(define applicative- eval (lambda (exp)

23
(define applicative-eval (lambda (exp) (cond ((atomic? exp) (eval-atomic exp)) ((special-form? exp) (eval-special-form exp)) ((list-form? exp) (eval-list exp)) ((value? exp) exp) ((application? exp) (let ((renamed-exp (rename exp))) ; <- arguments are renamed (apply-procedure ; <- last, the operator is applied (applicative-eval (operator renamed-exp)) ; <- first, the operator is evaluated (list-of-values (operands renamed-exp))))) ; <- then, the arguments are evaluated (else (error "Unknown expression type -- APPLICATIVE-EVAL" exp))))) applicative-eval (substitution-core.scm) 1

Upload: oprah

Post on 22-Feb-2016

63 views

Category:

Documents


0 download

DESCRIPTION

applicative- eval (substitution-core.scm). (define applicative- eval (lambda (exp) ( cond ((atomic? exp) ( eval -atomic exp)) ((special-form? exp) ( eval -special-form exp)) ((list-form? exp) ( eval -list exp)) - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: (define applicative- eval        (lambda (exp)

1

(define applicative-eval (lambda (exp) (cond ((atomic? exp) (eval-atomic exp)) ((special-form? exp) (eval-special-form exp)) ((list-form? exp) (eval-list exp)) ((value? exp) exp) ((application? exp) (let ((renamed-exp (rename exp))) ; <- arguments are renamed (apply-procedure ; <- last, the operator is applied (applicative-eval (operator renamed-exp)) ; <- first, the operator is evaluated (list-of-values (operands renamed-exp))))) ; <- then, the arguments are evaluated (else (error "Unknown expression type -- APPLICATIVE-EVAL" exp)))))

applicative-eval (substitution-core.scm)

Page 2: (define applicative- eval        (lambda (exp)

2

Some examples

> (applicative-eval 4)((atomic? exp) (eval-atomic exp))

> (applicative-eval '(list 1 2))((atomic? exp) (eval-atomic exp))((special-form? exp) (eval-special-form exp))((list-form? exp) (eval-list exp))

((atomic? exp) (eval-atomic exp))

(define list-form? (lambda (exp) (or (tagged-list? exp ‘cons) (tagged-list? exp ‘list) (tagged-list? exp ‘append))))

(define eval-list (lambda (lst) (make-list (apply-primitive-procedure

(applicative-eval (operator lst)) (list-of-values (operands lst)))))

(define eval-atomic (lambda (exp) (if (not (variable? exp)) exp (look-up-variable-value exp))

ASP.scm:

Substitution-core.scm:

Substitution-core.scm:

Page 3: (define applicative- eval        (lambda (exp)

3

> (applicative-eval '(lambda (x y) (+ x y 10)));

((atomic? exp) (eval-atomic exp))((special-form? exp) (eval-special-form exp))

(define eval-lambda (lambda (exp) (make-procedure (lambda-parameters exp) (lambda-body exp))))

(define lambda? (lambda (exp) (tagged-list? exp 'lambda) ))

Substitution-core.scm:

(define eval-special-form (lambda (exp) (cond ((quoted? exp) (make-symbol exp)) ((lambda? exp) (eval-lambda exp)) …

(define special-form? (lambda (exp) (or (quoted? exp) (lambda? exp) (definition? exp) (if? exp) (begin? exp))))

ASP.scm:

ASP.scm:

Substitution-core.scm:

Page 4: (define applicative- eval        (lambda (exp)

4

((application? exp) (let ((renamed-exp (rename exp))) ; <- arguments are renamed (apply-procedure ; <- last, the operator is applied (applicative-eval (operator renamed-exp)) ; <- first, the operator is evaluated (list-of-values (operands renamed-exp))))) ; <- then, the arguments are evaluated

Examine the following cond clause of applicative-eval:

1.What changes are required for normal-order evaluation?

Operands must not be evaluated.

2.What does ‘apply-procedure’ do?

Page 5: (define applicative- eval        (lambda (exp)

5

(define apply-procedure (lambda (procedure arguments) (cond ((primitive-procedure? procedure)

(apply-primitive-procedure procedure arguments)) ((compound-procedure? procedure) (let ((body (rename (procedure-body procedure))) (parameters (procedure-parameters procedure))) (eval-sequence (substitute body parameters arguments)))) (else (error "Unknown procedure type -- APPLY" procedure)))))

Examine the following cond clause of applicative-eval:

What changes are required above for normal-order evaluation?We must remember that the arguments to apply primitive procedure might not be evaluated. We must evaluate them since“There is no choice”.

(list-of-values arguments)

Page 6: (define applicative- eval        (lambda (exp)

6

ASP- Abstract Syntax Parser

ASP

Derived expressions

Core

Special forms

Data Structures(+GE)

• A “tool“ for handling expressions in the supported language.

• The ASP includes ADTs for every expression: Each includes a constructor, selectors (to extract the components of an expression) and a predicate (to identify the kind of an expression).

