differential cohomology in geometry and analysis · differential cohomology in geometry and...

166
Differential cohomology in geometry and analysis U. Bunke Universität Regensburg 19.9.2008/ DMV-Tagung 2008 U. Bunke (Universität Regensburg) 19.9.2008/ DMV-Tagung 2008 1 / 20

Upload: vuongdien

Post on 10-Jul-2018

238 views

Category:

Documents


4 download

TRANSCRIPT

Differential cohomology in geometry and analysis

U. Bunke

Universität Regensburg

19.9.2008/ DMV-Tagung 2008

U. Bunke (Universität Regensburg) 19.9.2008/ DMV-Tagung 2008 1 / 20

Theorem

e =1

1− e−z −1z

.

this power series starts with

U. Bunke (Universität Regensburg) 19.9.2008/ DMV-Tagung 2008 2 / 20

Theorem

e =1

1− e−z −1z

.

this power series starts with

12

+1

12z − 1

720z3 +

130240

z5 − 11209600

z7 +1

47900160z9 − . . . .

U. Bunke (Universität Regensburg) 19.9.2008/ DMV-Tagung 2008 2 / 20

Theorem

e =1

1− e−z −1z

.

this power series starts with

12

+1

12z − 1

720z3 +

130240

z5 − 11209600

z7 +1

47900160z9 − . . . .

U. Bunke (Universität Regensburg) 19.9.2008/ DMV-Tagung 2008 2 / 20

Theorem

e =1

1− e−z −1z

.

this power series starts with

12

+1

12z − 1

720z3 +

130240

z5 − 11209600

z7 +1

47900160z9 − . . . .

U. Bunke (Universität Regensburg) 19.9.2008/ DMV-Tagung 2008 2 / 20

1 Differentiable cohomology

2 e-invariant

3 Application of differentiable K-theory

U. Bunke (Universität Regensburg) 19.9.2008/ DMV-Tagung 2008 3 / 20

Notation

X , Y , . . . - smooth compact manifolds

h - generalized cohomology theory, h∗ := h(∗)Ω(X , h∗) := Ω(X )⊗Z h∗ smooth differential forms with coefficientsin h∗Ωd=0(X , h∗) ⊆ Ω(X , h∗) - closed forms

HdR(X , h∗) - cohomology of (Ω(X , h∗), d)

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 4 / 20

Notation

X , Y , . . . - smooth compact manifoldspossibly with boundary.

h - generalized cohomology theory, h∗ := h(∗)Ω(X , h∗) := Ω(X )⊗Z h∗ smooth differential forms with coefficientsin h∗Ωd=0(X , h∗) ⊆ Ω(X , h∗) - closed forms

HdR(X , h∗) - cohomology of (Ω(X , h∗), d)

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 4 / 20

Notation

X , Y , . . . - smooth compact manifolds

h - generalized cohomology theory, h∗ := h(∗)Ω(X , h∗) := Ω(X )⊗Z h∗ smooth differential forms with coefficientsin h∗Ωd=0(X , h∗) ⊆ Ω(X , h∗) - closed forms

HdR(X , h∗) - cohomology of (Ω(X , h∗), d)

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 4 / 20

Notation

X , Y , . . . - smooth compact manifolds

h - generalized cohomology theory, h∗ := h(∗)Examples: HZ, HQ, MU, , K

Ω(X , h∗) := Ω(X )⊗Z h∗ smooth differential forms with coefficientsin h∗Ωd=0(X , h∗) ⊆ Ω(X , h∗) - closed forms

HdR(X , h∗) - cohomology of (Ω(X , h∗), d)

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 4 / 20

Notation

X , Y , . . . - smooth compact manifolds

h - generalized cohomology theory, h∗ := h(∗)Ω(X , h∗) := Ω(X )⊗Z h∗ smooth differential forms with coefficientsin h∗Ωd=0(X , h∗) ⊆ Ω(X , h∗) - closed forms

HdR(X , h∗) - cohomology of (Ω(X , h∗), d)

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 4 / 20

Notation

X , Y , . . . - smooth compact manifolds

h - generalized cohomology theory, h∗ := h(∗)Ω(X , h∗) := Ω(X )⊗Z h∗ smooth differential forms with coefficientsin h∗Ωd=0(X , h∗) ⊆ Ω(X , h∗) - closed forms

HdR(X , h∗) - cohomology of (Ω(X , h∗), d)

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 4 / 20

Notation

X , Y , . . . - smooth compact manifolds

h - generalized cohomology theory, h∗ := h(∗)Ω(X , h∗) := Ω(X )⊗Z h∗ smooth differential forms with coefficientsin h∗Ωd=0(X , h∗) ⊆ Ω(X , h∗) - closed forms

HdR(X , h∗) - cohomology of (Ω(X , h∗), d)

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 4 / 20

Definition

A smooth extension of h is a contravariant functor h from compactsmooth manifolds to graded abelian groups which fits into the diagram

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 5 / 20

Definition

A smooth extension of h is a contravariant functor h from compactsmooth manifolds to graded abelian groups which fits into the diagram

h(X )

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 5 / 20

Definition

A smooth extension of h is a contravariant functor h from compactsmooth manifolds to graded abelian groups which fits into the diagram

Ωd=0(X , h∗)

h(X )

R99rrrrrrrrrr

I %% %%LLLLLLLLLL

h(X )

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 5 / 20

Definition

A smooth extension of h is a contravariant functor h from compactsmooth manifolds to graded abelian groups which fits into the diagram

Ωd=0(X , h∗)

h(X )

R99rrrrrrrrrr

I %% %%LLLLLLLLLLHdR(X , h∗)

h(X )

OO

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 5 / 20

Definition

A smooth extension of h is a contravariant functor h from compactsmooth manifolds to graded abelian groups which fits into the diagram

Ω(X , h∗)/im(d)

a&&NNNNNNNNNNN

d // Ωd=0(X , h∗)

h(X )

R99rrrrrrrrrr

I %% %%LLLLLLLLLLHdR(X , h∗)

h(X )

OO

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 5 / 20

Definition

A smooth extension of h is a contravariant functor h from compactsmooth manifolds to graded abelian groups which fits into the diagram

Ω(X , h∗)/h(X ) s

a&&MMMMMMMMMMM

d // Ωd=0(X , h∗)

h(X )

R99rrrrrrrrrr

I %% %%LLLLLLLLLLHdR(X , h∗)

h(X )

OO

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 5 / 20

Flat theory

Definition

We define hflat(X ) := ker(R : h(X ) → Ω(X , h∗)).

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 6 / 20

Flat theory

Definition

We define hflat(X ) := ker(R : h(X ) → Ω(X , h∗)).

Ω(X , h∗)/im(d)

a&&NNNNNNNNNNN

d // Ωd=0(X , h∗)

HdR(X , h∗)

OO

h(X )

R99rrrrrrrrrr

I %% %%KKKKKKKKKKHdR(X , h∗)

hflat(X )

+

88qqqqqqqqqqq

β// h(X )

OO

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 6 / 20

Why?

Chern-Simons invariants

Characteristic classes for flat vector bundles

Invariants of elements in stable homotopy groups

topological terms in σ-models

Configuration spaces of field theories with differential form fieldstrength

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 7 / 20

Why?

Differentiable cohomology provides a conceptual way to refinesecondary torsion invariants to R/Z-cohomology classes.

Chern-Simons invariants

Characteristic classes for flat vector bundles

Invariants of elements in stable homotopy groups

topological terms in σ-models

Configuration spaces of field theories with differential form fieldstrength

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 7 / 20

Why?

Differentiable cohomology provides a conceptual way to refinesecondary torsion invariants to R/Z-cohomology classes.

Chern-Simons invariants

Characteristic classes for flat vector bundles

Invariants of elements in stable homotopy groups

topological terms in σ-models

Configuration spaces of field theories with differential form fieldstrength

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 7 / 20

Why?

Differentiable cohomology provides a conceptual way to refinesecondary torsion invariants to R/Z-cohomology classes.

