deep feedforward generative models - github...

56
Deep Feedforward Generative Models Ming-Yu Liu, NVIDIA 1

Upload: lytruc

Post on 10-Mar-2018

224 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Deep Feedforward Generative Models

Ming-Yu Liu, NVIDIA

1

Page 2: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Deep Feedforward Generative Models

• A generative model is a model for randomly generating data.

• Many deep learning-based generative models exist including Restrictive Boltzmann Machine (RBM), Deep Boltzmann Machines (DBM), Deep Belief Networks (DBN) ….

• We will focus on deep feedforward generative models.

• We will focus on models that maps a random sample z from a parametric probability distribution to an image 𝑥.

• Variational Autoencoders (Kingma and Welling 2014)

• Generative Adversarial Networks (Goodfellow et al 2014)

2

Page 3: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Comparison

3

Deep Feedforward Discriminative

Network

Formosan Mountain Dog

Husky

Persian cat

Deep Feedforward Generative

Network

Page 4: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Comparison

Model Input Output Operation

Deep Feedforward Discriminative Networks

• Image• High-dimensional

• A probabilitydistribution of class labels

• Low-dimensional

• “Compression”• Many down-

sampling operations

Deep Feedforward Generative Networks

• Random sample from a parametric probabilistic distribution

• Low-dimensional

• A probability distribution of images

• High-dimensional

• “Decompression”• Many up-

samplingoperations

4

Page 5: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Manifold Hypothesis

• Structured high-dimensional data (images) live in a low-dimensional manifold.

5Image credit Goodfellow et al 2016

Page 6: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Autoencoder

6

Decoder Network: 𝑓𝜃𝑑𝑒𝑐 𝑧𝑖Encoder Network: 𝑓𝜃

𝑒𝑛𝑐 𝑥𝑖

Learning is usually done by solving m𝑖𝑛𝜃

σ𝑥𝑖∈𝐷𝑓𝜃 𝑥𝑖 − 𝑥𝑖 2

2

where 𝑓𝜃 𝑥𝑖 = 𝑓𝜃𝑑𝑒𝑐(𝑓𝜃

𝑒𝑛𝑐 𝑥𝑖 )

Latent representation: 𝑧𝑖

Page 7: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Remarks on Autoencoder

• One of the architectures that led to the renaissances of neural networks in 2007.

• In order to avoid learning a trivial identify function, the input sample is noise corrupted. Denoising Autoencoder (Vincent et al 2010)

• The hierarchical representation learned in the encoder can be used as a feature extractor for a supervised learning task.

• However, difficult to sample from the latent space.

• Poor generalization: the decoder often just remember the input samples.

7

Page 8: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Variational Autoencoder

• Put a constraint on the latent space to make sampling easier.

• Constraint the encoder to output a conditional Gaussian distribution for an input sample 𝑥𝑖

𝑓𝜃𝑒𝑛𝑐 𝑥𝑖 = 𝑞𝜃 𝑧 𝑥𝑖 = 𝒩 𝑧 𝜇𝜃 𝑥𝑖 , 𝐼

• The decoder reconstructs the input from a random sample from the conditional distribution 𝑧𝑖~𝑞𝜃 𝑧 𝑥𝑖

𝑓𝜃𝑑𝑒𝑐 𝑧𝑖 = 𝑝𝜃(𝑥𝑖|𝑧𝑖~𝑞𝜃 𝑧 𝑥𝑖 )

• Train the encoder to output a zero mean Gaussian distribution and the decoder to reconstruct the input.

min𝜃

𝑥𝑖∈𝐷

𝐷𝐾𝐿(𝒩(𝑧|𝜇𝜃 𝑥𝑖 , 𝐼) ||𝒩 𝑧 0, 𝐼 ) + 𝐸𝑧𝑖~𝑞𝜃 𝑧 𝑥𝑖1

2𝑓𝜃𝑑𝑒𝑐 𝑧𝑖 − 𝑥𝑖

2

2

8

Page 9: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Variational Lower Bound𝐿 𝜃 𝐷 =

𝑥𝑖∈𝐷

log(𝑝𝜃 𝑥 )

=

𝑥𝑖∈𝐷

𝑧

𝑞𝜃(𝑧|𝑥)log(𝑝𝜃 𝑥 )

