dendritic thermo-magnetic instability in superconductors daniel v. shantsev amcs group, department...

21
Dendritic Thermo-magnetic Instability in Superconductors Daniel V. Shantsev AMCS group, Department of Physics, UiO Collaboration: D. V. Denisov, A.A.F.Olsen, Y. M. Galperin, T. H. Johansen, UiO A. L. Rakhmanov, Inst. Th&Appl. Electrodyn., Moscow, Russia A. V. Bobyl, A. F. Ioffe Institute, St. Petersburg, Russia S.-I.Lee, Pohang University, Korea Supported by FUNMAT@UiO since July 2003

Upload: scott-banks

Post on 05-Jan-2016

223 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Dendritic Thermo-magnetic Instability in Superconductors Daniel V. Shantsev AMCS group, Department of Physics, UiO Collaboration: D. V. Denisov, A.A.F.Olsen,

Dendritic Thermo-magnetic Instability in Superconductors

Daniel V. Shantsev

AMCS group, Department of Physics, UiO

Collaboration: D. V. Denisov, A.A.F.Olsen, Y. M. Galperin, T. H. Johansen, UiOA. L. Rakhmanov, Inst. Th&Appl. Electrodyn., Moscow, RussiaA. V. Bobyl, A. F. Ioffe Institute, St. Petersburg, RussiaS.-I.Lee, Pohang University, Korea

Supported by FUNMAT@UiO since July 2003

Page 2: Dendritic Thermo-magnetic Instability in Superconductors Daniel V. Shantsev AMCS group, Department of Physics, UiO Collaboration: D. V. Denisov, A.A.F.Olsen,

Linearlypolarized light

Faraday-active crystal

Magnetic fieldH

(H)F

P

A

image

mirrorMO indicator

SN

largesmall small

F

Magneto-Optical Imaging

MO-crystal

MO image of UiO magnetic card

MO image of UiO magnetic card

Page 3: Dendritic Thermo-magnetic Instability in Superconductors Daniel V. Shantsev AMCS group, Department of Physics, UiO Collaboration: D. V. Denisov, A.A.F.Olsen,

Vortex lattice

(uniform B)

Type-II, intermediate H

Meissner effect(B=0)

• Type-I• Type-II, small H

Page 4: Dendritic Thermo-magnetic Instability in Superconductors Daniel V. Shantsev AMCS group, Department of Physics, UiO Collaboration: D. V. Denisov, A.A.F.Olsen,

Vortex pinningVortex pinning

B dA = h/2e = 0 Flux quantum:

Å

J

B(r)

normal core

Ba

J

f

Vortices get pinned by tiny defects (inhomogeneities)that create a sort of friction

=> vortices cannot be moved easily

Page 5: Dendritic Thermo-magnetic Instability in Superconductors Daniel V. Shantsev AMCS group, Department of Physics, UiO Collaboration: D. V. Denisov, A.A.F.Olsen,

Critical state

Vortices :• enter superconductor from the edge where B=Ba

• get pinned and cannot penetrate much further

=> Flux density gradient (critical state)

Page 6: Dendritic Thermo-magnetic Instability in Superconductors Daniel V. Shantsev AMCS group, Department of Physics, UiO Collaboration: D. V. Denisov, A.A.F.Olsen,

Sand pile and Vortex pile areMetastable states

Page 7: Dendritic Thermo-magnetic Instability in Superconductors Daniel V. Shantsev AMCS group, Department of Physics, UiO Collaboration: D. V. Denisov, A.A.F.Olsen,

Metastable statesare subject to avalanches

Page 8: Dendritic Thermo-magnetic Instability in Superconductors Daniel V. Shantsev AMCS group, Department of Physics, UiO Collaboration: D. V. Denisov, A.A.F.Olsen,

current

velocity

E ~ dB/dt Vortex motiondissipates energy,

J*E

Local TemperatureIncreases

+kT

It is easier for vortices to overcome pinning barriers

Vortices movefaster

positivefeedback

Page 9: Dendritic Thermo-magnetic Instability in Superconductors Daniel V. Shantsev AMCS group, Department of Physics, UiO Collaboration: D. V. Denisov, A.A.F.Olsen,

Dendritic flux avalanches

Zhao et al, PRB 2002

MgB2 new superconductor (Jan 2001), Tc=39K

Magneto-optical movie(Mar 2001)

MgB2 film

How to explain noisy M(H) curve ???