• Provides an abstraction barrier between concrete syntax and operational semantics (we can change the concrete syntax and this will not affect the API of the parser, only the implementation. On the other hand, we can change the implementation without affecting the syntax)

Page 7: (define applicative- eval        (lambda (exp)

7

Some ASP procedures

(define tagged-list? (lambda (x tag) (and (list? x) (eq? (get-tag x) tag))))

< (define exp '(lambda (x y) (+ x y 10)))< (tagged-list? exp ‘define) # F< (tagged-list? exp ‘lambda)# T

(define lambda? (lambda (exp) (tagged-list? exp 'lambda) ))

(define lambda-parameters (lambda (exp) (car (get-content exp))))

(define lambda-body (lambda (exp) (cdr (get-content exp))))

(define make-lambda (lambda (parameters body) (attach-tag (cons parameters body) 'lambda)))

The ADT implemented in the ASPfor lambda expressions

Page 8: (define applicative- eval        (lambda (exp)

8

Example: supporting case expressions

(define fib (lambda (n) (case n (0 0) (1 1) (else …

Abstract syntax:

<CASE>: Components: Control expression: <EXP> Clause: <CASE_CLAUSE>. Amount>=0. ordered Else-clause: <ELSE_CLAUSE>

<CASE>: Components: Compared expression: <EXP> Action expression: <EXP>. Amount>=1. ordered

Concrete syntax:

<CASE> (case <EXP> <CASE_CLAUSE>* <ELSE_CLAUSE>)<CASE_CLAUSE> (<EXP> <EXP-SEQUENCE>)

Page 9: (define applicative- eval        (lambda (exp)

9

; Case(define case? (lambda (exp) (tagged-list? exp 'case)))

; A constructor for case-clauses:(define make-case-clause (lambda (compared actions) (cons compared actions)))

Adding the required ADT procedures to the ASP

Example: supporting case expressions

; A constructor for case(define make-case (lambda (control case-clauses) (attach-tag (cons control case-clauses) 'case)))

(define case-control cadr)

(define case-clauses cddr)

(define case-compared car)

(define case-actions cdr)

(define case-first-clause (lambda (clauses) (car clauses)))

(define case-rest-clauses (lambda (clauses) (cdr clauses)))

(define case-last-clause? (lambda (clauses) (and (null? (cdr clauses)) (eq? (case-compared (case-first-clause clauses)) 'else))))

Page 10: (define applicative- eval        (lambda (exp)

10

Using the ADT we can build a case expression!

Example: supporting case expression

> (make-case 'n (list (make-case-clause '0 '(0)) (make-case-clause '1 '(1)) (make-case-clause 'else '( (display 'processing…) (newline) (+ (fib (- n 1)) (fib (– n 2)))))))

Are there any other changes required?... We can identify a case expression, extract its components and build such an expression. But how to we evaluate a case expression?

Page 11: (define applicative- eval        (lambda (exp)

11

Supporting the evaluation of a case expression

Example: supporting case expression

Is it a compound expression (e0 … en)?Is it a special form?Is it an airplane?

(define eval-special-form (lambda (exp) (cond ((quoted? exp) (make-symbol exp)) ((lambda? exp) (eval-lambda exp)) … ((case? exp) (eval-case exp)) … )

(define special-form? (lambda (exp) (or (quoted? exp) (lambda? exp) (definition? exp) (if? exp) (begin? exp) (case? exp))))

Page 12: (define applicative- eval        (lambda (exp)

12

Evaluation of a case expression

Example: supporting case expression

Determining the evaluation rule for a case expression:

1. Evaluate the control component

2. Compare its value to each of the compared

components by order (we assume numerical values).

3. Find the first clause (if exists) of which the compared

value equals the control value. Evaluate each of the

actions of this clause.

4. If no such clause exists, evaluate the actions included in

the else-clause by order.

(define fib (lambda (n) (case n (0 0) (1 1) (else …

Page 13: (define applicative- eval        (lambda (exp)

13

Evaluation of a case expression

Example: supporting case expression

(define (eval-case exp) (letrec ((eval-clauses

(lambda (control clauses)(cond ((null? clauses) 'unspecified) ((or (case-last-clause? clauses) (= (applicative-eval (case-compared (case-first-clause clauses)))

control)) (eval-sequence (case-actions (case-first-clause clauses)))) (else (eval-clauses control (case-rest-clauses clauses)))))))

(eval-clauses (applicative-eval (case-control exp)) (case-clauses exp))))

Page 14: (define applicative- eval        (lambda (exp)

14

Data Structures

This package of the interpreter implements all the data structures needed

by the supported language. For example, the global environment.

• (lookup-variable-value-var) returns the value of a given variable

bound in the global environment.

• (make-binding var val) creates a binding (ADT) of var to val.

• (add-binding! binding) adds a given binding to the GE.