Chern-Simons invariants

Characteristic classes for flat vector bundles

Invariants of elements in stable homotopy groups

topological terms in σ-models

Configuration spaces of field theories with differential form fieldstrength

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 7 / 20

Why?

Differentiable cohomology provides a conceptual way to refinesecondary torsion invariants to R/Z-cohomology classes.

Chern-Simons invariants

Characteristic classes for flat vector bundles

Invariants of elements in stable homotopy groups

topological terms in σ-models

Configuration spaces of field theories with differential form fieldstrength

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 7 / 20

Why?

Differentiable cohomology provides a conceptual way to refinesecondary torsion invariants to R/Z-cohomology classes.

Chern-Simons invariants

Characteristic classes for flat vector bundles

Invariants of elements in stable homotopy groups

Other applications:

topological terms in σ-models

Configuration spaces of field theories with differential form fieldstrength

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 7 / 20

Why?

Differentiable cohomology provides a conceptual way to refinesecondary torsion invariants to R/Z-cohomology classes.

Chern-Simons invariants

Characteristic classes for flat vector bundles

Invariants of elements in stable homotopy groups

Other applications:

topological terms in σ-models

Configuration spaces of field theories with differential form fieldstrength

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 7 / 20

Why?

Differentiable cohomology provides a conceptual way to refinesecondary torsion invariants to R/Z-cohomology classes.

Chern-Simons invariants

Characteristic classes for flat vector bundles

Invariants of elements in stable homotopy groups

Other applications:

topological terms in σ-models

Configuration spaces of field theories with differential form fieldstrength

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 7 / 20

Natural questions

Existence of h?

Uniqueness of h?

What is hflat(X )?

Cup product?

Orientation and integration?

Riemann-Roch?

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Existence of h?First example: HZ -Cheeger-Simons characters 1985K - Freed, Hopkins-Freed (geometric model, not complete) ∼ 2000,B. -Schick (analytic model) 2003S, MU and other bordism theories, B.-Schick (geometric model) ∼2004general h - Hopkins-Singer (homotopy theoretic model), 2005Landweber exact theories B.-Schick, based on MU, 2007

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Existence of h?First example: HZ -Cheeger-Simons characters 1985K - Freed, Hopkins-Freed (geometric model, not complete) ∼ 2000,B. -Schick (analytic model) 2003S, MU and other bordism theories, B.-Schick (geometric model) ∼2004general h - Hopkins-Singer (homotopy theoretic model), 2005Landweber exact theories B.-Schick, based on MU, 2007

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Existence of h?First example: HZ -Cheeger-Simons characters 1985K - Freed, Hopkins-Freed (geometric model, not complete) ∼ 2000,B. -Schick (analytic model) 2003S, MU and other bordism theories, B.-Schick (geometric model) ∼2004general h - Hopkins-Singer (homotopy theoretic model), 2005Landweber exact theories B.-Schick, based on MU, 2007

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Existence of h?First example: HZ -Cheeger-Simons characters 1985K - Freed, Hopkins-Freed (geometric model, not complete) ∼ 2000,B. -Schick (analytic model) 2003S, MU and other bordism theories, B.-Schick (geometric model) ∼2004general h - Hopkins-Singer (homotopy theoretic model), 2005Landweber exact theories B.-Schick, based on MU, 2007

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Existence of h?First example: HZ -Cheeger-Simons characters 1985K - Freed, Hopkins-Freed (geometric model, not complete) ∼ 2000,B. -Schick (analytic model) 2003S, MU and other bordism theories, B.-Schick (geometric model) ∼2004general h - Hopkins-Singer (homotopy theoretic model), 2005Landweber exact theories B.-Schick, based on MU, 2007

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Existence of h?First example: HZ -Cheeger-Simons characters 1985K - Freed, Hopkins-Freed (geometric model, not complete) ∼ 2000,B. -Schick (analytic model) 2003S, MU and other bordism theories, B.-Schick (geometric model) ∼2004general h - Hopkins-Singer (homotopy theoretic model), 2005Landweber exact theories B.-Schick, based on MU, 2007

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Existence of h?First example: HZ -Cheeger-Simons characters 1985K - Freed, Hopkins-Freed (geometric model, not complete) ∼ 2000,B. -Schick (analytic model) 2003S, MU and other bordism theories, B.-Schick (geometric model) ∼2004general h - Hopkins-Singer (homotopy theoretic model), 2005Landweber exact theories B.-Schick, based on MU, 2007

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Existence of h?First example: HZ -Cheeger-Simons characters 1985K - Freed, Hopkins-Freed (geometric model, not complete) ∼ 2000,B. -Schick (analytic model) 2003S, MU and other bordism theories, B.-Schick (geometric model) ∼2004general h - Hopkins-Singer (homotopy theoretic model), 2005Landweber exact theories B.-Schick, based on MU, 2007

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Existence of h?

Uniqueness of h?

What is hflat(X )?

Cup product?

Orientation and integration?

Riemann-Roch?

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Uniqueness of h?

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Uniqueness of h?ordinary cohomology theory (like HZ ) is unique- Wiethaup,Simons-Sullivan, 2006-7Differentiable extensions are not unique in general. K -theory is anexample.K is unique, if it is in addition compatible with suspension(Wiethaup).No clear picture in general.

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Uniqueness of h?ordinary cohomology theory (like HZ ) is unique- Wiethaup,Simons-Sullivan, 2006-7Differentiable extensions are not unique in general. K -theory is anexample.K is unique, if it is in addition compatible with suspension(Wiethaup).No clear picture in general.

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Uniqueness of h?ordinary cohomology theory (like HZ ) is unique- Wiethaup,Simons-Sullivan, 2006-7Differentiable extensions are not unique in general. K -theory is anexample.K is unique, if it is in addition compatible with suspension(Wiethaup).No clear picture in general.

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Uniqueness of h?ordinary cohomology theory (like HZ ) is unique- Wiethaup,Simons-Sullivan, 2006-7Differentiable extensions are not unique in general. K -theory is anexample.K is unique, if it is in addition compatible with suspension(Wiethaup).No clear picture in general.

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Uniqueness of h?ordinary cohomology theory (like HZ ) is unique- Wiethaup,Simons-Sullivan, 2006-7Differentiable extensions are not unique in general. K -theory is anexample.K is unique, if it is in addition compatible with suspension(Wiethaup).No clear picture in general.

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Uniqueness of h?ordinary cohomology theory (like HZ ) is unique- Wiethaup,Simons-Sullivan, 2006-7Differentiable extensions are not unique in general. K -theory is anexample.K is unique, if it is in addition compatible with suspension(Wiethaup).No clear picture in general.

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Uniqueness of h?ordinary cohomology theory (like HZ ) is unique- Wiethaup,Simons-Sullivan, 2006-7Differentiable extensions are not unique in general. K -theory is anexample.K is unique, if it is in addition compatible with suspension(Wiethaup).No clear picture in general.

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Uniqueness of h?ordinary cohomology theory (like HZ ) is unique- Wiethaup,Simons-Sullivan, 2006-7Differentiable extensions are not unique in general. K -theory is anexample.K is unique, if it is in addition compatible with suspension(Wiethaup).No clear picture in general.

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Existence of h?

Uniqueness of h?

What is hflat(X )?

Cup product?

Orientation and integration?

Riemann-Roch?

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

What is hflat(X )?

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

What is hflat(X )?Consequence of axioms:

X 7→ hflat(X ) := ker(R)

is homotopy invariant.natural candidate:This is clear by construction for the Hopkins-Singer example.

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

What is hflat(X )?Consequence of axioms:

X 7→ hflat(X ) := ker(R)

is homotopy invariant.natural candidate:This is clear by construction for the Hopkins-Singer example.

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

What is hflat(X )?Consequence of axioms:

X 7→ hflat(X ) := ker(R)

is homotopy invariant.natural candidate:fibre sequence of cohomology theories

→ h → hR → hR/Z →

This is clear by construction for the Hopkins-Singer example.

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

What is hflat(X )?Consequence of axioms:

X 7→ hflat(X ) := ker(R)

is homotopy invariant.natural candidate:fibre sequence of cohomology theories

→ h → hR → hR/Z →

In most examplesh−1

R/Z(X ) ∼= hflat(X )

so thatThis is clear by construction for the Hopkins-Singer example.

