Transcript
Page 1: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

CHAPTER 53 POPULATION ECOLOGY

Page 2: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

Page 3: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

POPULATION

• Population- a group of individuals of a single species living in the same general area• Three fundamental characteristics of a population

• Density• Dispersion• Demographics

Page 4: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

DENSITY AND DISPERSION

• Scientists have begun investigating the boundaries of a population.• They may be natural or arbitrarily defined

• Density – the number of individuals per unit area or volume• Dispersion – the pattern of spacing among

individuals within the boundaries of the population

Page 5: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

DENSITY

• Almost impossible to actually count the number of individuals• Some ecologists will estimate and extrapolate• Mark-Recapture method • Density is not a static property• Immigration- the movement of organisms into an area• Emigration- the movement of organisms out of the area

Page 6: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

PATTERNS OF DISPERSION

• Clumped – sea stars grouping together where food is abundant• Uniform – penguins maintaining almost equal

spacing due to aggressive interactions between neighbors• Random – dandelions growing wherever the seeds

land and germinate

Page 7: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

(a) Clumped

(b) Uniform

(c) Random

Page 8: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

DEMOGRAPHICS

• Demography – the study of vital statistics of populations and how they change over time• Life tables• Survivorship curves

Page 9: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

LIFE TABLES

• Age-specific summaries of the survival pattern of a population• Best way to construct one is to follow the fate of a

cohort from birth until death• A group of individuals of the same age

Page 10: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

SURVIVORSHIP CURVES

• A graphing method of representing the data in a life table• Three different types of patterns• Type I- flat to start then drops steeply• Humans and other mammals

• Type II – steady decline• Squirrels

• Type III – drops sharply at the start• Oysters

Page 11: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

Survivorship Curves

1,000

100

10

10 50 100

II

III

Percentage of maximum life span

Nu

mb

er

of

su

rviv

ors

(lo

g s

ca

le)

I

Page 12: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

REPRODUCTIVE RATES

• Demographers typically ignore males and focus on females• A reproductive table (fertility schedule) is an

age specific summary of the reproductive rates in a population.• Tallies the number of female offspring produced

by each age group

Page 13: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

53.2- LIFE HISTORY TRAITS ARE PRODUCTS OF NATURAL

SELECTION

Page 14: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

• Natural selection favors traits of organisms that allow them to survive longer and reproduce• Life history- the trait that affects an organism’s

schedule of reproduction and survival• Start of reproduction• How often reproduction occurs• Amount of offspring per reproduction cycle

Page 15: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

EVOLUTION AND LIFE HISTORY DIVERSITY

• One-shot reproduction• Semelparity- one big reproduction of offspring (big bang

reproduction)

• Iteroparity- offspring over many years

• 2 critical factors: • Survival rate of offspring• Likelihood hood that adults will live to reproduce

again

Page 16: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

EVOLUTION AND LIFE HISTORY DIVERSITY

• Semelparity if offspring aren’t likely to survive long• Iteroparity if the environment is favorable to the

adults

Page 17: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

“TRADE-OFFS” AND LIFE HISTORIES

• Natural selection cannot maximize all reproduction variables simultaneously• Time, energy, and nutrients limit reproduction of

organisms• Trade-offs between survival and reproduction• Selective pressures between number of offspring and size

of offspring• Parent care and learn through 1st year makes an impact

Page 18: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

53.3- THE EXPONENTIAL MODEL DESCRIBES POPULATION GROWTH IN AN IDEALIZED,

UNLIMITED ENVIRONMENT

Page 19: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

• Potential to expand if resources are right• Reveals capacity of species for increase and

conditions under which capacity may be expressed

Page 20: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

PER CAPITA RATE OF INCREASE

• Population will increase with births and emigrations• Populations will decrease with deaths and

immigration• Change in population= (birth + immigration) –

(deaths + emigrations)