Samples: S.-I. Lee, Pohang Univ, Korea

dendrite velocity10-100 km/s

Page 10: Dendritic Thermo-magnetic Instability in Superconductors Daniel V. Shantsev AMCS group, Department of Physics, UiO Collaboration: D. V. Denisov, A.A.F.Olsen,

T = 10 K

remanent state

T-dependent topologyT-dependent topology

T = 4 K

Europhys. Lett. 59, 599-605 (2002)

Page 11: Dendritic Thermo-magnetic Instability in Superconductors Daniel V. Shantsev AMCS group, Department of Physics, UiO Collaboration: D. V. Denisov, A.A.F.Olsen,

D=1.05

D=1.35

D=1.65

D=1.75

temperature

Tthresh ~ 10K

Fractal dimensionFractal dimensionof the dendritesof the dendrites

Appl.Phys.Lett. 87, 042502 (2005)

Page 12: Dendritic Thermo-magnetic Instability in Superconductors Daniel V. Shantsev AMCS group, Department of Physics, UiO Collaboration: D. V. Denisov, A.A.F.Olsen,

Dendrites avoid crossingDendrites avoid crossing

BEFORE AFTER

Supercond. Sci. Technol. 14, 726 (2001)

Page 13: Dendritic Thermo-magnetic Instability in Superconductors Daniel V. Shantsev AMCS group, Department of Physics, UiO Collaboration: D. V. Denisov, A.A.F.Olsen,

MO indicator

MgB2 film

Al-foil (10 micron)

Suppression of Suppression of the dendritic the dendritic

instability by a metal instability by a metal filmfilm

Physica C 369, 93 (2002)

Appl.Phys.Lett. 87, 152501 (2005)

Page 14: Dendritic Thermo-magnetic Instability in Superconductors Daniel V. Shantsev AMCS group, Department of Physics, UiO Collaboration: D. V. Denisov, A.A.F.Olsen,

0 100 200 300 400 500 600

0

5

10

15

20

25

30

35

40

45

50

55

60

H

G

F

E

D

C

B

Flu

x d

en

sit

y (

mT

)

Distance (m)

Flux density at the dendrite core is Bmax 12 mT

• Bmax remains the same for all branches of the same dendrite, and along every particular branch.

• Bmax does not depend on Ba , at least for Ba = 2 - 8 mT

• Bmax also gives the peak field at the film edge

Flux density profiles across the dendritic Flux density profiles across the dendritic branchesbranches

Phys.Rev.B 67, 064513 (2003)

Page 15: Dendritic Thermo-magnetic Instability in Superconductors Daniel V. Shantsev AMCS group, Department of Physics, UiO Collaboration: D. V. Denisov, A.A.F.Olsen,

3 identical experiments: field ramp from 0 to 13.6 mT for 10 sec

the nucleation place: well reproducedthe exact flux pattern: never reproduced

Irreproducibility

Page 16: Dendritic Thermo-magnetic Instability in Superconductors Daniel V. Shantsev AMCS group, Department of Physics, UiO Collaboration: D. V. Denisov, A.A.F.Olsen,

Dendritic patterns in various MgB2 films and other materials

Screen printing, Al2O3 substrate3000 nm, Tc=35KG. Gritzner, Univ. of Linz, Austria

Pulse Laser Deposition on 1102 Al2O3 substrate400nm, Tc=39KS.I. Lee, Pohang Univ., Korea

PLD, SrTiO3 substrate,250nm, Tc=28KS.X. Dou, Wollongong, Australia

NbN

Nb3Sn

Supercond. Sci. Technol. 18, 1391 (2005)

Supercond. Sci. Technol. 17, 764 (2004)

Cryogenics 43, 663 (2003)

Appl.Phys.Lett. 87, 042502 (2005)

Page 17: Dendritic Thermo-magnetic Instability in Superconductors Daniel V. Shantsev AMCS group, Department of Physics, UiO Collaboration: D. V. Denisov, A.A.F.Olsen,

Nb:

C.A. Duran et al. PRB 52, 75 (1995)

YBaCuO, induced by laser

P. Leiderer et al. PRL (1993)

Dendritic patterns in other materials

Pb:

Menghini et al, PRB 2005

YNi2B2C

Wimbush et al. JAP 2004

Page 18: Dendritic Thermo-magnetic Instability in Superconductors Daniel V. Shantsev AMCS group, Department of Physics, UiO Collaboration: D. V. Denisov, A.A.F.Olsen,

Theory

Why does instability develop into dendritic pattern ?

Under what conditions does the dendritic instability occur ?

Page 19: Dendritic Thermo-magnetic Instability in Superconductors Daniel V. Shantsev AMCS group, Department of Physics, UiO Collaboration: D. V. Denisov, A.A.F.Olsen,

x

y

z

Ba

B

j

2w>>d

d

Stability analysis for a thin film

Non-local electrodynamics:

Heat removal into the substrate:

Thermal diffusion + Maxwell

Linear Analysis

Page 20: Dendritic Thermo-magnetic Instability in Superconductors Daniel V. Shantsev AMCS group, Department of Physics, UiO Collaboration: D. V. Denisov, A.A.F.Olsen,

H(E) stability diagram

Dendriticjumps

0

ky

Re

Phys. Rev. B 70, 224502 (2004) Phys. Rev. B 73, 014512 (2006) Phys. Rev. B 72, 024541 (2005)

Page 21: Dendritic Thermo-magnetic Instability in Superconductors Daniel V. Shantsev AMCS group, Department of Physics, UiO Collaboration: D. V. Denisov, A.A.F.Olsen,

Comparison with experiments

Curves – theory, Symbols – experiment

MD Simulations