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

What is hflat(X )?Consequence of axioms:

X 7→ hflat(X ) := ker(R)

is homotopy invariant.natural candidate:fibre sequence of cohomology theories

→ h → hR → hR/Z →

In most examplesh−1

R/Z(X ) ∼= hflat(X )

so thatβ : hflat(X ) → h(X )

is Bockstein.This is clear by construction for the Hopkins-Singer example.

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

What is hflat(X )?Consequence of axioms:

X 7→ hflat(X ) := ker(R)

is homotopy invariant.natural candidate:fibre sequence of cohomology theories

→ h → hR → hR/Z →

In most examplesh−1

R/Z(X ) ∼= hflat(X )

so thatβ : hflat(X ) → h(X )

is Bockstein.This is clear by construction for the Hopkins-Singer example.

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

What is hflat(X )?Consequence of axioms:

X 7→ hflat(X ) := ker(R)

is homotopy invariant.natural candidate:fibre sequence of cohomology theories

→ h → hR → hR/Z →

In most examplesh−1

R/Z(X ) ∼= hflat(X )

so thatβ : hflat(X ) → h(X )

is Bockstein.This is clear by construction for the Hopkins-Singer example.

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

What is hflat(X )?Consequence of axioms:

X 7→ hflat(X ) := ker(R)

is homotopy invariant.natural candidate:fibre sequence of cohomology theories

→ h → hR → hR/Z →

In most examplesh−1

R/Z(X ) ∼= hflat(X )

so thatβ : hflat(X ) → h(X )

is Bockstein.This is clear by construction for the Hopkins-Singer example.

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Existence of h?

Uniqueness of h?

What is hflat(X )?

Cup product?

Orientation and integration?

Riemann-Roch?

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Cup product?Assume that h is multiplicative.Require hat I and R are homomorphisms of rings.Then we call h a multiplicative extension.HZ is multiplicative - Cheeger-SimonsK and bordism theories like S, MU have multiplicative extensions(B.-Schick)Extensions constructed using Landweber exactness from MU aremultiplicative.The general case is not clear.

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Cup product?Assume that h is multiplicative.Require hat I and R are homomorphisms of rings.Then we call h a multiplicative extension.HZ is multiplicative - Cheeger-SimonsK and bordism theories like S, MU have multiplicative extensions(B.-Schick)Extensions constructed using Landweber exactness from MU aremultiplicative.The general case is not clear.

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Cup product?Assume that h is multiplicative.Require hat I and R are homomorphisms of rings.Then we call h a multiplicative extension.HZ is multiplicative - Cheeger-SimonsK and bordism theories like S, MU have multiplicative extensions(B.-Schick)Extensions constructed using Landweber exactness from MU aremultiplicative.The general case is not clear.

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Cup product?Assume that h is multiplicative.Require hat I and R are homomorphisms of rings.Then we call h a multiplicative extension.HZ is multiplicative - Cheeger-SimonsK and bordism theories like S, MU have multiplicative extensions(B.-Schick)Extensions constructed using Landweber exactness from MU aremultiplicative.The general case is not clear.

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Cup product?Assume that h is multiplicative.Require hat I and R are homomorphisms of rings.Then we call h a multiplicative extension.HZ is multiplicative - Cheeger-SimonsK and bordism theories like S, MU have multiplicative extensions(B.-Schick)Extensions constructed using Landweber exactness from MU aremultiplicative.The general case is not clear.

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Cup product?Assume that h is multiplicative.Require hat I and R are homomorphisms of rings.Then we call h a multiplicative extension.HZ is multiplicative - Cheeger-SimonsK and bordism theories like S, MU have multiplicative extensions(B.-Schick)Extensions constructed using Landweber exactness from MU aremultiplicative.The general case is not clear.

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Cup product?Assume that h is multiplicative.Require hat I and R are homomorphisms of rings.Then we call h a multiplicative extension.HZ is multiplicative - Cheeger-SimonsK and bordism theories like S, MU have multiplicative extensions(B.-Schick)Extensions constructed using Landweber exactness from MU aremultiplicative.The general case is not clear.

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Cup product?Assume that h is multiplicative.Require hat I and R are homomorphisms of rings.Then we call h a multiplicative extension.HZ is multiplicative - Cheeger-SimonsK and bordism theories like S, MU have multiplicative extensions(B.-Schick)Extensions constructed using Landweber exactness from MU aremultiplicative.The general case is not clear.

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Cup product?Assume that h is multiplicative.Require hat I and R are homomorphisms of rings.Then we call h a multiplicative extension.HZ is multiplicative - Cheeger-SimonsK and bordism theories like S, MU have multiplicative extensions(B.-Schick)Extensions constructed using Landweber exactness from MU aremultiplicative.The general case is not clear.

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Existence of h?

Uniqueness of h?

What is hflat(X )?

Cup product?

Orientation and integration?

Riemann-Roch?

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Orientation and integration?f : X → Y proper submersion, h-multiplicative.

No additional structures needed for cHZ (Brylinski, Dupont-Ljungman,Gomi)The concept is developed for bordism theories S, MU (geometricconstruction).Landweber exact theories admit integration for MU-oriented maps(B.-Schick).Theory for K is developed and based on local index theory(B.-Schick).

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Orientation and integration?f : X → Y proper submersion, h-multiplicative.A h-orientation of f is a choice h-Thom class of the stable normalbundle of f .

No additional structures needed for cHZ (Brylinski, Dupont-Ljungman,Gomi)The concept is developed for bordism theories S, MU (geometricconstruction).Landweber exact theories admit integration for MU-oriented maps(B.-Schick).Theory for K is developed and based on local index theory(B.-Schick).

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Orientation and integration?f : X → Y proper submersion, h-multiplicative.A h-orientation of f is a choice h-Thom class of the stable normalbundle of f .In this case have integration f! : h(X ) → h(Y ).

No additional structures needed for cHZ (Brylinski, Dupont-Ljungman,Gomi)The concept is developed for bordism theories S, MU (geometricconstruction).Landweber exact theories admit integration for MU-oriented maps(B.-Schick).Theory for K is developed and based on local index theory(B.-Schick).

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Orientation and integration?f : X → Y proper submersion, h-multiplicative.A h-orientation of f is a choice h-Thom class of the stable normalbundle of f .In this case have integration f! : h(X ) → h(Y ).Want a good concept of h-orientation and integrationf! : h(X ) → h(Y )

No additional structures needed for cHZ (Brylinski, Dupont-Ljungman,Gomi)The concept is developed for bordism theories S, MU (geometricconstruction).Landweber exact theories admit integration for MU-oriented maps(B.-Schick).Theory for K is developed and based on local index theory(B.-Schick).

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Orientation and integration?f : X → Y proper submersion, h-multiplicative.A h-orientation of f is a choice h-Thom class of the stable normalbundle of f .In this case have integration f! : h(X ) → h(Y ).

Ω(X , h∗)/im(d)

RX/Y A(of )∧...

a // h(X )

f!

I //

R**

h(X )

f!

Ω(X , h∗)RX/Y A(of )∧...

Ω(Y , h∗)/im(d)

a// h(Y )

I//

R

44h(Y ) Ω(Y , h∗)

No additional structures needed for cHZ (Brylinski, Dupont-Ljungman,Gomi)The concept is developed for bordism theories S, MU (geometricconstruction).Landweber exact theories admit integration for MU-oriented maps(B.-Schick).Theory for K is developed and based on local index theory(B.-Schick).

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Orientation and integration?f : X → Y proper submersion, h-multiplicative.A h-orientation of f is a choice h-Thom class of the stable normalbundle of f .In this case have integration f! : h(X ) → h(Y ).Want a good concept of h-orientation and integrationf! : h(X ) → h(Y )

No additional structures needed for cHZ (Brylinski, Dupont-Ljungman,Gomi)The concept is developed for bordism theories S, MU (geometricconstruction).Landweber exact theories admit integration for MU-oriented maps(B.-Schick).Theory for K is developed and based on local index theory(B.-Schick).