Page 21: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

PER CAPITA RATE OF INCREASE

• Per capita birth rate- number of offspring produced by an average member of the population• Per capita death rate- expected number of deaths

per a unity of time • Most interested in the difference between the

death and birth rates

Page 22: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

PER CAPITA RATE OF INCREASE

• R=b-d• R is the indication whether a given population is

growing or declining• Zero population growth (ZPG) the birth and death

rates equal zero

Page 23: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

EXPONENTIAL GROWTH

• Exponential population growth- population increase under ideal conditions • J-shaped curved• Can mean the introduction to a new environment• Numbers that have been affected by a catastropic event

Page 24: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

53.4 THE LOGISTIC MODEL DESCRIBES HOW A POPULATION GROWS MORE

SLOWLY AS IT NEARS ITS CARRY CAPACITY

Page 25: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

• Exponential growth model assumes that resources are unlimited• Not the case in the real world

• Carrying capacity (K) – the maximum population size that a particular environment can sustain

Page 26: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

THE LOGISTIC GROWTH MODEL

• The per capita rate of increase approaches zero as the carrying capacity is reached

• Will produce an s-shaped curve

Page 27: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

2,000

1,500

1,000

500

00 5 10 15

Number of generations

Po

pu

lati

on

siz

e (N

)

Exponentialgrowth

1.0N=dN

dt

1.0N=dN

dt

K = 1,500

Logistic growth1,500 – N

1,500

Page 28: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

1,000

800

600

400

200

00 5 10 15

Time (days)

Nu

mb

er o

f Paramecium

/mL

Nu

mb

er o

f Daphnia

/50

mL

0

30

60

90

180

150

120

0 20 40 60 80 100 120 140 160

Time (days)

(b) A Daphnia population in the lab(a) A Paramecium population in the lab

Page 29: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

LOGISTIC MODEL AND REAL POPULATIONS

• The logistic model assumes that populations will adjust instantaneously• This is not typically the case

• This will cause a population to temporarily overshoot the carrying capacity• Allee effect- individuals may have a more difficult

time surviving or reproducing if the population size is too small

Page 30: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

LOGISTIC MODEL AND LIFE HISTORIES

• K-selection- density dependent• Operates in populations living at a density near their

carrying capacity

• R-selection- density independent• Traits that maximize reproductive success in uncrowded

environments

Page 31: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

53.5 MANY FACTORS THAT REGULATE POPULATION GROWTH ARE DENSITY

DEPENDENT

Page 32: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

POPULATION CHANGE AND POPULATION DENSITY

• Density independent populations will have birth and death rates that will not change with density• Density dependent populations will have birth

and death rates that will rise and fall with density

Page 33: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

DENSITY-DEPENDENT POPULATION REGULATION

• Without some type of negative feedback between population density and the rates of birth and death, a population will never stop growing.• Competition for resources• Increasing population density competing for declining

nutrients will lead to a lower birth rate

• Toxic Wastes• The accumulation of toxic waste can effect population

size

• Intrinsic Factors• In some cases the physiological factors rather than the

environmental factors will influence the population size

Page 34: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

CONTINUED

• Territoriality• Territory spaces becomes a resource in which individuals

compete for.

• Disease• If the transmission rate of a certain disease depends on

the crowding in a population, density will be effected

• Predation• A predator encounters and captures more food as the

density of the prey increases

Page 35: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

(a) Cheetah marking its territory

(b) Gannets

Territoriality

Page 36: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

Wolves Moose

2,500

2,000

1,500

1,000

500

Nu

mb

er o

f m

oo

se

0

Nu

mb

er o

f w

olv

es

50

40

30

20

10

01955 1965 1975 1985 1995 2005

Year

Predation

Page 37: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

POPULATION DYNAMICS

• Focuses on the complex interactions between the biotic and abiotic factors that cause variation in the size of populations• Populations of large mammals were once thought

to remain stable over time, this is not the case

Page 38: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

IMMIGRATION, EMIGRATION, AND METAPOPULATIONS

• Immigration and emigration can also affect populations• Metapopulation- a group of spatially separated

populations of one species that interact through immigration and emigration• Local populations can be thought of as occupying

small patches of suitable environment within a sea of unsuitable habitat• Patches will vary in size, quality, and isolation from other

patches• There are many factors that will influence how patches

interact

Page 39: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

CHAPTER 54 COMMUNITY ECOLOGY

Page 40: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

C O M M U N I T Y I N T E R A C T I O N S A R E C L A S S I F I E D B Y W H E T H E R T H E Y H E L P , H A R M , O R H A V E N O E F F E C T O N T H E S P E C I E S I N V O L V E D

