionic transport in the solid stateparticles and enhances ionic transport in the solid state.

Page 9: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

Th bili f i di i i i l• The ability of microwave radiation to excite rotational transitions and thus enhance the internal energy of a system was used by Strauss and Trainor, 1995, to explain the effects of microwave fields on the kinetics of chemical reactionsof microwave fields on the kinetics of chemical reactions.

• Binner et al., 1995, investigating the effect of a microwave field on the kinetics of titanium carbide formation, concluded that in the presence of a microwave field, the molecular mobility increases which leads to the increasing value ofmobility increases which leads to the increasing value of Arrhenius pre-exponential factor which further causes an acceleration of the synthesis of titanium carbide.

Page 10: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

• Stuerga and Gaillard, 1996, explained the acceleration of the reaction rate in condensed states under

i ti diti i i tmicrowave reaction conditions in comparison to conventional reacting conditions by the enhanced rate of collisions in condensed phases, which induces transfer pbetween rotational and vibrational energy levels and reaction acceleration.

• Booske et al., 1997, used the existence of non-thermal energy distributions to explain microwave-enhanced

lid t t t tsolid-state transport.

Page 11: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

• Based on the experimentally confirmed decrease in the values of the activation energy of sodium bicarbonate decomposition under microwave reaction conditions, Shibata et al., 1996, concluded that the effect of a microwave field on dielectric materials is to induce rapid rotation of the polarizeddielectric materials is to induce rapid rotation of the polarized dipoles in the molecules. This generates heat due to friction while simultaneously increasing the probability of contact between the molecules thus enhancing the reaction rate andbetween the molecules, thus enhancing the reaction rate and reducing the activation energy.

Page 12: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

• Perreux and Loupy 2000 studied and classified the naturePerreux and Loupy, 2000, studied and classified the nature of the microwave effects considering the reaction medium and reaction mechanism, i.e., the polarity of the transition t t d th iti f th t iti t t l ith thstate and the position of the transition state along with the

reaction coordinate.

• Blanco and Auerbach, 2003, theoretically proved that the energy of a microwave field is initially transferred to select molecular modes (transition vibration and/or rotation) andmolecular modes (transition, vibration and/or rotation) and used this information to explain the inverse desorption of benzene and methanol from zeolite, compared to thermal d tidesorption.

Page 13: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

• Conner and Tumpsett, 2008, explained specific microwave effects with the capability of microwaves to change the relative energies of rotation of i t di t i iintermediates in a given sequences.

Page 14: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

The aim:

• Presents the results of investigations of the kinetics of• Presents the results of investigations of the kinetics of – under conventional and microwave conditions for

• a) chemical reactions: isothermal PAA hydrogel formation fullerolea) chemical reactions: isothermal PAA hydrogel formation, fullerole formation, and sucrose hydrolyses

• b) physicochemical process: ethanol adsorption and PAM hydrogel dehydration;

– present the effects of microwave reaction conditions on: • -kinetics model, • values of kinetic parameters• -values of kinetic parameters, • -the complexity of the kinetics of the investigated processes

• To explain the effects of a microwave field on the kinetics ofTo explain the effects of a microwave field on the kinetics of chemical reaction and physico-chemical processes.

Page 15: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

The Microwave instrument

Commercially available monomode microwave unit - Discover, CEM Corporation, Matthews, North Carolina, USA

Page 16: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

Methods used to evaluate the kinetic modelMethods used to evaluate the kinetic model and kinetic parameters

• Model-Fitting Metod

• Differential isoconversion method (Friedman’s method)

Page 17: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

Model-Fitting Metod

According to the model fitting method the kinetic reactionAccording to the model-fitting method the kinetic reaction model in solid state are classified in 5 groups depending on the reaction mechanism: (1) power law reaction (2) phase-boundary controlled reaction (3) reaction order (4) reaction described by the Avrami equation and (5) diffusion controlled reactions.controlled reactions.