=

𝑥𝑖∈𝐷

𝑧

𝑞𝜃(𝑧|𝑥)log(𝑝𝜃(𝑧, 𝑥)

𝑝𝜃(𝑧|𝑥))

=

𝑥𝑖∈𝐷

𝑧

𝑞𝜃(𝑧|𝑥)log(𝑝𝜃(𝑧, 𝑥)

𝑞𝜃(𝑧|𝑥)

𝑞𝜃(𝑧|𝑥)

𝑝𝜃(𝑧|𝑥))

=

𝑥𝑖∈𝐷

𝑧

𝑞𝜃 𝑧 𝑥 log𝑝𝜃 𝑧, 𝑥

𝑞𝜃 𝑧 𝑥+

𝑧

𝑞𝜃 𝑧 𝑥 log 𝑞𝜃 𝑧 𝑥 log𝑞𝜃(𝑧|𝑥)

𝑝𝜃(𝑧|𝑥)

= 𝐿𝑉 𝜃 𝐷 +

𝑥𝑖∈𝐷

𝐷𝐾𝐿(𝑞𝜃(𝑧|𝑥)||𝑝𝜃(𝑧|𝑥))

≥ 𝐿𝑉 𝜃 𝐷

9

𝐿𝑉 𝜃 𝐷 is the variational lower bound of the log-likelihood function 𝐿 𝜃 𝐷 .

Page 10: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Maximize the Variational Lower Bound

𝐿𝑉 𝜃 𝐷 =

𝑥𝑖∈𝐷

𝑧

𝑞𝜃 𝑧 𝑥 log𝑝𝜃 𝑧, 𝑥

𝑞𝜃 𝑧 𝑥

=

𝑥𝑖∈𝐷

𝑧

𝑞𝜃 𝑧 𝑥 log𝑝𝜃 𝑥|𝑧 𝑝(𝑧)

𝑞𝜃 𝑧 𝑥

=

𝑥𝑖∈𝐷

𝑧

𝑞𝜃 𝑧 𝑥 log𝑝(𝑧)

𝑞𝜃 𝑧 𝑥+

𝑧

𝑞𝜃 𝑧 𝑥 log 𝑝𝜃 𝑥|𝑧

=

𝑥𝑖∈𝐷

−𝐷𝐾𝐿(𝑞𝜃 𝑧 𝑥 ||𝑝(𝑧)) + 𝐸𝑧𝑖~𝑞𝜃 𝑧 𝑥𝑖 [log 𝑝𝜃 𝑥|𝑧𝑖 ]

10

max𝜃

𝐿𝑉 𝜃 𝐷 ⟺ min𝜃

𝑥𝑖∈𝐷

𝐷𝐾𝐿(𝒩(𝑧|𝜇𝜃 𝑥𝑖 , 𝐼) ||𝒩 𝑧 0, 𝐼 ) + 𝐸𝑧𝑖~𝑞𝜃 𝑧 𝑥𝑖1

2𝑓𝜃𝑑𝑒𝑐 𝑧𝑖 − 𝑥𝑖

2

2

Regularization Reconstruction

Page 11: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Implementation of VAE• 𝐷𝐾𝐿(𝒩(𝑧|𝜇𝜃 𝑥𝑖 , 𝐼) | 𝒩 𝑧 0, 𝐼 =

1

2σ𝑑(𝜇𝑑,𝜃 𝑥𝑖 )

2

• Sample approximation 𝐸𝑧𝑖~𝑞𝜃 𝑧 𝑥𝑖 log 𝑝𝜃 𝑥|𝑧𝑖 ≈1

𝐿σ𝑙=1𝐿 1

2𝑓𝜃𝑑𝑒𝑐 𝑧𝑖

𝑙− 𝑥𝑖

2

2

where 𝑧𝑖𝑙= 𝑞𝜃 𝑧 𝑥𝑖 + 𝜀(𝑙) and 𝜀(𝑙)~𝒩(0, 𝐼)

11Encoder Network: 𝑓𝜃𝑒𝑛𝑐 𝑥𝑖 Decoder Network: 𝑓𝜃

𝑑𝑒𝑐 𝑧𝑖

+

+

𝜀2

𝜀1

Page 12: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Conditional Variational Autoencoder

12

+

+

𝜀2

𝜀1

Code or attributes

Kingma et al. “Semi-supervised learning with deep generative models.” NIPS 2014

Page 13: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Attribute2Image

13Yan et al “Attribute2Image: Conditional Image Generation from Visual Attribute” ECCV 2016

Page 14: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Drawback of VAE

• Euclidean loss is not a good perceptual loss.