54.1

Page 41: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

COMPETITION

• Interspecific competition – has a negative effect on the survival and reproduction of the predator population and a negative effect on that of the prey population.• Occurs when individuals of different species

compete for a resource that limits their growth and survival.• ie. Weeds compete from soil nutrients and water.

Grasshoppers vs. bison for grass they both eat.

Page 42: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

COMPETITION: COMPETITIVE EXCLUSION

• Two species competing for the same limiting resources cannot coexist in the same place. • Without disturbances, one species will use the

resource more efficiently and reproduce more rapidly than the other. • The slight reproductive advantage will eventually

lead to local elimination of the inferior competitor.• This is called competitive exclusion.

Page 43: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

COMPETITION: ECOLOGICAL NICHES

• Ecological niche – the sum of a species’ use of the biotic and abiotic resources in its environment.• An organism’s niche is its ecological role , how it “fits

into” an ecosystem.• Two species cannot coexist permanently in a

community if their niches are identical. • However, ecologically similar species can coexist in a

community if there are more significant differences in their niches. Resource partitioning – the differentiation of niches that enables similar species to coexist in a community.

Page 44: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

COMPETITION: ECOLOGICAL NICHES

• A species’ fundamental niche (the niche potentially occupied by that species) is often different from its realized niche (portion of its fundamental niche that it actually occupies).• The fundamental niche of a species can be

identified by testing the range of conditions in which it grows and reproduces without competitors.• Also test if a potential competitor limits a species’

realized niche by removing the competitor and seeing if the first species going into the newly available space.

Page 45: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS
Page 46: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

COMPETITION: CHARACTER DISPLACEMENT

• Allopatric – geographically separate• Sympatric – geographically overlapping• In some cases, the allopatric populations of

species are morphologically similar and use similar resources.• In contrast, sympatric populations show

differences in body structures and in the resources they use. • This tendency for characteristics to diverge more

in sympatric populations of two species is character displacement.

Page 47: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

PREDATION

• A positive predator population survival and reproduction activity with negative prey population survival and reproduction activity.• Both predators and prey have adaptations that

help eat, and help avoid being eaten such as claws, teeth, heat sensing organs, and poison while prey can hide, alert, flee, or form herds/schools.

Page 48: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

PREDATION

• Animals display a variety of morpholocial and physiological defensive adaptations.• Cryptic coloration (camouflage) – makes prey difficult

to spot• Aposematic coloration (warning) – animals with

effective chemical defenses often show this.• Batesian mimicry – a palatable or harmless species

mimics a harmful model. • Mullerian mimicry – two or more unpalatable species

resemble each other. Each species gains and additional advantage because the more unpalatable prey they are, the more quickly avoid them as prey.

Page 49: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

BATESIAN MIMICRY

Page 50: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

MULLERIAN MIMICRY

Page 51: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

CRYPTIC COLORATION

Page 52: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

APOSEMATIC COLORATION

Page 53: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

HERBIVORY

• Positive predator survival and reproduction with negative prey survival and reproduction.• Used for when an organism eats parts of a plant

or alga. • Specialized adaptations like chemical sensors

enabling them to distinguish toxic from nontoxic plants to eat. • Prey relies on toxins or spikes and thorns.

Page 54: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

SYMBIOSIS

• Symbiosis – when individuals of two or more species live in direct and intimate contact with one another.