Page 18: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

Model-Fitting Metod

The model-fitting method is based on the following. The i t ll d t i d i f(t)Texperimentally determined conversion curve αexp=f(t)T

has to be transformed into the experimentally normalized conversion curve αexp=f(tN)T, where tN is the so-called p ( ) ,normalized time. The normalized time, tN, was defined by the equation:

Page 19: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

M d l Fitti M t dModel-Fitting Metod

9.0ttt N =

where t0.9 is the moment in time at which α=0.9.

The kinetics model of the investigated process was determined by analytically comparing the normalized experimentally conversion urves with the normalized model’s conversion curves. The kinetics model of the investigated process corresponds to the one for whichmodel of the investigated process corresponds to the one for which the sum of squares of the deviation of its normalized conversional curve from the experimental normalized conversional curve one gives minimal values.

Page 20: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

Table 2.The set of kinetics models used to determine the kinetics model of ethanol adsorption

Model Reaction mechanism

General expression of the kinetics

model, ƒ(α)

Integral form of the kinetics model,

g(α)

p

P1 Power law 4α3/4 α1/4

P2 Power law 3α2/3 α1/3

P3 Power law 2α1/2 α1/2

P4 Power law 2/3α-1/2 α3/2

R1 Zero-order (Polany-Winger equation) 1 α

R2 Phase-boundary controlled reaction (contracting area, i.e., bidimensional shape) 2(1-α)1/2 [1-(1-α)1/2]

R3 Phase-boundary controlled reaction (contracting volume, i.e., tridimensional shape) 3(1-α)2/3 [1-(1-α)1/3]

F1 First-order (Mampel) (1-α) -ln(1-α)

F2 Second-order (1-α)2 (1-α)-1-1

F3 Third-order (1-α)3 0.5[(1-α)-2-1]

A2 Avrami-Erofe’ev 2(1-α)[-ln(1-α)]1/2 [-ln(1-α)]1/2

A3 Avrami-Erofe’ev 3(1-α)[-ln(1-α)]2/3 [-ln(1-α)]1/3

A4 Avrami-Erofe’ev 4(1-α)[-ln(1-α)]3/4 [-ln(1-α)]1/4

D1 One-dimensional diffusion 1/2α α2

D2 Two-dimensional diffusion (bidimensional particle shape) 1/[-ln(1-α)] (1-α)ln(1-α) + α

D3 Three-dimensional diffusion (tridimensional particle shape) Jander equation 3(1-α)2/3/2[1-(1-α)1/3] [1-(1-α)1/3]2

D4 Three-dimensional diffusion (tridimensional particle shape) Ginstling-Brounshtein 3/2[(1-α)-1/3-1] (1-2α/3)-(1-α)2/3

Page 21: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

1.0

Reakcionimodeli

0.8

D3P4

0.4

0.6 D4

D2 A3

F1 R3

R2

P3 P2

α

0.0

0.2D1 A4

A2

R1P3

P1

0.0 0.2 0.4 0.6 0.8 1.0

0.0

t/t0,9

Fig 2: Modelne krive

Page 22: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

Differential isoconversion method

The activation energy of the investigated adsorption process for various degrees of conversion was established by the Friedman method based on the followsthe Friedman method-based on the follows.

The rate of the process in condensed state is generally aThe rate of the process in condensed state is generally a function of temperature and conversion:

(4)i

),( αφα Tdtd

=

i.e.

(5)

dt

)()( αα fTkdtd

=

Page 23: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

Differential isoconversion method

Where dα/dt is the reaction rate, is function of α and T, α is h i d h t h i T hthe conversion degree, the rate constant t the time, T the temperature, and is the reaction model associated with a certain reaction mechanism. The dependence of the rate constant on temperature is ordinary described by theconstant on temperature is ordinary described by the Arrhenius law:

(6))exp( EaAk −= (6)

h E i th ti ti A i th ti l

)exp(RT

Ak =

where Ea is the activation energy, A is the pre-exponential factor and R is the gas constant

Page 24: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

Differential isoconversion method

Then we get the following equation:

(7))()exp( αα fEaAd (7)

Accepting that the reaction rate constant is an extent

)()exp( αfRT

Adt

⋅−=

p gof conversion and is only function of temperature, which is known as the iso-conversional principle of Friedman, the equation is easily transformed to:

(8)

That allows the evaluation of the activation energy forRTEafA

dtd ααα

α⋅

−=⋅ ))((ln()(ln

That allows the evaluation of the activation energy for particular degree of conversion:

Page 25: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

Isothermal kinetics of acrylic acidIsothermal kinetics of acrylic acid polymerization and crosslinking

(A) CIRC conditions (B) MWIRC conditions

0.8

1.0

0.8

1.0

0.2

0.4

0.6

α

303 K 313 K 323 K

(A)

0.2

0.4

0.6

α

303 313 323

(B)

0 100 200 300 400 5000.0

0.2

Time, min

0 1 2 3 4 50.0

Time, min

Fig 3: Conversion curves for the formation of PAA hydrogel

Page 26: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

Dependence of dα/dt on the degree of PAA hydrogel formationDependence of dα/dt on the degree of PAA hydrogel formation under (A) conventional conditions and (B) microwave conditions

1 6

0.02

0.03 303 K 313 K 323 K

dt

(A)

0.8

1.2

1.6

/dt

303 313 323

(B)

0.0 0.2 0.4 0.6 0.8 1.00.00

0.01

dα/d

0.0 0.2 0.4 0.6 0.8 1.00.0

0.4

dα/

T, K Conventional process Microwave process

(d /d ) Ki i (d /d ) Ki i

α α

(dα/dt)ma

x,[min–1]

Kinetic parameters

(dα/dt)ma

x,[min–1]

Kinetic parameters

303 0.019 Ea=22±0.2 kJ/molln A 5±0 1

0.947 Ea=17±0.3 kJ/molln A 7±0 1ln A = 5±0.1 ln A=7±0.1313 0.023 1.105

323 0.032 1.433

Page 27: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

Kinetic model of : second-order chemical reaction (CH) first-order chemical reaction (MWH )

20

10

15

/(1-α

)]-1

303 K 313 K 323 K

4

6

8

n(1-α)

0 100 200 300 400 5000

5

[1/(

0 1 2 3 4 50

2

-l

303 313 323

Tim e, m in Time, min

Fig 4. Isothermal dependence of [[1/(1- α)] -1] on reaction time for PAA hydrogel formation under the CH

Fig 5. Isothermal dependence of [–ln(1-α)] on reaction time for PAA hydrogel formation under MWH

T, K Conventional process Microwave process

k, min–1 Kinetic parameters K, min–1 Kinetic parameters

303 0.023 Ea,M=21±1 kJ/moll (A / i 1)

1.008 Ea,M=17±1 kJ/moll (A / i 1) 8 6 0 2 ln (AM /min–1)=

9.4±0.2ln (AM /min–1)=8.6±0.2 313 0.035 1.180

323 0.047 1.590

Page 28: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

50

30

40

ol-1

conventional microwave

20

30

E a, kJm

o

ln Af = 5.23 ± 0.195 Ea,f

0 0 0 2 0 4 0 6 0 8 1 00

10

0.0 0.2 0.4 0.6 0.8 1.0

αFig 6. The dependence of Ea,α on the degree of conversion for PAA hydrogel formationof conversion for PAA hydrogel formation

Page 29: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

Larsson Model of selective energy

• During the interaction of a catalyst with reacting molecules, the existence of a compensation effect and the formation of an “active complex” (Larson 1989) is explained as thean active complex (Larson, 1989) is explained as the consequence of transfer of the necessary amount of vibrational energy from an energetic reservoir onto the reacting molecule, which is aimed at “active complex” g pformation.

• The established changes in the kinetics parameters (decrease) can be explained with the decrease in: required(decrease) can be explained with the decrease in: required amount of vibration energy necessary for “active complex” formation and in resonance frequency of the energetic transfer the between the oscillators under MWIRC intransfer the between the oscillators under MWIRC in comparison to CIRC.