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Orientation and integration?Want a good concept of h-orientation and integrationf! : h(X ) → h(Y )

No additional structures needed for cHZ (Brylinski, Dupont-Ljungman,Gomi)The concept is developed for bordism theories S, MU (geometricconstruction).Landweber exact theories admit integration for MU-oriented maps(B.-Schick).Theory for K is developed and based on local index theory(B.-Schick).

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Orientation and integration?Want a good concept of h-orientation and integrationf! : h(X ) → h(Y )

No additional structures needed for cHZ (Brylinski, Dupont-Ljungman,Gomi)The concept is developed for bordism theories S, MU (geometricconstruction).Landweber exact theories admit integration for MU-oriented maps(B.-Schick).Theory for K is developed and based on local index theory(B.-Schick).

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Orientation and integration?Want a good concept of h-orientation and integrationf! : h(X ) → h(Y )

No additional structures needed for cHZ (Brylinski, Dupont-Ljungman,Gomi)The concept is developed for bordism theories S, MU (geometricconstruction).Landweber exact theories admit integration for MU-oriented maps(B.-Schick).Theory for K is developed and based on local index theory(B.-Schick).

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Existence of h?

Uniqueness of h?

What is hflat(X )?

Cup product?

Orientation and integration?

Riemann-Roch?

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Riemann-Roch? Example: K.

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Riemann-Roch? Example: K.f : X → Y proper submersion,

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Riemann-Roch? Example: K.f : X → Y proper submersion,Let f be K-oriented.Riemann-Roch states that

K(X )

f!

ch // HQ(X )

f!(Td(T v f )∪... )

K(Y )

ch // HQ(Y )

commutes.

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Riemann-Roch? Example: K.f : X → Y proper submersion,Let f be K-oriented.Differentiable Riemann-Roch states that

K(X )

f!

ch // HQ(X )

f!(cTd(T v f )∪... )

K(Y )

ch // HQ(Y )

commutes.

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Riemann-Roch? Example: K.f : X → Y proper submersion,Let f be K-oriented.Differentiable Riemann-Roch states that

K(X )

f!

ch // HQ(X )

f!(cTd(T v f )∪... )

K(Y )

ch // HQ(Y )

commutes.

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Riemann-Roch? Example: K.f : X → Y proper submersion,Let f be K-oriented.Differentiable Riemann-Roch states that

K(X )

f!

ch // HQ(X )

f!(cTd(T v f )∪... )

K(Y )

ch // HQ(Y )

commutes.

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Riemann-Roch? Example: K.f : X → Y proper submersion,Let f be K-oriented.Differentiable Riemann-Roch states that

K(X )

f!

ch // HQ(X )

f!(cTd(T v f )∪... )

K(Y )

ch // HQ(Y )

commutes.

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Riemann-Roch? Example: K.f : X → Y proper submersion,Let f be K-oriented.Differentiable Riemann-Roch states that

K(X )

f!

ch // HQ(X )

f!(cTd(T v f )∪... )

K(Y )

ch // HQ(Y )

commutes.

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

Natural questions

Riemann-Roch? Example: K.f : X → Y proper submersion,Let f be K-oriented.Differentiable Riemann-Roch states that

K(X )

f!

ch // HQ(X )

f!(cTd(T v f )∪... )

K(Y )

ch // HQ(Y )

commutes.

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 8 / 20

How?

There are various methods to construct smooth extensions:

Sheaf theory (Deligne cohomology) for HZDifferential characters HZ (Cheeger-Simons), K (Maghfoul, 2008).

Homotopy theory (Hopkins-Singer, 2005)

Cycles and relations (e.g. B. -Schick)

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 9 / 20

How?

There are various methods to construct smooth extensions:

Sheaf theory (Deligne cohomology) for HZDifferential characters HZ (Cheeger-Simons), K (Maghfoul, 2008).

Homotopy theory (Hopkins-Singer, 2005)

Cycles and relations (e.g. B. -Schick)

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 9 / 20

How?

There are various methods to construct smooth extensions:

Sheaf theory (Deligne cohomology) for HZDifferential characters HZ (Cheeger-Simons), K (Maghfoul, 2008).

Homotopy theory (Hopkins-Singer, 2005)

Cycles and relations (e.g. B. -Schick)

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 9 / 20

How?

There are various methods to construct smooth extensions:

Sheaf theory (Deligne cohomology) for HZDifferential characters HZ (Cheeger-Simons), K (Maghfoul, 2008).

Homotopy theory (Hopkins-Singer, 2005)

Cycles and relations (e.g. B. -Schick)

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 9 / 20

How?

There are various methods to construct smooth extensions:

Sheaf theory (Deligne cohomology) for HZDifferential characters HZ (Cheeger-Simons), K (Maghfoul, 2008).

Homotopy theory (Hopkins-Singer, 2005)

Cycles and relations (e.g. B. -Schick)

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 9 / 20

How?

There are various methods to construct smooth extensions:

Sheaf theory (Deligne cohomology) for HZDifferential characters HZ (Cheeger-Simons), K (Maghfoul, 2008).

Homotopy theory (Hopkins-Singer, 2005)

Cycles and relations (e.g. B. -Schick)

U. Bunke (Universität Regensburg) Differentiable cohomology 19.9.2008/ DMV-Tagung 2008 9 / 20

Stably framed manifolds

M manifold

TM stably framed

consider M ∼ M ′ if M and M ′ are framed bordant

[M] ∈ Ωfr - class of M in the group of framed bordism classes

Question: Is [M] trivial?

Pontrjagin-Thom: Ωfr ∼= πS. This group is complicated and onlypartially known.

U. Bunke (Universität Regensburg) e-invariant 19.9.2008/ DMV-Tagung 2008 10 / 20

Stably framed manifolds

M manifold

TM stably framed

consider M ∼ M ′ if M and M ′ are framed bordant

[M] ∈ Ωfr - class of M in the group of framed bordism classes

Question: Is [M] trivial?

Pontrjagin-Thom: Ωfr ∼= πS. This group is complicated and onlypartially known.

U. Bunke (Universität Regensburg) e-invariant 19.9.2008/ DMV-Tagung 2008 10 / 20

Stably framed manifolds

M manifold

TM stably framed

consider M ∼ M ′ if M and M ′ are framed bordant

[M] ∈ Ωfr - class of M in the group of framed bordism classes

Question: Is [M] trivial?

Pontrjagin-Thom: Ωfr ∼= πS. This group is complicated and onlypartially known.

U. Bunke (Universität Regensburg) e-invariant 19.9.2008/ DMV-Tagung 2008 10 / 20

Stably framed manifolds

M manifold

TM stably framedTM ⊕ Rk

M is trivialized for some large k .

consider M ∼ M ′ if M and M ′ are framed bordant

[M] ∈ Ωfr - class of M in the group of framed bordism classes

Question: Is [M] trivial?

Pontrjagin-Thom: Ωfr ∼= πS. This group is complicated and onlypartially known.

U. Bunke (Universität Regensburg) e-invariant 19.9.2008/ DMV-Tagung 2008 10 / 20

Stably framed manifolds

M manifold

TM stably framed

consider M ∼ M ′ if M and M ′ are framed bordant

[M] ∈ Ωfr - class of M in the group of framed bordism classes

Question: Is [M] trivial?

Pontrjagin-Thom: Ωfr ∼= πS. This group is complicated and onlypartially known.

U. Bunke (Universität Regensburg) e-invariant 19.9.2008/ DMV-Tagung 2008 10 / 20

Stably framed manifolds

M manifold

TM stably framed

consider M ∼ M ′ if M and M ′ are framed bordantThere exists a manifold W such that TW is stably framed and∂W ∼= M t −M ′

[M] ∈ Ωfr - class of M in the group of framed bordism classes

Question: Is [M] trivial?

Pontrjagin-Thom: Ωfr ∼= πS. This group is complicated and onlypartially known.

