development of nanocomposite polymer electrolytes stability. lithium ion batteries sensors fuel...

Download Development of Nanocomposite Polymer Electrolytes   stability. Lithium ion batteries Sensors Fuel cells Solar cells Supercapacitors Electrochromic windows ... Ionic liquids Polymer blending

Post on 17-Mar-2018

215 views

Category:

Documents

3 download

Embed Size (px)

TRANSCRIPT

  • S. Ramesh

    Development of Nanocomposite

    Polymer Electrolytes (NCPEs) in

    Electric Double Layer Capacitors

    (EDLCs) Application

    1

  • UNIVERSITY OF MALAYA, MALAYSIA

    2

  • OVERVIEW

    1) Introduction

    2) Problem Statement

    3) Literature Review

    4) Methodology

    5) Results and Discussion

    6) Conclusions

    3

  • INTRODUCTION

    4

  • 5

    Advantages of Solid Polymer

    Electrolytes

    Safer

    Thermally stable

    Light in weight

    Easy handling

    Flexible

    Wider electrochemical

    stability

  • Lithium ion batteries

    Sensors

    Fuel cells

    Solar cells

    Supercapacitors

    Electrochromic windows

    6Applications of

    Polymer Electrolytes

  • 7

    PROBLEM STATEMENTS

    Low ionic conductivity

    Low mechanical strength

    Environmentally unfriendly

    Biopolymer

    Ionic liquids

    Polymer blending

    Mixed salt system

    Mixed solvent

    system

    Ionic liquids

    Plasticizers

    Fillers

    Fillers

    Polymer blending

  • Biodegradable polymer

    Natural

    Starch

    Cellulose

    Chitosan

    Synthetic

    PVA

    PLA

    PHA

    8

  • LITERATURE REVIEW

    9

  • 10

    Excellent tensile

    strength

    Nontoxic

    Good chemical stability

    Excellent thermal stability

    Biocompatible

    High dielectric constant

    Excellent charge storage

    capacity

    Environmentally friendly

    Advantages

    of PVA

  • 11

    Wider electrochemical potential window

    Nonflammable

    Nonvolatile

    Plasticizing effect

    High ion content

    Superior electrochemical

    stability

    Excellentthermal stability

    Nontoxic

    Advantages of

    Ionic Liquids

  • 12

    Filler

    Inorganic

    Passive

    Organic Graphite fibre Aromatic polyamide Cellulosic rigid rods

    (whiskers)

    Inert metal oxide Molecular sieves and zeolites Ferroelectric materials Rare earth oxide Solid superacid Carbon Nanoclay Heteropolyacid

    Lithiumnitrogen (Li2N) Lithium aluminate (LiAlO2) Lithium containing ceramics Titanium carbides (TiCx) Titanium carbonitrides (TiCxNy)

    Active

  • 13

    Enhance

    interfacial

    stability

    Advantages of Fillers

    Reduce Tg

    Enhance

    thermal

    stability

    Increase

    cationic

    diffusivity

    Improve

    physical

    properties

    Improve

    morphological

    properties

    Lower

    interfacial

    resistance

    Decrease the

    crystallinity

    Reduce

    water

    retention

    Improve

    longterm

    stability

  • Supercapacitors

    Pseudocapacitors

    Redoxreaction

    Electric double layer capacitors

    (EDLCs)

    Charge accumulation

    Hybrid capacitors

    Conducting polymers

    Metal oxide Carbon

    12

  • ELECTRIC DOUBLE LAYER

    CAPACITORS (EDLCS)

    Longer cycle life Higher power

    density

    Higher capacitive

    density

    Faster chargedischarge rate

    Higher ability to be charged and discharged continuously without

    degradation

    Inexpensive

    15

  • 16

    High microporosity (pore dimension:

  • 17

  • MATERIALS18

    MATERIAL ROLE

    Poly (vinyl alcohol) (PVA) Polymer

    1butyl3methylimidazolium bromide

    (BmImBr)

    Ionic liquid

    Silica (SiO2) (70nm)

    Titania (TiO2) (4050nm)

    Zirconia (ZrO2) (

  • METHODOLOGY

    19

  • A) SAMPLE PREPARATION20

    PVA+ BmImBr+

    SiO2/TiO2/ZrO2/Al2O3

    Stir and heat at

    80 C Cast on Petri dish

    Formation of free standing polymer electrolyte

    EIS

    DSC

    LSV

    SiO2TiO2ZrO2Al2O3

  • B) ELECTRODE PREPARATION

    21

    80 wt.% of activated carbon

    5 wt.% of carbon black

    5 wt.% of carbon nanotubes (CNTs)

    10 wt.% of poly(vinylidene fluoride)

    (PVdF)

    1methyl2pyrrolidone solvent

    Stir for

    several

    hours

    Dip

    coating

    process

  • C) EDLC FABRICATION & CHARACTERIZATION

    Configuration: electrode/polymer electrolyte/electrode

    22

    Figure 1: The fabricated EDLC using the highest conducting ionic liquidadded polymer electrolyte from each

    system.

    Cyclic Voltammetry (CV)

    Galvanostatic ChargeDischarge (GCD)

  • RESULTS AND DISCUSSION

    23

  • 24

    -4.60

    -4.40

    -4.20

    -4.00

    -3.80

    -3.60

    0 2 4 6 8 10

    log [

    ( S

    cm-1

    )]

    Weight percent of SiO2 (wt. %)

    (3.180.01)10-5 S

    (2.580.01)10-4 S cm-1

    Si system

    Ambient TemperatureIonic

    Conductivity Studies

    Figure 2: The logarithm of ionic conductivity of polymer electrolyte at different mass fraction of (a) SiO2 and (b) ZrO2.