• Regress to the mean and render blurry images

• Difficult to hand-craft a good perceptual loss function.

• Why not learn one?

14

50 100 150 2000

5

10x 10

4

Translation

Eu

clid

ea

n L

oss

Reference

The blue curve plots the Euclidean loss between a reference image and its translations. The red bar is the Euclidean loss between the reference image and a background image. The Euclidean loss suggests that the background image is more similar to the reference image.

in pixels

Page 15: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Generative Adversarial Networks• Forget about how to design an image similarity loss. Let use a deep feedforward

discriminative network to verify if a generated image is similar to a real image. (Goodfellowet al 2014)

15

Generator/Decoder Network: 𝑓𝜙𝑔𝑒𝑛

𝑧𝑖 Discriminator Network: 𝑓𝜑𝑑𝑖𝑠 𝑥𝑖

True or Fake image

Goodfellow et al “Generative Adversarial Networks” NIPS 2014

Page 16: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Generative Adversarial Networks• Generator: map a random sample from a Gaussian distribution to an image.

• Discriminator: Differentiate a generated image from a real image.

16

Generator/Decoder Network: 𝑓𝜙𝑔𝑒𝑛

𝑧𝑖 Discriminator Network: 𝑓𝜑𝑑𝑖𝑠 𝑥𝑖

True or Fake image

Page 17: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Generative Adversarial Networks• The generator and the discriminator is playing a zero-sum game.

• min𝜙

max𝜑

𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) log 𝑓𝜑𝑑𝑖𝑠 𝑥 +𝐸𝑧~𝑝𝑍(𝑧) log(1 − 𝑓𝜑

𝑑𝑖𝑠 𝑓𝜙𝑔𝑒𝑛

𝑧 )

17Image credit Goodfellow et al 2014

Page 18: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Generative Adversarial Networks• What does this optimization do?

• For a fixed generator 𝑓𝜙𝑔𝑒𝑛

𝑧 , the optimal discriminator is 𝑓𝜑𝑑𝑖𝑠 𝑥 =

𝑝𝑑𝑎𝑡𝑎(𝑥)

𝑝𝑑𝑎𝑡𝑎 𝑥 +𝑓𝜙𝑔𝑒𝑛

𝑧.

min𝜙

max𝜑

𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) log 𝑓𝜑𝑑𝑖𝑠 𝑥 +𝐸𝑧~𝑝𝑍(𝑧) log(1 − 𝑓𝜑

𝑑𝑖𝑠 𝑓𝜙𝑔𝑒𝑛

𝑧 )

= min𝜙

𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) log𝑝𝑑𝑎𝑡𝑎(𝑥)

𝑝𝑑𝑎𝑡𝑎 𝑥 +𝑓𝜙𝑔𝑒𝑛

𝑧+𝐸𝑧~𝑝𝑍(𝑧) log

𝑓𝜙𝑔𝑒𝑛

𝑧

𝑝𝑑𝑎𝑡𝑎 𝑥 +𝑓𝜙𝑔𝑒𝑛

𝑧

= min𝜙

𝐷𝐾𝐿(𝑝𝑑𝑎𝑡𝑎(𝑥)||𝑝𝑑𝑎𝑡𝑎 𝑥 +𝑓𝜙

𝑔𝑒𝑛𝑧

2)+𝐷𝐾𝐿(𝑓𝜙

𝑔𝑒𝑛𝑧 ||

𝑝𝑑𝑎𝑡𝑎 𝑥 +𝑓𝜙𝑔𝑒𝑛

𝑧

2) − log 4

= min𝜙𝐷𝐽𝑆(𝑝𝑑𝑎𝑡𝑎(𝑥)||𝑓𝜙

𝑔𝑒𝑛𝑧 ) − log(4)

18Jensen-Shannon Divergence

Page 19: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Generative Adversarial Network Training

• 𝑉 𝜑,𝜙 = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) log 𝑓𝜑𝑑𝑖𝑠 𝑥 +𝐸𝑧~𝑝𝑍(𝑧) log(1 − 𝑓𝜑

𝑑𝑖𝑠 𝑓𝜙𝑔𝑒𝑛

𝑧 )

• min𝜙

max𝜑

𝑉 𝜑,𝜙

• Alternating gradient descent

• Fix 𝜙 (generator), apply a stochastic gradient ascent step on 𝑉 𝜑,𝜙 .