U. Bunke (Universität Regensburg) e-invariant 19.9.2008/ DMV-Tagung 2008 10 / 20

Stably framed manifolds

M manifold

TM stably framed

consider M ∼ M ′ if M and M ′ are framed bordant

[M] ∈ Ωfr - class of M in the group of framed bordism classes

Question: Is [M] trivial?

Pontrjagin-Thom: Ωfr ∼= πS. This group is complicated and onlypartially known.

U. Bunke (Universität Regensburg) e-invariant 19.9.2008/ DMV-Tagung 2008 10 / 20

Stably framed manifolds

M manifold

TM stably framed

consider M ∼ M ′ if M and M ′ are framed bordant

[M] ∈ Ωfr - class of M in the group of framed bordism classes

Question: Is [M] trivial?

Pontrjagin-Thom: Ωfr ∼= πS. This group is complicated and onlypartially known.

U. Bunke (Universität Regensburg) e-invariant 19.9.2008/ DMV-Tagung 2008 10 / 20

Stably framed manifolds

M manifold

TM stably framed

consider M ∼ M ′ if M and M ′ are framed bordant

[M] ∈ Ωfr - class of M in the group of framed bordism classes

Question: Is [M] trivial?

Pontrjagin-Thom: Ωfr ∼= πS. This group is complicated and onlypartially known.

U. Bunke (Universität Regensburg) e-invariant 19.9.2008/ DMV-Tagung 2008 10 / 20

Primary Invariants

Construct homomorphisms ε : Ωfr → A to known groups A and studyimage ε([M]) ∈ A.Ωfr are coefficients of a generalized homology theory represented byspectrum S.[M] corresponds to homotopy class f : Σdim(M)S → SIdea: map to simpler homology theories.Choices: HZ, K, MUuse unit ε : S → KProblem: The primary invariant vanishes for dim(M) > 0 since Ωfr

>0 istorsion (Serre) and K∗ is free.

∗ −2 −1 0 1 2 3 4 5 6 7Ωfr∗ 0 0 Z Z

2Z2

Z24 0 0 Z

2Z

240K∗ Z 0 Z 0 Z 0 Z 0 Z 0

U. Bunke (Universität Regensburg) e-invariant 19.9.2008/ DMV-Tagung 2008 11 / 20

Primary Invariants

Construct homomorphisms ε : Ωfr → A to known groups A and studyimage ε([M]) ∈ A.Ωfr are coefficients of a generalized homology theory represented byspectrum S.[M] corresponds to homotopy class f : Σdim(M)S → SIdea: map to simpler homology theories.Choices: HZ, K, MUuse unit ε : S → KProblem: The primary invariant vanishes for dim(M) > 0 since Ωfr

>0 istorsion (Serre) and K∗ is free.

∗ −2 −1 0 1 2 3 4 5 6 7Ωfr∗ 0 0 Z Z

2Z2

Z24 0 0 Z

2Z

240K∗ Z 0 Z 0 Z 0 Z 0 Z 0

U. Bunke (Universität Regensburg) e-invariant 19.9.2008/ DMV-Tagung 2008 11 / 20

Primary Invariants

Construct homomorphisms ε : Ωfr → A to known groups A and studyimage ε([M]) ∈ A.Ωfr are coefficients of a generalized homology theory represented byspectrum S.[M] corresponds to homotopy class f : Σdim(M)S → SIdea: map to simpler homology theories.Choices: HZ, K, MUuse unit ε : S → KProblem: The primary invariant vanishes for dim(M) > 0 since Ωfr

>0 istorsion (Serre) and K∗ is free.

∗ −2 −1 0 1 2 3 4 5 6 7Ωfr∗ 0 0 Z Z

2Z2

Z24 0 0 Z

2Z

240K∗ Z 0 Z 0 Z 0 Z 0 Z 0

U. Bunke (Universität Regensburg) e-invariant 19.9.2008/ DMV-Tagung 2008 11 / 20

Primary Invariants

Construct homomorphisms ε : Ωfr → A to known groups A and studyimage ε([M]) ∈ A.Ωfr are coefficients of a generalized homology theory represented byspectrum S.[M] corresponds to homotopy class f : Σdim(M)S → SIdea: map to simpler homology theories.Choices: HZ, K, MUuse unit ε : S → KProblem: The primary invariant vanishes for dim(M) > 0 since Ωfr

>0 istorsion (Serre) and K∗ is free.

∗ −2 −1 0 1 2 3 4 5 6 7Ωfr∗ 0 0 Z Z

2Z2

Z24 0 0 Z

2Z

240K∗ Z 0 Z 0 Z 0 Z 0 Z 0

U. Bunke (Universität Regensburg) e-invariant 19.9.2008/ DMV-Tagung 2008 11 / 20

Primary Invariants

Construct homomorphisms ε : Ωfr → A to known groups A and studyimage ε([M]) ∈ A.Ωfr are coefficients of a generalized homology theory represented byspectrum S.[M] corresponds to homotopy class f : Σdim(M)S → SIdea: map to simpler homology theories.Choices: HZ, K, MUuse unit ε : S → KProblem: The primary invariant vanishes for dim(M) > 0 since Ωfr

>0 istorsion (Serre) and K∗ is free.

∗ −2 −1 0 1 2 3 4 5 6 7Ωfr∗ 0 0 Z Z

2Z2

Z24 0 0 Z

2Z

240K∗ Z 0 Z 0 Z 0 Z 0 Z 0

U. Bunke (Universität Regensburg) e-invariant 19.9.2008/ DMV-Tagung 2008 11 / 20

Primary Invariants

Construct homomorphisms ε : Ωfr → A to known groups A and studyimage ε([M]) ∈ A.Ωfr are coefficients of a generalized homology theory represented byspectrum S.[M] corresponds to homotopy class f : Σdim(M)S → SIdea: map to simpler homology theories.Choices: HZ, K, MUuse unit ε : S → KProblem: The primary invariant vanishes for dim(M) > 0 since Ωfr

>0 istorsion (Serre) and K∗ is free.

∗ −2 −1 0 1 2 3 4 5 6 7Ωfr∗ 0 0 Z Z

2Z2

Z24 0 0 Z

2Z

240K∗ Z 0 Z 0 Z 0 Z 0 Z 0

U. Bunke (Universität Regensburg) e-invariant 19.9.2008/ DMV-Tagung 2008 11 / 20

Primary Invariants

Construct homomorphisms ε : Ωfr → A to known groups A and studyimage ε([M]) ∈ A.Ωfr are coefficients of a generalized homology theory represented byspectrum S.[M] corresponds to homotopy class f : Σdim(M)S → SIdea: map to simpler homology theories.Choices: HZ, K, MUuse unit ε : S → KProblem: The primary invariant vanishes for dim(M) > 0 since Ωfr

>0 istorsion (Serre) and K∗ is free.

∗ −2 −1 0 1 2 3 4 5 6 7Ωfr∗ 0 0 Z Z

2Z2

Z24 0 0 Z

2Z

240K∗ Z 0 Z 0 Z 0 Z 0 Z 0

U. Bunke (Universität Regensburg) e-invariant 19.9.2008/ DMV-Tagung 2008 11 / 20

Primary Invariants

Construct homomorphisms ε : Ωfr → A to known groups A and studyimage ε([M]) ∈ A.Ωfr are coefficients of a generalized homology theory represented byspectrum S.[M] corresponds to homotopy class f : Σdim(M)S → SIdea: map to simpler homology theories.Choices: HZ, K, MUuse unit ε : S → KProblem: The primary invariant vanishes for dim(M) > 0 since Ωfr

>0 istorsion (Serre) and K∗ is free.