  • 25

    Figure 3: The logarithm of ionic conductivity of polymer electrolyte at different mass fraction of (a) TiO2 and (b) Al2O3.

  • 26

    y = -1.3861x - 2.8442

    R = 0.9854

    y = -1.0677x - 1.8396

    R = 0.9921

    y = -0.721x - 0.7513

    R = 0.9863

    y = -0.7118x - 0.7307

    R = 0.9875

    y = -0.6449x - 0.4834

    R = 0.9954

    -5.00

    -4.50

    -4.00

    -3.50

    -3.00

    -2.50

    -2.00

    2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4

    log

    [(S

    cm-1

    )]

    1000/T (K-1)

    Fillerfree system Si system Zr system Ti system Al system

    Temperature DependentIonic

    Conductivity Studies

    Figure 4: Arrhenius plot of fillerfree polymer electrolyte and fillerdoped NCPEs.

  • 27

    Sample Activation energy,

    Ea (eV)

    Log A Preexponential

    constant, A

    Fillerfree

    system

    0.2751 2.8442 1.4310-3

    Si system 0.2119 1.8396 0.0145

    Zr system 0.1431 0.7513 0.18

    Ti system 0.1413 0.7307 0.19

    Al system 0.1280 0.4834 0.33

  • 28

    Differential Scanning Calorimetry (DSC)

    -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

    Hea

    t F

    low

    (W

    /g)

    Temperature(C)

    Fillerfree system Si system Zr system Ti system Al system

    12.15 C

    14.11 C

    9.06 C

    Endo

    Exo

    18.12 C

    16.32 C

    Figure 5: Glass transition temperature (Tg) of polymer electrolytes.

    Tg

  • 29

    Tm

    Figure 6: Crystalline melting temperature (Tm) of polymer electrolytes.

  • 30

    Heat of

    Fusion

    (Jg-1)

    Relative

    crystallinity

    (%)

    Fillerfree

    system

    719.7 100

    Si system 358.7 50

    Zr system 287.6 0.40

    Ti system 217.1 0.30

    Al system 203.3 0.28

    %100

    =

    m

    mc

    H

    HX

    Tc

    Figure 7 : Crystallization temperature (Tc) of polymer electrolytes.

  • 31Linear Sweep Voltammetry (LSV)

    Figure 8: LSV response of the most conducting polymer electrolyte from each system.

    Fillerfree system Si system

    Zr system Ti system Al system

    1.2 V

    2.2 V

    2.0 V

    2.3 V2.2 V

  • 32Cyclic Voltammetry (CV)

    sm

    iCsp =

    Fillerfree system

    sA

    iCsp =

    0.15 F g-1

    1.74 mF cm-2

    Figure 9: Cyclic voltammogram of EDCL containing the most conducting polymer electrolyte from (a) fillerfree system and (b)

    Si system.

    (a)

  • 33

    Figure 10: Cyclic voltammogram of EDCL containing the most conducting polymer electrolyte from (a) Zr system, (b) Ti system

    and (c) Al system.

  • 34

    Galvanostatic ChargeDischarge Analysis

    (GCD)

    ( )dt

    dVm

    ICsp =

    ( )

    3600

    1000

    2

    2

    =dVC

    Esp

    10002

    =

    m

    dVIP

    100=c

    d

    t

    t

    Si system

    Figure 11: Galvanostatic chargedischarge performances of EDLC containing (a) Si system and (b) Zr system over first 5 cycles.

    (a) (b)

  • 35

    Ti system Al system4.34 F g-1 8.62 F g-1

    Figure 12: Galvanostatic chargedischarge performances of EDLC containing (a) Ti system and (b) Al system over first 5 cycles.

    (a) (b)

  • 36

    System Specific discharge

    capacitance, Csp

    (F g-1)

    Coulombic

    efficiency,

    (%)

    Energy

    density, E

    (W h kg-1)

    Power

    density, P

    (W kg-1)

    Si system 2.58 86 0.18 34.94

    Zr system 4.16 40 0.36 36.76

    Ti system 4.34 76 0.42 38.41

    Al system 8.62 81 0.95 41.15

  • CONCLUSIONS

    Addition of nanosized fillers

    Increases the ionic conductivity

    Follows Arrhenius rules for the conduction mechanism

    Reduces the Tg and crystallinity

    Improves the electrochemical stability window

    Enhances the electrochemical properties of EDLCs (i.e. capacitance)

    Aluminabased polymer electrolyte is a good choice as separator in EDLC

    37

  • 38

    Miss Liew Chiam Wen

    Madam Lim

    Jing YiMiss Shanti

    Rajantharan

    Mr.

    Mohammad Hassan

    Khanmirzaei

    Mr. Vikneswaran

    Rajamuthy Mr. Ng Hon Ming

    Mr. Mohd

    Zieauddin bin Kufian

    Madam

    RajammalMr. Ramis Rao Mr. Lu Soon

    Chien

    Miss Nurul

    Nadiah

    Supervision

    Dr. Yugal

    Kishor Mahipal

    Miss Chong Mee Yoke

  • 39WELCOME TO MALAYSIA

    Aluminabased polymer electrolyte

Recommended

View more >