Page 55: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

SYMBIOSIS: PARASITISM

• Positive predator survival and reproduction and negative prey survival and reproduction.• A parasite derives its nourishment from another

organism, the host. • Endoparasites – parasites that live within the body of

their host.• Ectoparasites – parasites that fee on the external

surface of a host.• Parasites can significantly affect the survival,

reproduction, and density of their host population (directly or indirectly).

Page 56: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

SYMBIOSIS: MUTUALISM

• Benefits both species.• Sometimes involve the evolution of related

adaptations in both species, with changes in either species likely to affect the survival and reproduction of the other.

Page 57: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

SYMBIOSIS: COMMENSALISM

• Benefits one species but neither harms nor helps the other. • Difficult to document in nature because any close

association between species likely affects both species if only slightly. • Some associations that are possibly commensal

involve one species obtaining food that is inadvertently exposed by another.

Page 58: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

D O M I N A N T A N D K E Y S T O N E S P E C I E S E X E R T S T R O N G C O N T R O L S O N C O M M U N I T Y S T R U C T U R E

54.2

Page 59: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

SPECIES DIVERSITY

• The variety of different kinds of organisms that make up the community is the species diversity of a community. • One component is species richness – number of

different components.• Other is relative abundance – the proportion each

species represents of all individuals in the community. • Often calculate an index of diversity based on species

richness and relative abundance. (Shannon diversity)

Page 60: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

TROPHIC STRUCTURE

• The structure and dynamics of a community depend to a large extent on the feeding relationships between organisms (trophic structure). • Food chain – transfer of food energy up the

trophic levels.

Page 61: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

TROPHIC STRUCTURE: FOOD WEBS

• Arrows linking species according to who eats whom. • A given species may weave into the web at more

than one trophic level. • Species are grouped with similar trophic

relationships in a given community into broad functional groups.

Page 62: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS
Page 63: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

TROPHIC STRUCTURE: LIMITS ON FOOD CHAIN LENGTH

• Energetic hypothesis – the length of a food chain is limited by the inefficiency of energy transfer along the chain. • Only about 10% of the energy stored in the organic

matter of each trophic level is converted to organic matter at the next trophic level. • Dynamic stability hypothesis – long food chains are less

stable than short chains. The longer a food chain is, the more slowly top predators can recover from environmental setbacks so food chains should be shorter in unpredictable environments.• The size of a carnivore and its feeding mechanism put

some upper limit on the size of food it can take which can limit the food chain length limit.

Page 64: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

SPECIES WITH A LARGE IMPACT: DOMINANT SPECIES

• Dominant species – species in a community that are most abundant or that collectively have the highest biomass.• Exert a powerful control over the occurrence and

distribution of other species.• Dominance could be a result of exploiting limited

resources, or successfully avoiding predation. • One way to discover the impact of a dominant

species is to remove it form the community.

Page 65: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

SPECIES WITH A LARGE IMPACT: KEYSTONE SPECIES

• Keystone species- not necessarily abundant in a community. • Exert strong control on community structure but

not by numerical might but by their pivotal ecological niches.• One way to look at the impact is to remove the

keystone species. Highlights the importance of a keystone species in maintaining the diversity of a community.

Page 66: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

SPECIES WITH A LARGE IMPACT: FOUNDATION SPECIES (ECOSYSTEM “ENGINEERS”)

• Some organisms exert their influence on a community by causing physical changes in the environment.

• Such organisms may alter the environment through their behavior or their large collective biomass.

• The effects of foundation species can be positive or negative on other species depending on the needs of the other species.

• By altering the structure or dynamics of the environment, foundation species sometimes act like facilitators.

• They have positive effects on the survival and reproduction of other species in the community.

Page 67: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

D I S T U R B A N C E I N F L U E N C E S S P E C I E S D I V E R S I T Y A N D C O M P O S I T I O N

54.3

Page 68: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

• A disturbance is an event that changes a community by removing organisms from it or altering resource availability. • (flood, hurricane, fire, drought, overgrazing, or

human activity)• The emphasis on change has produced the

nonequilibrium model (most communities are constantly changing after being affected by disturbances).

