dna nanoscience

Upload: irokk

Post on 06-Apr-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 DNA Nanoscience

    1/45

    Overview

    1. DNA nanoscience and its relationto molecular-scale electronics

    2. DNA as material for nanoconstruction

    3. DNA nanostructures

    4. DNA nanomachines

    5. Summary + Outlook

  • 8/3/2019 DNA Nanoscience

    2/45

    DNA basics

    Franklin & Wilkins:X-ray diffraction

    on DNA fibers (1950s)

    Watson & Crick:interpretationof X-ray data (1953)

    WC model model of B-DNA

  • 8/3/2019 DNA Nanoscience

    3/45

    Single-stranded DNA

    DNA is directed

    DNA is highlycharged !

    nucleotide

    nucleoside=Ribose+Base

    nucleotide=nucleoside+phosphate

  • 8/3/2019 DNA Nanoscience

    4/45

    DNA bases and base-pairing

    purines

    pyrimidines

  • 8/3/2019 DNA Nanoscience

    5/45

    Double-stranded DNA

    0.34 nm

    10.5 bp~ 3.57 nm

    2 nm

    5 TGATCACTTAGAGCAAGC 33 ACTAGTGAATCTCGTTCG 5

    majorgroove ~ 2.2 nm

    minorgroove ~ 1.2 nm

  • 8/3/2019 DNA Nanoscience

    6/45

    The A,B,Z of DNA

    A form B form Z form

    Helical Sense right

    handed

    right

    handed

    left

    handed

    Diameter 2.6 nm 2.0 nm 1.8 nm

    bp/turn 11 10.5 12

    base tilt 20 6 7

  • 8/3/2019 DNA Nanoscience

    7/45

    DNA: the simple picture

  • 8/3/2019 DNA Nanoscience

    8/45

    other base-pairing interactions

  • 8/3/2019 DNA Nanoscience

    9/45

    G quadruplex formation

    stability similar to WC base pairs

    occurs in G rich sequences,e.g. in telomeres

    occurs intra- and intermolecular

    (single-, double- and four-stranded)

    telomere consensus:GGGTTA (human)GGGTTG (Tetrahymena)

  • 8/3/2019 DNA Nanoscience

    10/45

    A short note on mechanical properties of DNA

    2

    0

    '2 =

    s

    dstddsH

    (0) (s)

    )/exp()]0((s)cos[ pLs=

    TkL

    B

    p =persistence length

    dsDNA is well described by theWLC model (semirigid polymer)

    ds

    ssDNA ~ 1nm

    EI=bending modulus:

    4

    4

    RI

    =moment of inertia:

    J. Howard, Mechanics of Motor Proteinsand the Cytoskeleton, Sinauer, 2001

  • 8/3/2019 DNA Nanoscience

    11/45

    The biochemical toolbox for DNA

    http://www.bioteach.ubc.ca/MolecularBiology/RestrictionEndonucleases/endonuclease%202.gif

    restriction enzymes:

    cut DNA at specific sequences

    ligases:link two DNA pieces covalently

    helicase: unwinds DNA

    topoisomerases: changetopology (linking,winding number)

    DNA/RNA polymerases:make copies

    DNA binding proteins:help in recombination, function as

    transcriptional modulators, etc. ligation of sticky ends

  • 8/3/2019 DNA Nanoscience

    12/45

    Polymerase chain reaction (PCR)

    heat andanneal primers

    polymerizenew strands

    cycle Iamplificationof DNA in a thermocyclerusing a thermostableDNA polymerase

    cycle II cycle III

    polymerizenew strands

    separate strands,anneal primers

    polymerizenew strands

    separate strands,anneal primers

  • 8/3/2019 DNA Nanoscience

    13/45

    Interesting features summarized:

    structure is determined by sequence

    automated DNA synthesis

    structurally rigid double helix

    DNA-modifying enzymes available

    PCR, cloning & other biochemistry

    relatively stable

  • 8/3/2019 DNA Nanoscience

    14/45

    Overview

    1. DNA nanoscience and its relationto molecular-scale electronics

    2. DNA as material for nanoconstruction

    3. DNA nanostructures

    4. DNA nanomachines

    5. Summary + Outlook

  • 8/3/2019 DNA Nanoscience

    15/45

    3. DNA nanostructures

    3.1 Supramolecular construction

    3.2 Arranging nanoobjects

    3.3 Modified DNA

  • 8/3/2019 DNA Nanoscience

    16/45

    3.1 Supramolecularconstruction

    Synthesis of a cube Chen et al Nature 350 631-633 (1991)