ASP

Derived expression

s

Core

Special forms

Data Structures

(+GE)Symbol table of the supporting language

The-Global-Environment(A variable in the supporting language, used for “our” evaluator implementation)

Page 15: (define applicative- eval        (lambda (exp)

15

Testing the evaluator(define apply-test-list

(lambda (eval-proc lst)(letrec ((apply-test-list$ (lambda (lst fail) (if (null? lst) 'ok

(let ((tuple (car lst))) (let ((res (eval-proc (car tuple)))

(expected-res (cadr tuple))) (if (not (equal? res expected-res)) (fail (append tuple (list res))) (apply-test-list$ (cdr lst) fail))))))))

(apply-test-list$ lst error))))

eval-proc: The evaluation procedure to be tested

lst: A list of pairs: (<expression>, <expected value>)

If the evaluation of an <expression> is different than the <expected value>,The computation is stopped. This is possible thanks to CPS.

Example lst input: ( ((if (> 3 2) 5 1) 5) ((if (< 3 2) 5 1) 1) ((if (> (+ 1 2) 2) (+ 1 2 3) 1) 6) ((define (f n) (if (= n 0) 1 (* n (f (- n 1))))) ok) ((f 5) 120) )

Page 16: (define applicative- eval        (lambda (exp)

16

The environment model

A computational model different than the substitution model.

• Expressions are evaluated with respect to a certain environment.

• Saves substitution (of formal parameters by argument) and renaming.

Definitions:• Frame: A mapping between variables and values. Every bound variable in a frame is

given one (and only one) value.

• Environment: A finite sequence of Frames (f1,f2,…,fn). The last frame is the Global

Environment, the only frame to statically exist.

x:3y:5

I

z:6x:7

II n:1y:2

III

Env A: (II,I)

Env B: (III,I)

Env C: (I)

Page 17: (define applicative- eval        (lambda (exp)

17

The environment model

Definitions:• The value of x (a variable) in e (an environment): is the value of x in the first frame of

e where it is bound to a value.

For example: The value of y in B is 2, the value of y in A is 5. z is unbound in B.

• A procedure in the environment model: is a pair (a closure) of which the first element

stores the procedure parameters and body and the second element stores a “pointer”

to the environment where the procedure was declared.

For example: the variable square is bound to the procedure define in the GE.

x:3y:5

I

z:6x:7

II n:1y:2

III

Env A: (II,I)

Env B: (III,I)

Env C: (I)GE

square:

P:(x)

B:(* x x)

(define (square x) (* x x))

Page 18: (define applicative- eval        (lambda (exp)

18

The environment model

Procedure application in the GE:

Let f be a procedure with formal parameters (x1 … xn). When applying f to v1 … vn:

• Create a new frame binding the variables x1 … xn to the values v1 … vn respectively.

• This new frame extends the environment E in which f was declared.

This is noted in a diagram by a pointer from the new frame to E.

• E is stored within the closure data structure that was created by evaluating f.

• Evaluate the body of f with respect to the extended environment.

E1

(* x x)

GE

square:

P:(x)

B:(* x x)

x:5

(define (square x)(* x x))(square 5)

Page 19: (define applicative- eval        (lambda (exp)

19

Example (1)

(define sq (lambda (x) (* x x)))

(define sum-of-squares  (lambda (x y) (+ (sq x) (sq y))))

(define f  (lambda (a)   (sum-of-squares (+ a 1) (* a 2))))

GE

sq:

sum-of-squares:

f:

P:(x)B:(* x x)

P:(x y)B:(+ (sq x) (sq y))

P:(a)B:(sum-of-squares (+ a 1) (* a 2))

Page 20: (define applicative- eval        (lambda (exp)

20

Example (1)

> (f 5)

GE

sq:

sum-of-squares:

f:

P:(x)B1:(* x x)

P:(x y)B2:(+ (sq x) (sq y))

P:(a)B3:(sum-of-squares (+ a 1) (* a 2))E1

(sum-of-…)

a:5B3

E2

(+ (sq x) (sq y))

x:6y:10

B2

E3

(* x x)

x:6B1

E4

(* x x)

x:10

B1

Page 21: (define applicative- eval        (lambda (exp)

21

Example (2)

> (define a 8) > (define b 5) > (define c a) > (define f (lambda (x y) (+ x y))) > (f a c)

a: 8

b: 5

c: 8

f:

Parameters: (x y)Body: (+ x y)

x: 8y: 8

E1

(+ x y)

Page 22: (define applicative- eval        (lambda (exp)

22

Example (2)> (define p (lambda (a b c)

(let ((d (+ a b)) (e (* a b)) (f e d))))

> (p a b 3)

a: 8

b: 5

c: 8

f:

p:

Parameters: (x y)Body: (+ x y)

Parameters: (a b c)Body: (let…)

a: 8b: 5c: 3

E1

(let)…Parameters: (d e)Body: (f e d)

d: 13e: 40

E2

(f e d)

E3d: 13e: 40(+ x y)

Page 23: (define applicative- eval        (lambda (exp)

23

Example (3)

> (define fact (lambda (n)(if (= n 0) 1 (* n (fact (- n 1))))))

B1

B1

B1

B1

E1

GEfact:

P:(n)B:(if…)

(if …)n:3

E2

(if …)n:2

E3

(if …)n:1

E4

(if …)n:0