∗ −2 −1 0 1 2 3 4 5 6 7Ωfr∗ 0 0 Z Z

2Z2

Z24 0 0 Z

2Z

240K∗ Z 0 Z 0 Z 0 Z 0 Z 0

U. Bunke (Universität Regensburg) e-invariant 19.9.2008/ DMV-Tagung 2008 11 / 20

Secondary invariants

Vanishing of primary invariant implies existence of lift in

Σ−1K

Σdim(M)S

f // S

ε

K

U. Bunke (Universität Regensburg) e-invariant 19.9.2008/ DMV-Tagung 2008 12 / 20

Secondary invariants

Vanishing of primary invariant implies existence of lift in

Σ−1K

Σdim(M)S

f //

0%%

S

ε

K

U. Bunke (Universität Regensburg) e-invariant 19.9.2008/ DMV-Tagung 2008 12 / 20

Secondary invariants

Vanishing of primary invariant implies existence of lift in

Σ−1K

Σdim(M)S

f //

f99

0%%

S

ε

K

U. Bunke (Universität Regensburg) e-invariant 19.9.2008/ DMV-Tagung 2008 12 / 20

Secondary invariants

Vanishing of primary invariant implies existence of lift in

Σ−1K

Σdim(M)S

f //

f99

0%%

S

ε

K

Problem: Lift f ∈ Kdim(M)+1 is not unique!

U. Bunke (Universität Regensburg) e-invariant 19.9.2008/ DMV-Tagung 2008 12 / 20

Secondary invariants

Vanishing of primary invariant implies existence of lift in

Σ−1K

Σdim(M)S

f //

f99

0%%

S

ε

K

Problem: Lift f ∈ Kdim(M)+1 is not unique!Problem: K∗ is as complicated as πS

U. Bunke (Universität Regensburg) e-invariant 19.9.2008/ DMV-Tagung 2008 12 / 20

Secondary invariants

Vanishing of primary invariant implies existence of lift in

Σ−1K

Σdim(M)S

f //

f99

0%%

S

ε

K

Problem: Lift f ∈ Kdim(M)+1 is not unique!Problem: K∗ is as complicated as πS

Need simpler targets!

U. Bunke (Universität Regensburg) e-invariant 19.9.2008/ DMV-Tagung 2008 12 / 20

R/Z-invariants

KR/Z,∗ is known

U. Bunke (Universität Regensburg) e-invariant 19.9.2008/ DMV-Tagung 2008 13 / 20

R/Z-invariants

KR/Z,∗ is known

KR/Z,ev∼= R/Z , KR/Z,odd

∼= 0

U. Bunke (Universität Regensburg) e-invariant 19.9.2008/ DMV-Tagung 2008 13 / 20

R/Z-invariants

KR/Z,∗ is known

KR/Z,ev∼= R/Z , KR/Z,odd

∼= 0

Use KR/Z as target!

U. Bunke (Universität Regensburg) e-invariant 19.9.2008/ DMV-Tagung 2008 13 / 20

R/Z-invariants

RationalizationS // SR

take homotopy cofibre

U. Bunke (Universität Regensburg) e-invariant 19.9.2008/ DMV-Tagung 2008 13 / 20

R/Z-invariants

Σ−1SR/Zδ // S // SR .

Relate with K -theory.

U. Bunke (Universität Regensburg) e-invariant 19.9.2008/ DMV-Tagung 2008 13 / 20

R/Z-invariants

Σ−1K

0

""Σ−1SR/Z

δ // S //

ε

SR

K

.

U. Bunke (Universität Regensburg) e-invariant 19.9.2008/ DMV-Tagung 2008 13 / 20

R/Z-invariants

Σ−1K

0

""

u

yyt tt

tt

Σ−1SR/Zδ // S //

ε

SR

K

.

observe existence and uniqueness of u!

U. Bunke (Universität Regensburg) e-invariant 19.9.2008/ DMV-Tagung 2008 13 / 20

R/Z-invariants

Σ−1K

0

""

u

yyss

ss

s

Σ−1SR/Z

εR/Z

δ // S

ε

// SR

εR

Σ−1KR/Z // K // KR

.

U. Bunke (Universität Regensburg) e-invariant 19.9.2008/ DMV-Tagung 2008 13 / 20

R/Z-invariants

Σdim(M)S

f

Σ−1K

0

$$

u

xxqq

qq

q

Σ−1SR/Z

εR/Z

δ // S

ε

// SR

εR

Σ−1KR/Z // K // KR

.

U. Bunke (Universität Regensburg) e-invariant 19.9.2008/ DMV-Tagung 2008 13 / 20

R/Z-invariants

Σdim(M)S

f

e

Σ−1K

0

$$

u

xxqq

qq

q

Σ−1SR/Z

εR/Z

δ // S

ε

// SR

εR

Σ−1KR/Z // K // KR

.

U. Bunke (Universität Regensburg) e-invariant 19.9.2008/ DMV-Tagung 2008 13 / 20

R/Z-invariants

Σdim(M)S

f

e

Σ−1K

0

$$

u

xxqq

qq

q

Σ−1SR/Z

εR/Z

δ // S

ε

// SR

εR

Σ−1KR/Z // K // KR

.

Observe that e ∈ KR/Z,dim(M)+1 is well-defined.

U. Bunke (Universität Regensburg) e-invariant 19.9.2008/ DMV-Tagung 2008 13 / 20

A family version

Consider space B and stable cohomotopy class

f : ΣkB+ → S

U. Bunke (Universität Regensburg) e-invariant 19.9.2008/ DMV-Tagung 2008 14 / 20

A family version

Consider space B and stable cohomotopy class

f : ΣkB+ → S

Assume that primary invariant vanishes :

Σ−1K

ΣkB+

f //

0$$

S

ε

K

U. Bunke (Universität Regensburg) e-invariant 19.9.2008/ DMV-Tagung 2008 14 / 20

A family version

Consider space B and stable cohomotopy class

f : ΣkB+ → S

Have liftΣ−1K

ΣkB+

f //

f::

0$$

S

ε

K

U. Bunke (Universität Regensburg) e-invariant 19.9.2008/ DMV-Tagung 2008 14 / 20

A family version

Consider space B and stable cohomotopy class

f : ΣkB+ → S

Secondary invariant:

Σ−1K

εR/Zu// Σ−1KR/Z

ΣkB+

e

##

f //

f;;

0$$

S

ε

K

U. Bunke (Universität Regensburg) e-invariant 19.9.2008/ DMV-Tagung 2008 14 / 20

A family version

Consider space B and stable cohomotopy class

f : ΣkB+ → S

Secondary invariant:

Σ−1K

εR/Zu// Σ−1KR/Z

ΣkB+

e

##

f //

f;;

0$$

S

ε

K

e ∈K−k−1

R/Z (B)

S−k−1R (B)

is well-defined.

U. Bunke (Universität Regensburg) e-invariant 19.9.2008/ DMV-Tagung 2008 14 / 20

A family version

Consider space B and stable cohomotopy class

f : ΣkB+ → S

e ∈K−k−1

R/Z (B)

S−k−1R (B)

is well-defined.

Note that for k ≥ 0 we have

e ∈ K−k−1R/Z (B) .

U. Bunke (Universität Regensburg) e-invariant 19.9.2008/ DMV-Tagung 2008 14 / 20

Special Examples

Of particular interest is the following special case.

π : W → B - locally trivial fibre bundle

framing of vertical bundle T vπ := ker(dπ)

π : W → B with framing represents class

ΣkB+f→ S , k = dim(B)− dim(W )

more special case: π : W → B a G-principal bundle

U. Bunke (Universität Regensburg) e-invariant 19.9.2008/ DMV-Tagung 2008 15 / 20

Special Examples

Of particular interest is the following special case.

π : W → B - locally trivial fibre bundle

framing of vertical bundle T vπ := ker(dπ)

π : W → B with framing represents class

ΣkB+f→ S , k = dim(B)− dim(W )

more special case: π : W → B a G-principal bundle

U. Bunke (Universität Regensburg) e-invariant 19.9.2008/ DMV-Tagung 2008 15 / 20

Special Examples

Of particular interest is the following special case.

π : W → B - locally trivial fibre bundle

framing of vertical bundle T vπ := ker(dπ)

π : W → B with framing represents class

ΣkB+f→ S , k = dim(B)− dim(W )

more special case: π : W → B a G-principal bundle

U. Bunke (Universität Regensburg) e-invariant 19.9.2008/ DMV-Tagung 2008 15 / 20

Special Examples

Of particular interest is the following special case.