  • 8/3/2019 DNA Nanoscience

    17/45

    Synthesis of a cube Chen et al.,Nature 350, 631 633 (1991)

    building the cube and proving it

  • 8/3/2019 DNA Nanoscience

    18/45

    building the cube and proving it

  • 8/3/2019 DNA Nanoscience

    19/45

    a truncated octahedron

    Zhang, Y. W. and N. C. Seeman (1994). "Construction Of A Dna-Truncated Octahedron." JACS 116(5): 1661-1669.

    Li bl

  • 8/3/2019 DNA Nanoscience

    20/45

    Linear assembly

    simple but boring long range order not possible with dsDNA(persistence length 50nm or less (nicks))

    2m x 2m

    2D assembly: The Holliday junction

  • 8/3/2019 DNA Nanoscience

    21/45

    2D assembly: The Holliday junction

    http://www.st-andrews.ac.uk/~mfw2/Images/junction.jpg

    a mobile (Holliday) junction

    an immobile junction

  • 8/3/2019 DNA Nanoscience

    22/45

    Holliday intermediate during

    homologous recombination

  • 8/3/2019 DNA Nanoscience

    23/45

    http://bioweb.wku.edu/

    Holliday modelof recombination

    only a short pieceof DNA exchanged

    Holliday junction + branch migration

  • 8/3/2019 DNA Nanoscience

    24/45

    Holliday junction + branch migration

    four armbranch migration

    recombination proteinsRuvA und RuvBbound to a Hollidayjunction

    Rafferty et al., Science 274,415-421 (1996).

    Networks of four arm junctions (I)

  • 8/3/2019 DNA Nanoscience

    25/45

    Networks of four arm junctions (I)

    Assembly disordered due tohigh flexibility of the junctions +long connectors

    perfectly oriented

    with two

    orientations

    Stefan Beyer

    Networks of four arm junctions (II)

  • 8/3/2019 DNA Nanoscience

    26/45

    Networks of four arm junctions (II)

    preformtrianglesfrom junctions,anneal triangles

    Turberfield et al.,to be published

    Networks of four arm junctions (III)

  • 8/3/2019 DNA Nanoscience

    27/45

    Networks of four arm junctions (III)

    Sha, R. J., F. R. Liu, et al. (2002). "Force microscopic measurement of the interdomain angle in symmetric Hollidayjunctions." Biochemistry 41(19): 5950-5955

    Double crossover (DX) structures

  • 8/3/2019 DNA Nanoscience

    28/45

    Double crossover (DX) structures

    make less flexible structures with multiple crossovers

    Seeman, N. C., H. Wang, et al. (1998). "New motifs in DNA nanotechnology." Nanotechnology 9(3): 257-273.

    DX + TX tiles

  • 8/3/2019 DNA Nanoscience

    29/45

    DX + TX tiles

    Seeman, N. C. (2001). "DNA nicks and nodes and nanotechnology." Nano Letters 1(1): 22-26.

    2D crystals from DX assemblies

  • 8/3/2019 DNA Nanoscience

    30/45

    ligation + denaturation produces long strands reporter for successful lattice formation

    Winfree, E., F. R. Liu, et al. (1998). Design and self-assembly oftwo-dimensional DNA crystals. Nature 394(6693): 539-544.

    Winfree et al. 98

  • 8/3/2019 DNA Nanoscience

    31/45

    Algorithmic self-assembly: assembly = computation

  • 8/3/2019 DNA Nanoscience

    32/45

    g y y p

    Erik Winfree,figure from:Seeman, N. C. (2003)."DNA in a material world."Nature 421(6921): 427-431.