Page 69: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

CHARACTERIZING DISTURBANCE

• Types of disturbances and their frequency and severity vary from community to community. • The intermediate disturbance hypothesis states

the moderate levels of disturbance can create conditions that foster greater species diversity than low or high levels of disturbance. • At the low end, low levels of disturbance can

reduce species diversity by allowing competitively dominent species to exclude less competitive species.

Page 70: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

ECOLOGICAL SUCCESSION

• Ecological succession – the disturbed area may be colonized by a variety of species, gradually replaced by another species who are then also gradually replaced. • Primary succession – process begins in a virtually

lifeless area. Often only life-forms present are autotrophic prokaryotes and heterotrophic prokaryotes and protists. • Secondary succession – when an existing

community has been cleared by some disturbance that leaves the soil intact.

Page 71: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

HUMAN DISTURBANCE

• Humans have the greatest impact on biological communities worldwide. • Reduces species diversity in many communities. • Human disturbance is often severe.• Agriculture development, ocean trawling, cutting

a forest, and cattle grazing.

Page 72: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

54.4- BIOGEOGRAPHIC FACTORS AFFECT COMMUNITY BIODIVERSITY

Page 73: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

• Influences on a diverse community:• Species interaction• Dominate species• Types of disturbances

• Biogeographic factors have the largest impact range

Page 74: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

LATITUDINAL GRADIENT

• Plants and animals are most diverse in the topics• 2 key factors: evolutionary history and climate• Species diversity may increase as more

speciation occurs in a community• Climate is likely the primary cause• Solar radiation and water availability

Page 75: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

LATITUDINAL GRADIENT

• Evapotranspiration- evaporation of water from the soil as well as the transpiration of water by plants• Potential evapotranspiration is a measure of

potential water loss • Determined by solar radiation and temperature

• Species richness correlates with both types evapotranspiration

Page 76: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

AREA EFFECTS

• Species-area curve- biodiversity pattern; shows that the larger the geographic area of a community is, the more species it has• Proposed by Alexander von Humboldt

• Slope indicates the richness increase

Page 77: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

ISLAND EQUILIBRIUM MODEL

• Islands are isolated and have limited sizes• New colonization• Rate of immigration• Rate of extinction

• Affects on immigration/extinction: distance from mainland and size• Equilibrium will eventually be met between

extinction and immigration

Page 78: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

54.5- COMMUNITY ECOLOGY IS USEFUL FOR UNDERSTANDING PATHOGEN LIFE CYCLE AND

CONTROLLING HUMAN DISEASE

Page 79: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

• Pathogens- disease-causing microorganisms, viruses, viroid, or prions• Pathogens have universal affects on ecosystems• Alter community structure quickly

Page 80: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

PATHOGENS AND COMMUNITY STRUCTURE

• Coral reefs are easily affected• Terrestrial ecosystems are also affected by

pathogens• A reason for studying: human transportation via

activities• Can be transferred around the world

Page 81: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

COMMUNITY ECOLOGY AND ZOONOTIC DISEASES

• Zoonotic pathogens- pathogens transferred from other animals to humans• Direct contact• Intermediate species called vector

• Need to understand parasite life cycle and be able to track the spread of zoonotic diseases

Page 82: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

COMMUNITY ECOLOGY AND ZOONOTIC DISEASES

• Community interactions are the underlying sources between pathogen/host interactions• Changes in environment have an affect on

pathogen interactions

Page 83: CHAPTER 53 POPULATION ECOLOGY. 53.1 DYNAMIC BIOLOGICAL PROCESSES INFLUENCE POPULATION DENSITY, DISPERSION, AND DEMOGRAPHICS

ESSAYS

• Name and describe the types of symbiosis. Give examples.• Name and explain the two models of growth.

Use examples of both• Draw type I, II, and III survivorship curves on a

graph with labeled axes. Explain why the growth rate of species with a type I survivorship curve depends primarily on fertility rates. Explain why the growth rate of species with a type III survivorship curve is extremely sensitive to changes in adult survivorship.


Top Related