Page 30: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

Larsson Model of selective energy

• It can be assumed that a reacting molecule can be modeled as a sum of normal oscillators and that that molecule convert into an “active complex” anytime when it accepts the necessary amount of energy (energy of activation) and that during the formation of such an “active complex”that during the formation of such an active complex , vibrational changes occur which are in relation with changes connected with the localization of the energy on a d fi d b d ( l ill )defined bond (normal oscillator).

Page 31: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

Larsson Model of selective energy

Then, in accordance with the Larsson Model the wave number of the resonant oscillation (ν) and the energy of activation (Ea) of the reaction can be calculated. The wave number of the resonant oscillation is given gby:

(9)

where b is the energetic parameter of the compensation effect equation, bR ⋅

=715.0ν

g p p q ,while the values of the activation energy is quantized and given as:

(10)RTxnnEa ++= )( 2νν

where n is the number of quantum of vibrational energy transferred from one to another oscillator or from an energy reservoir („heat bath”) to the resonant oscillator, which are necessary to overcome the energetic barrier (activation energy) and x is the anharmonicity constant of the oscillator. ( gy) y

Page 32: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

Table 3: The values of ν , n and x under CIRC and MWIRC

Variable CIRC MWIRC

ν (cm–1) 429 429

n 4 3

x –0.022 –0.0017

Page 33: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

2. Isothermal kinetics of fullerol formationFig 7 The isothermal conversion curves for fullerol formation under (A) CIRC and (B) MWIRC

1.01.0

Fig 7. The isothermal conversion curves for fullerol formation under (A) CIRC and (B) MWIRC

0.4

0.6

0.8

293 K 298 K 303 K 308 K 313 K

α

(A)

0 4

0.6

0.8

α

293 K 298 K 303 K 308 K

(B)

0 40 80 120 160 2000.0

0.2

0.4 313 K

0 20 40 60 800.0

0.2

0.4 308 K 313 K

0 40 80 120 160 200

Time, min

0 20 40 60 80

Time, min

( )k1 ( )tk M ⋅−−= exp1α

Page 34: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

Figure 7. gu eThe dependence of [–ln(1-α)] on reaction time for fullerol formation for(A) CIRC and (B) MWIRC

25(A)

15

20

n(1-α

)

293 K 298 K 303 K 308 K 313 K

(A)

8

12

16

n(1-α

)

293 K 298 K 303 K 308 K 313 K

(B)

0 40 80 120 160 2000

5

10-ln

0 20 40 600

4

-ln

Time, min Time, min

Table 4. The temperature influence on the model’s reaction rate constants and the kinetics parameters for fullerol formation, for the conventional and the microwave reacting conditions

T, K Conventional process Microwave process

k, min-1 Kinetics parameters k, min-1 Kinetics parameters

293 0.047 Ea,M=38±2 kJ/molln(AM /min-1)= 12.6±0.5

0.101 Ea,M=10.5±0.5 kJ/molln(AM /min-1)=2.44±0.04

298 0.066 0.175

303 0.080 0.186

308 0.106 0.192

313 0.135 0.211

Page 35: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

Fig 8Fig 8. Dependence of the Ea on the degree of fullerol formation

60

compensation effect equation: EA 36804401l

20

40

Ea, k

Jmol

-1

conventional microwave

FaF EA ,368.0440.1ln +−=

0

20E

Table 5. The values of the ν, n and, x under the CIRC and MWIRC

0.0 0.2 0.4 0.6 0.8 1.0

αParameter CIRC MWIRC

ν (cm-1) 233 233

n 14 3

x -0.004 -0.0013

Page 36: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

Isothermal kinetics of acid catalysed sucrose hydrolysesIsothermal kinetics of acid catalysed sucrose hydrolyses under the CIRC and MWIRC

1.0 1.0

0.4

0.6

0.8

α

303 K 313 K 323 K(A) 0.4

0.6

0.8

α

303 K 313 K323 K333 K

(B)

0 10 20 30 40 50 600.0

0.2

0.4 333 K

0 4 8 12 160.0

0.2

Ti iTime, min Time, min

Fig 7. The isothermal conversion curves for sucrose hydrolyses g y y

Page 37: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

Isothermal kinetics of acid catalysed sucrose hydrolysesIsothermal kinetics of acid catalysed sucrose hydrolyses under the CIRC and MWIRC