π : W → B - locally trivial fibre bundle

framing of vertical bundle T vπ := ker(dπ)

π : W → B with framing represents class

ΣkB+f→ S , k = dim(B)− dim(W )

more special case: π : W → B a G-principal bundle

U. Bunke (Universität Regensburg) e-invariant 19.9.2008/ DMV-Tagung 2008 15 / 20

Special Examples

Of particular interest is the following special case.

π : W → B - locally trivial fibre bundle

framing of vertical bundle T vπ := ker(dπ)

π : W → B with framing represents class

ΣkB+f→ S , k = dim(B)− dim(W )

more special case: π : W → B a G-principal bundlebasis of Lie(G) induces trivialization of T vπ by fundamental vectorfields

U. Bunke (Universität Regensburg) e-invariant 19.9.2008/ DMV-Tagung 2008 15 / 20

A secondary index theorem

π : W → B, T vπ framed, f ∈ [ΣkB+, S], e ∈ K−k−1R/Z (B)

Theorem (B.-Schick)

π has canonical K-orientation.

Defineπ!(1) ∈ K(B) .

Note that π!(1) is flat.Define

ean := π!(1) ∈ Kflat ,−k (B) ∼= K−k−1R/Z (B)

Theorem (Secondary index theorem)

ean = e

U. Bunke (Universität Regensburg) Application of differentiable K-theory 19.9.2008/ DMV-Tagung 2008 16 / 20

A secondary index theorem

π : W → B, T vπ framed, f ∈ [ΣkB+, S], e ∈ K−k−1R/Z (B)

Theorem (B.-Schick)

π has canonical K-orientation.

Defineπ!(1) ∈ K(B) .

Note that π!(1) is flat.Define

ean := π!(1) ∈ Kflat ,−k (B) ∼= K−k−1R/Z (B)

Theorem (Secondary index theorem)

ean = e

U. Bunke (Universität Regensburg) Application of differentiable K-theory 19.9.2008/ DMV-Tagung 2008 16 / 20

A secondary index theorem

π : W → B, T vπ framed, f ∈ [ΣkB+, S], e ∈ K−k−1R/Z (B)

Theorem (B.-Schick)

π has canonical K-orientation.

Defineπ!(1) ∈ K(B) .

Note that π!(1) is flat.Define

ean := π!(1) ∈ Kflat ,−k (B) ∼= K−k−1R/Z (B)

Theorem (Secondary index theorem)

ean = e

U. Bunke (Universität Regensburg) Application of differentiable K-theory 19.9.2008/ DMV-Tagung 2008 16 / 20

A secondary index theorem

π : W → B, T vπ framed, f ∈ [ΣkB+, S], e ∈ K−k−1R/Z (B)

Theorem (B.-Schick)

π has canonical K-orientation.

Defineπ!(1) ∈ K(B) .

Note that π!(1) is flat.Define

ean := π!(1) ∈ Kflat ,−k (B) ∼= K−k−1R/Z (B)

Theorem (Secondary index theorem)

ean = e

U. Bunke (Universität Regensburg) Application of differentiable K-theory 19.9.2008/ DMV-Tagung 2008 16 / 20

A secondary index theorem

π : W → B, T vπ framed, f ∈ [ΣkB+, S], e ∈ K−k−1R/Z (B)

Theorem (B.-Schick)

π has canonical K-orientation.

Defineπ!(1) ∈ K(B) .

Note that π!(1) is flat.Define

ean := π!(1) ∈ Kflat ,−k (B) ∼= K−k−1R/Z (B)

Theorem (Secondary index theorem)

ean = e

U. Bunke (Universität Regensburg) Application of differentiable K-theory 19.9.2008/ DMV-Tagung 2008 16 / 20

A secondary index theorem

π : W → B, T vπ framed, f ∈ [ΣkB+, S], e ∈ K−k−1R/Z (B)

Theorem (B.-Schick)

π has canonical K-orientation.

Defineπ!(1) ∈ K(B) .

Note that π!(1) is flat.Define

ean := π!(1) ∈ Kflat ,−k (B) ∼= K−k−1R/Z (B)

Theorem (Secondary index theorem)

ean = e

U. Bunke (Universität Regensburg) Application of differentiable K-theory 19.9.2008/ DMV-Tagung 2008 16 / 20

Bordism formula

Assume that q : V → B is a zero bordism of π : W → Bas K -oriented bundle.Can extend the smooth K -orientation of π over to q.

Theorem (bordism formula)

π!(1) = a(

∫V/B

Td)

This integral can often be evaluated!

U. Bunke (Universität Regensburg) Application of differentiable K-theory 19.9.2008/ DMV-Tagung 2008 17 / 20

Bordism formula

Assume that q : V → B is a zero bordism of π : W → Bas K -oriented bundle.Can extend the smooth K -orientation of π over to q.

Theorem (bordism formula)

π!(1) = a(

∫V/B

Td)

This integral can often be evaluated!

U. Bunke (Universität Regensburg) Application of differentiable K-theory 19.9.2008/ DMV-Tagung 2008 17 / 20

Bordism formula

Assume that q : V → B is a zero bordism of π : W → Bas K -oriented bundle.Can extend the smooth K -orientation of π over to q.

Theorem (bordism formula)

π!(1) = a(

∫V/B

Td)

This integral can often be evaluated!

U. Bunke (Universität Regensburg) Application of differentiable K-theory 19.9.2008/ DMV-Tagung 2008 17 / 20

Bordism formula

Assume that q : V → B is a zero bordism of π : W → Bas K -oriented bundle.Can extend the smooth K -orientation of π over to q.

Theorem (bordism formula)

π!(1) = a(

∫V/B

Td)

This integral can often be evaluated!

U. Bunke (Universität Regensburg) Application of differentiable K-theory 19.9.2008/ DMV-Tagung 2008 17 / 20

Principal bundles

π : W → B a G-principal bundleT ⊆ G maximal toruschoose U(1) ⊆ Tlet U(1) act on D2 in the standard way, ∂D2 ∼= U(1).q : V := W ×U(1) D2 → B is K -oriented zero bordism of π : W → B

TheoremIf rank(G) ≥ 2, then e = 0.

U. Bunke (Universität Regensburg) Application of differentiable K-theory 19.9.2008/ DMV-Tagung 2008 18 / 20

Principal bundles

π : W → B a G-principal bundleT ⊆ G maximal toruschoose U(1) ⊆ Tlet U(1) act on D2 in the standard way, ∂D2 ∼= U(1).q : V := W ×U(1) D2 → B is K -oriented zero bordism of π : W → B

TheoremIf rank(G) ≥ 2, then e = 0.

U. Bunke (Universität Regensburg) Application of differentiable K-theory 19.9.2008/ DMV-Tagung 2008 18 / 20

Principal bundles

π : W → B a G-principal bundleT ⊆ G maximal toruschoose U(1) ⊆ Tlet U(1) act on D2 in the standard way, ∂D2 ∼= U(1).q : V := W ×U(1) D2 → B is K -oriented zero bordism of π : W → B

TheoremIf rank(G) ≥ 2, then e = 0.

U. Bunke (Universität Regensburg) Application of differentiable K-theory 19.9.2008/ DMV-Tagung 2008 18 / 20

Principal bundles

π : W → B a G-principal bundleT ⊆ G maximal toruschoose U(1) ⊆ Tlet U(1) act on D2 in the standard way, ∂D2 ∼= U(1).q : V := W ×U(1) D2 → B is K -oriented zero bordism of π : W → B

TheoremIf rank(G) ≥ 2, then e = 0.

U. Bunke (Universität Regensburg) Application of differentiable K-theory 19.9.2008/ DMV-Tagung 2008 18 / 20

Principal bundles

π : W → B a G-principal bundleT ⊆ G maximal toruschoose U(1) ⊆ Tlet U(1) act on D2 in the standard way, ∂D2 ∼= U(1).q : V := W ×U(1) D2 → B is K -oriented zero bordism of π : W → B

TheoremIf rank(G) ≥ 2, then e = 0.