• Fix 𝜑 (discriminator), apply a stochastic gradient descent step on 𝑉 𝜑,𝜙 .

19

Page 20: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Deep Convolutional Generative Adversarial Networks

20Radford et al. “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016

Page 21: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Deep Convolutional Generative Adversarial Networks

21Radford et al. “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016

Page 22: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Deep Convolutional Generative Adversarial Networks

22Radford et al. “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016

Page 23: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

InfoGAN: Interpretable Representation Learning byInformation Maximizing GAN

23Chen et al. “InfoGAN: Interpretable Representation Learning byInformation Maximizing Generative Adversarial Nets”, NIPS 2016

True or Fake image

In addition to the adversarial loss, InfoGAN also maximizes 𝐼(𝑐; 𝑓𝜙𝑔𝑒𝑛

𝑧, 𝑐 )

which is done by maximizing 𝐼(𝑐, 𝑓𝜑𝑑𝑖𝑠,𝑐 𝑥 ) ≤ 𝐼(𝑐; 𝑓𝜙

𝑔𝑒𝑛𝑧, 𝑐 )

(Check out the data processing lemma in information theory)𝑐

Page 24: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

InfoGAN: Interpretable Representation Learning byInformation Maximizing GAN

24Chen et al. “InfoGAN: Interpretable Representation Learning byInformation Maximizing Generative Adversarial Nets”, NIPS 2016

Page 25: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

InfoGAN: Interpretable Representation Learning byInformation Maximizing GAN

25Chen et al. “InfoGAN: Interpretable Representation Learning byInformation Maximizing Generative Adversarial Nets”, NIPS 2016

Page 26: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

VAE and GAN Comparison

26

Model Optimization Image Quality Generalization

VariationalAutoencoders (VAE)

• Stochastic gradient descent

• Converge to local minimum

• Easier

• Smooth• Blurry

• Tend to remember input images

GenerativeAdversarial Networks (GAN)

• Alternating stochastic gradient descent

• Converge to saddle points

• Harder

• Sharp• Artifact

• Generate new unseen images

Page 27: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

VAE/GAN Model

27Larsen et al. “Autoencoding beyond pixels using a learned similarity metric”, ICML 2016

VAEEncoder

VAEDecoder𝑥 𝑧 ො𝑥

GANGenerator𝑧

Weight-sharing

GANDiscriminator

ො𝑥

𝑥

GANDiscriminator

as Feature Extractor

𝑇𝑟𝑢𝑒

𝐹𝑎𝑙𝑠𝑒

𝑥

Weight-sharing

Style Loss

Content LossPrior Loss

𝑓(𝑥)

𝑓(ො𝑥)

Page 28: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

VAE/GAN Model

28Larsen et al. “Autoencoding beyond pixels using a learned similarity metric”, ICML 2016

Page 29: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

VAE/GAN Model

29Larsen et al. “Autoencoding beyond pixels using a learned similarity metric”, ICML 2016

Page 30: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Applications

• Image Superresolution

• Inpainting

• Image Editing

• Domain Adaptation

30

Page 31: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Application: Image Super-resolution

31Ledig et al, “Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network” arXiv 1609.0480

Minimize • Adversarial Loss• Content Loss• TV-norm

Page 32: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Application: Image Super-resolution

32

PSNR/SSIM

Ledig et al, “Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network” arXiv 1609.0480

Page 33: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Application: Image Super-resolution

33Ledig et al, “Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network” arXiv 1609.0480

Page 34: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Image Inpaiting

34Yeh et al, “Semantic Image Inpainting with Perceptual and Contextual Losses” arXiv 1607.07539

Let ҧ𝑥 be a corrupted images. By solving

We can get the inpainted image by

𝑥 = 𝑓𝜙𝑔𝑒𝑛

(𝑧∗)