5

6

7 303 K 313 K 323 K 333 K

(A) 4 303 K 313 K

(B)

2

3

4

5 333 K

-ln(1

-α)

2

3

-ln(1

-α)

323 K 333 K

0 10 20 30 40 50 600

1

2

0 4 8 12 160

1

( )

Time, min Time, min

Fig 8. Dependence of [–ln(1-α)] on reaction time

( )tkM ⋅−−= exp1α

Page 38: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

Table 6. The temperature influence on the kM and the kinetic parametersfor sucrose hydrolyses under the conventional and the microwavereacting conditions

T, K Conventional process Microwave process

k, min-1 Kinetics parameters k, min-1 Kinetics parameters

303 0.024 0.204Ea,M=32±2 kJ/molln(AM /min-1)= 9±1

Ea,M=25.15±1 kJ/molln(AM /min-1)=8.4±0.1

313 0.039 0.287

323 0.076 0.386

333 0.105 0.510

40

50

1

10

20

30

Ea, k

Jmol

-1

conven tiona l m icrow ave

0.0 0 .2 0.4 0 .6 0.8 1 .00

α

Page 39: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

Table 7. The values of the ν,n, x for sucrose hydrolyses, under the CIRC and MWIRC

Variable CIRC MWIRC

ν (cm-1) 723 723

FaF EA ,119.0407.5ln +=ν (cm ) 723 723

n 4 3

0 035 0 042x -0.035 -0.042

Page 40: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

I th l ki ti f th l d ti fIsothermal kinetics of ethanol adsorption from aqueous solutions onto carbon molecular sieve under the CH and MWH

0.160.16

0.08

0.12

Wt.%

303 K 331 K(A)

0.08

0.12

Wt,

%.

303 K 308 K313 K

(B)

0 20 40 60 800.00

0.04323 K 333 K

(A)

0 2 4 6 8 100.00

0.04

313 K

Figure 9. The kinetic curves of ethanol adsorption on CMS-3A for (A) CH and (B) MWH

Time, min Time, min

Figure 9. The kinetic curves of ethanol adsorption on CMS 3A for (A) CH and (B) MWH

Page 41: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

I th l ki ti f th l d ti fIsothermal kinetics of ethanol adsorption from aqueous solutions onto carbon molecular sieve under the CH and MWH

0 .4

0 .5

m icrow ave

0 .2

0 .3

dα/d

t

303 K 311 K 323 K 333 K

303 K 308 K 313 K

0 0

0 .1

0 .2d co n v e n tio n a l

0 .0 0 .2 0 .4 0 .6 0 .8 1 .00 .0

α

Figure 10 Dependence of dα/dt on the degree of ethanol adsorptionFigure 10. Dependence of dα/dt on the degree of ethanol adsorption

Page 42: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

Fig 11 Dependence of dα/dt on the degree of ethanol adsorptionFig 11. Dependence of dα/dt on the degree of ethanol adsorption

0 .4

0 .5

3 0 3 K

m icro w a v e

0 1

0 .2

0 .3

dα/d

t

3 1 1 K 3 2 3 K 3 3 3 K

3 0 3 K 3 0 8 K 3 1 3 K

c o n v e n tio n a l

0 .0 0 .2 0 .4 0 .6 0 .8 1 .00 .0

0 .1

α

Table 8 Temperature influence on (dα/dt)max for adsorption of ethanol and

Conventional process Microwave process

T, K (dα/dt) , [min- Kinetics parameters T, K (dα/dt) [ min- Kinetics parameters

Table 8. Temperature influence on (dα/dt)max for adsorption of ethanol andkinetic parameters, for the CIRC and MWIRC processes

T, K (dα/dt)max, [min1]

Kinetics parameters T, K (dα/dt)ma [ min1]

Kinetics parameters

303 0.084 Ea=11.9±0.2 kJ/mollnA = 2.2±0.1

303 0.387 Ea=10.9±0.2 kJ/mollnA=2.6±0.1

311 0.094 308 0.417

323 0 114 313 0 447323 0.114 313 0.447

333 0.129

Page 43: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

M d l fitti th d ( )311 kModel fitting method : ( )311 tkM ⋅−−=α

1.0conventionalmicrowave Table 9. The influence of temperature on model’s kinetic