    Making circuit patterns with

  • 8/3/2019 DNA Nanoscience

    33/45

    algorithmic self-assembly

    Cook, Rothemund, Winfree, Self-assembled circuit patterns, DNA based computers 9

    a demultiplexer

    Algorithmic self-assembly:Si i ki i l

  • 8/3/2019 DNA Nanoscience

    34/45

    Sierpinski triangle

    PWK Rothemund et al.,submitted

    DNA crossbars

  • 8/3/2019 DNA Nanoscience

    35/45

    Yan, H., S. H. Park, et al. (2003). "DNA-templated self-assembly of protein arraysand highly conductive nanowires." Science 301(5641): 1882-1884.

    Tensegrity: Using

  • 8/3/2019 DNA Nanoscience

    36/45

    g y gTriangles as building blocks a tensegrity

    structure

    Liu, D., M. S. Wang, et al. (2004). "Tensegrity: Construction of rigid DNAtriangles with flexible four-arm DNA junctions." JACS 126(8): 2324-2325

    Towards 3D structures

  • 8/3/2019 DNA Nanoscience

    37/45

    Shih, W. M., J. D. Quispe, et al. (2004). "A 1.7-kilobase single-stranded DNA thatfolds into a nanoscale octahedron." Nature 427(6975): 618-621.

    3.2 Arranging nanoobjects

  • 8/3/2019 DNA Nanoscience

    38/45

    g g j

    organization of Au nanoparticlesand CdSe nanocrystals

    Mirkin et al. Nature 382, 607 (1996),

    Alivisatos et al., Nature 382, 609 (1996),Coffer et al., APL 69, 3851-3853 (1996)

    ordering of proteins

    Niemeyer et al., Nucleic Acids

    Research 27, 4553-4561 (1999)

    DNA-carbon nanotube conjugates

  • 8/3/2019 DNA Nanoscience

    39/45

    Williams, K. A., P. T. M. Veenhuizen, et al. (2002). "Nanotechnology - Carbon nanotubes withDNA recognition." Nature 420(6917): 761-761.

    Arranging carbon nanotubes using DNA binding proteins and antibodies

  • 8/3/2019 DNA Nanoscience

    40/45

    Keren, K., R. S. Berman, et al. (2003). "DNA-templated carbon nanotube field-effect transistor." Science 302(5649): 1380-1382.

    DNA-directed synthesis

  • 8/3/2019 DNA Nanoscience

    41/45

    DNA-directed synthesis

    Gartner, Z. J. and D. R. Liu (2001). "The generality of DNA-templated synthesis as a basis for

    evolving non-natural small molecules." JACS 123(28): 6961-6963.

    Using DX assemblies

  • 8/3/2019 DNA Nanoscience

    42/45

    gfor the arrangement

    of nanoparticles

    Xiao, S. J., F. R. Liu, et al. (2002). "Selfassembly of metallicnanoparticle arrays by DNA scaffolding." Journal of NanoparticleResearch 4(4): 313-317.

    3.3 Modified DNADNA l f h d i i

  • 8/3/2019 DNA Nanoscience

    43/45

    DNA can act as a template for the depositionof metals, semiconductors, conductive polymers

    Keren, K., M. Krueger, et al. (2002). "Sequence-specific molecular lithographyon single DNA molecules." Science 297(5578): 72-75.Richter, J. (2003). "Metallization of DNA." Physica E16(2): 157-173.

  • 8/3/2019 DNA Nanoscience

    44/45

    Copper sulfide on DNA

    copper ions bind strongly to DNA

    reaction with hydrogen sulfide

    yields the semiconductor CuS

    Dittmer & Simmel, APL 85, 633 (2004)

    Polyaniline on DNA

    anilinium ions bind to DNA

    oxidative polymerization along theDNA template yields conductivepolymer wires

    Nickels et al., submitted

    Metallization of DNA nanotubes

  • 8/3/2019 DNA Nanoscience

    45/45