U. Bunke (Universität Regensburg) Application of differentiable K-theory 19.9.2008/ DMV-Tagung 2008 18 / 20

rank one case: U(1)

universal bundle W → BU(1)use Chern character

ch : KR → HRper

in order to identify

KR/Z(BU(1)) ∼=H(BU(1); R)

im(ch)

H(BU(1); R) ∼= R[[z]] , |z| = 2

Theorem ∫V/B

Td =1

1− e−z −1z

.

this power series starts with12

+1

12z − 1

720z3 +

130240

z5 − 11209600

z7 +1

47900160z9 − . . . .

U. Bunke (Universität Regensburg) Application of differentiable K-theory 19.9.2008/ DMV-Tagung 2008 19 / 20

rank one case: U(1)

universal bundle W → BU(1)use Chern character

ch : KR → HRper

in order to identify

KR/Z(BU(1)) ∼=H(BU(1); R)

im(ch)

H(BU(1); R) ∼= R[[z]] , |z| = 2

Theorem ∫V/B

Td =1

1− e−z −1z

.

this power series starts with12

+1

12z − 1

720z3 +

130240

z5 − 11209600

z7 +1

47900160z9 − . . . .

U. Bunke (Universität Regensburg) Application of differentiable K-theory 19.9.2008/ DMV-Tagung 2008 19 / 20

rank one case: U(1)

universal bundle W → BU(1)use Chern character

ch : KR → HRper

in order to identify

KR/Z(BU(1)) ∼=H(BU(1); R)

im(ch)

H(BU(1); R) ∼= R[[z]] , |z| = 2

Theorem ∫V/B

Td =1

1− e−z −1z

.

this power series starts with12

+1

12z − 1

720z3 +

130240

z5 − 11209600

z7 +1

47900160z9 − . . . .

U. Bunke (Universität Regensburg) Application of differentiable K-theory 19.9.2008/ DMV-Tagung 2008 19 / 20

rank one case: U(1)

universal bundle W → BU(1)use Chern character

ch : KR → HRper

in order to identify

KR/Z(BU(1)) ∼=H(BU(1); R)

im(ch)

H(BU(1); R) ∼= R[[z]] , |z| = 2

Theorem ∫V/B

Td =1

1− e−z −1z

.

this power series starts with12

+1

12z − 1

720z3 +

130240

z5 − 11209600

z7 +1

47900160z9 − . . . .

U. Bunke (Universität Regensburg) Application of differentiable K-theory 19.9.2008/ DMV-Tagung 2008 19 / 20

rank one case: U(1)

universal bundle W → BU(1)use Chern character

ch : KR → HRper

in order to identify

KR/Z(BU(1)) ∼=H(BU(1); R)

im(ch)

H(BU(1); R) ∼= R[[z]] , |z| = 2

Theorem ∫V/B

Td =1

1− e−z −1z

.

this power series starts with12

+1

12z − 1

720z3 +

130240

z5 − 11209600

z7 +1

47900160z9 − . . . .

U. Bunke (Universität Regensburg) Application of differentiable K-theory 19.9.2008/ DMV-Tagung 2008 19 / 20

Remarks

12

+1

12z − 1

720z3 +

130240

z5 − 11209600

z7 +1

47900160z9 − . . . .

first term 12 is Adams e invariant of S1

second term 112 shows that transfer in stable homotopy along the Hopf bundle

produces an element of order at least 12 in πS3∼= Z

24pairing e with higher dimensional primitive classes in K∗(BU(1)) reproducesresults by Miller and Knapp (late 70ties) on the transfer for U(1)-bundles

for higher rank, e.g. U(1)n must replace K by more complicated cohomologytheory, e.g. elliptic cohomologythis is work in progress with N. Naumann.

U. Bunke (Universität Regensburg) Application of differentiable K-theory 19.9.2008/ DMV-Tagung 2008 20 / 20

Remarks

12

+1

12z − 1

720z3 +

130240

z5 − 11209600

z7 +1

47900160z9 − . . . .

first term 12 is Adams e invariant of S1

second term 112 shows that transfer in stable homotopy along the Hopf bundle

produces an element of order at least 12 in πS3∼= Z

24pairing e with higher dimensional primitive classes in K∗(BU(1)) reproducesresults by Miller and Knapp (late 70ties) on the transfer for U(1)-bundles

for higher rank, e.g. U(1)n must replace K by more complicated cohomologytheory, e.g. elliptic cohomologythis is work in progress with N. Naumann.

U. Bunke (Universität Regensburg) Application of differentiable K-theory 19.9.2008/ DMV-Tagung 2008 20 / 20

Remarks

12

+1

12z − 1

720z3 +

130240

z5 − 11209600

z7 +1

47900160z9 − . . . .

first term 12 is Adams e invariant of S1

second term 112 shows that transfer in stable homotopy along the Hopf bundle

produces an element of order at least 12 in πS3∼= Z

24pairing e with higher dimensional primitive classes in K∗(BU(1)) reproducesresults by Miller and Knapp (late 70ties) on the transfer for U(1)-bundles

for higher rank, e.g. U(1)n must replace K by more complicated cohomologytheory, e.g. elliptic cohomologythis is work in progress with N. Naumann.

U. Bunke (Universität Regensburg) Application of differentiable K-theory 19.9.2008/ DMV-Tagung 2008 20 / 20

Remarks

12

+1

12z − 1

720z3 +

130240

z5 − 11209600

z7 +1

47900160z9 − . . . .

first term 12 is Adams e invariant of S1

second term 112 shows that transfer in stable homotopy along the Hopf bundle

produces an element of order at least 12 in πS3∼= Z

24pairing e with higher dimensional primitive classes in K∗(BU(1)) reproducesresults by Miller and Knapp (late 70ties) on the transfer for U(1)-bundles

for higher rank, e.g. U(1)n must replace K by more complicated cohomologytheory, e.g. elliptic cohomologythis is work in progress with N. Naumann.

U. Bunke (Universität Regensburg) Application of differentiable K-theory 19.9.2008/ DMV-Tagung 2008 20 / 20

Remarks

12

+1

12z − 1

720z3 +

130240

z5 − 11209600

z7 +1

47900160z9 − . . . .

first term 12 is Adams e invariant of S1

second term 112 shows that transfer in stable homotopy along the Hopf bundle

produces an element of order at least 12 in πS3∼= Z

24pairing e with higher dimensional primitive classes in K∗(BU(1)) reproducesresults by Miller and Knapp (late 70ties) on the transfer for U(1)-bundles

for higher rank, e.g. U(1)n must replace K by more complicated cohomologytheory, e.g. elliptic cohomologythis is work in progress with N. Naumann.

U. Bunke (Universität Regensburg) Application of differentiable K-theory 19.9.2008/ DMV-Tagung 2008 20 / 20

Remarks

12

+1

12z − 1

720z3 +

130240

z5 − 11209600

z7 +1

47900160z9 − . . . .

first term 12 is Adams e invariant of S1

second term 112 shows that transfer in stable homotopy along the Hopf bundle

produces an element of order at least 12 in πS3∼= Z

24pairing e with higher dimensional primitive classes in K∗(BU(1)) reproducesresults by Miller and Knapp (late 70ties) on the transfer for U(1)-bundles

for higher rank, e.g. U(1)n must replace K by more complicated cohomologytheory, e.g. elliptic cohomologythis is work in progress with N. Naumann.

U. Bunke (Universität Regensburg) Application of differentiable K-theory 19.9.2008/ DMV-Tagung 2008 20 / 20

Remarks

12

+1

12z − 1

720z3 +

130240

z5 − 11209600

z7 +1

47900160z9 − . . . .

first term 12 is Adams e invariant of S1

second term 112 shows that transfer in stable homotopy along the Hopf bundle

produces an element of order at least 12 in πS3∼= Z

24pairing e with higher dimensional primitive classes in K∗(BU(1)) reproducesresults by Miller and Knapp (late 70ties) on the transfer for U(1)-bundles

for higher rank, e.g. U(1)n must replace K by more complicated cohomologytheory, e.g. elliptic cohomologythis is work in progress with N. Naumann.

U. Bunke (Universität Regensburg) Application of differentiable K-theory 19.9.2008/ DMV-Tagung 2008 20 / 20