0.4

0.6

0.8

[1-(1

−α)1/

3 ]

303 K 311 K 323 K 333 K

constants of the ethanol adsorption rate and kineticparameters, for the CIRC and MWIRC processes

Conventional process Microwave process

0 5 10 15 20 25 300.0

0.2

Time, min

303 K 308 K 313 K

Fig 12. Dependence of dα/dt on the degree of ethanol

p p

T,K

[min-1] Kinetics parameters

T, K [min-1] Kinetics parameter

s

303 0.028 Ea=12±0.5 303 0.129 Ea=11.2±0.on the degree of ethanol adsorption

1 6

2 0

conv entional i

kJ/mollnA

=1.15±0.05

5 kJ/mollnA=2.4±0.1

311 0.032 308 0.139

323 0.038 313 0.149

333 0.043

0.0 0.2 0.4 0.6 0.8 1 .0

4

8

1 2

Ea,k

Jmol

-1

m icrow av e

Table 10. The values of the ν, n and , x under the CIRC and MWIRC of ethanol adsorption process

Variable CIRC MWIRC

ν (cm-1) 292 386α

αα ,295.0907.1ln aconv EA +−=

αα ,223.0937.1ln amw EA +−=

( )

n 3 2

x -0.025 -0.0016

Page 44: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

Isothermal dehydration of poly(acrylic -co-methacrylic acid) hydrogels

Fig 13 The conversion curves for dehydration process of the hydrogelFig 13. The conversion curves for dehydration process of the hydrogel (A) conventional and (B) microwave

1 .01 0

0 .4

0 .6

0 .8

2 9 3 3 0 3 3 1 3α

(A )

0.4

0.6

0.8

1.0

α

313 K 323 K 333 K

(B)

0 5 0 1 0 0 1 5 0 2 0 00 .0

0 .2

T im e, m in

0 2 4 6 8 100.0

0.2

Time, min,

A phase-boundary controlled reaction model (contracting area) : ( )1/2 M1 1 α k t⎡ ⎤− − = ⋅⎢ ⎥⎣ ⎦⎣ ⎦

Page 45: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

Fig 14 The dependence of on time for dehydration process of theFig 14. The dependence of on time for dehydration process of thehydrogel (A) CH and (B) MW

1 0

0.6

0.8

1.0

0.5 0.6

0.8

1.0

)0.5

0.2

0.4

293 K 303 K 313 K

1-(1

-α)0

(A )

0 0

0.2

0.4 313 K 323 K 333 K

1-(1

-α) (B)

0 20 40 60 80 100 1200.0

Time, min

0 2 4 6 80.0

Time, min

T, K Conventional process T, K Microwave process

kM [min–1] Kinetics parameters

kM [min–

1]Kinetics parameters

293 0.0052 Ea=58.5±0.5 kJ/mol

ln A = 18.5±0.2

313 0.120 Ea=51.6±0.5 kJ/molln A=17.7±0.2303 0.0109 323 0.207

Table 11. The effect of temperature on the kM values and kinetic parameters of the isothermaldehydration of the PAM hydrogel by the CH and the MWH

313 0.0236 333 0.393

Page 46: čk h ij kihkohemijskih procesa Prof dr Borivoj AdnaProf ... studije/2011/borivoj... · Uticaj mikrotalasnog zagrevanja naUticaj mikrotalasnog zagrevanja na kinetiku hemijskih reakcija

Fig 15. The dependence of the Ea on the dehydration degree of the hydrogel

60

65

Table 12. The values of υ, n, and χ under conventional and microwave conditions

45

50

55

a, k

Jmol

-1 Variable CIPC MWIPC

υ 726 726

35

40

45E a conventional microwave

n 7 6

χ –0.011 –0.015

0.0 0.2 0.4 0.6 0.8 1.035

α

F a Fln 11.71 0.116A E= + ⋅F a,F


Top Related