𝑧∗ = argmin𝑧

log(1 − 𝑓𝜑𝑑𝑖𝑠(𝑓𝜙

𝑔𝑒𝑛𝑧 ) + 𝑀⨀𝑓𝜙

𝑔𝑒𝑛𝑧 − 𝑀⨀ ҧ𝑥

2

2

Inpainted images w/wo perceptual loss

Page 35: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Generative Visual Manipulation on the Natural Image Manifold

35Zhu et al, “Generative Visual Manipulation on the Natural Image Manifold” ECCV 2016

Page 36: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Generative Visual Manipulation on the Natural Image Manifold

36Zhu et al, “Generative Visual Manipulation on the Natural Image Manifold” ECCV 2016

Let 𝑥0 be an input image. Find the hidden code that the generator would use𝑧0 = argmin

𝑧𝐿(𝑥0, 𝐺(𝑧))

The user then made some edits. The edits are given as constraints. We then solve the optimization problem for find a new hidden code that resembles the original image while satisfying the constraints by solving

Perceptual loss

Page 37: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Generative Visual Manipulation on the Natural Image Manifold

37Zhu et al, “Generative Visual Manipulation on the Natural Image Manifold” ECCV 2016

Page 38: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Scene

Coupled Generative Adversarial Networks

• 𝑝(𝑋1, 𝑋2, … , 𝑋𝑁): where 𝑋𝑖 are images of the scene in different modalities.

• Ex. 𝑝(𝑋𝑐𝑜𝑙𝑜𝑟 , 𝑋𝑡ℎ𝑒𝑟𝑚𝑎𝑙 , 𝑋𝑑𝑒𝑝𝑡ℎ):

color image

depth image

near

far

thermal image

cool

hot

Image plane

Camera

Liu et al, “Coupled Generative Adversarial Networks” NIPS 2016

Learn joint distribution of multi-domain images without any corresponding images in the different domains.

38

Page 39: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Coupled Generative Adversarial Networks

• Define domain by attribute.

• Multi-domain images are views of an object with different attributes.

Non-smiling Smiling Young SeniorNon-beard Beard

summer winterimages Hand-drawings

Font#1 Font#2

Liu et al, “Coupled Generative Adversarial Networks” NIPS 201639

Page 40: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Coupled Generative Adversarial Networks

GAN1

𝐷1 : Dataset of training images in Domain 1

𝒙𝟏

GAN2

𝐷2 : Dataset of training images in Domain 2

𝒙𝟐

weight sharing weight sharing

Liu et al, “Coupled Generative Adversarial Networks” NIPS 201640

Page 41: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Liu et al, “Coupled Generative Adversarial Networks” NIPS 201641

Page 42: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Liu et al, “Coupled Generative Adversarial Networks” NIPS 201642

Page 43: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Liu et al, “Coupled Generative Adversarial Networks” NIPS 201643

Page 44: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

NYU

Liu et al, “Coupled Generative Adversarial Networks” NIPS 201644

Page 45: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Liu et al, “Coupled Generative Adversarial Networks” NIPS 201645

Page 46: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Liu et al, “Coupled Generative Adversarial Networks” NIPS 201646

Page 47: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Liu et al, “Coupled Generative Adversarial Networks” NIPS 201647

Page 48: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Liu et al, “Coupled Generative Adversarial Networks” NIPS 201648

Page 49: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Liu et al, “Coupled Generative Adversarial Networks” NIPS 201649

Page 50: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Liu et al, “Coupled Generative Adversarial Networks” NIPS 201650

Page 51: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Liu et al, “Coupled Generative Adversarial Networks” NIPS 201651

Page 52: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Liu et al, “Coupled Generative Adversarial Networks” NIPS 201652

Page 53: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Liu et al, “Coupled Generative Adversarial Networks” NIPS 201653

Page 54: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Application: Unsupervised Domain Adaptation

GAN1

𝐷1 : Dataset of training images in Domain 1

(𝒙𝟏, 𝑦)

GAN2

𝐷2 : Dataset of training images in Domain 2

𝒙𝟐

weight sharing weight sharing

Class label

Page 55: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Unsupervised Domain Adaptation

Liu et al, “Coupled Generative Adversarial Networks” NIPS 201655

Page 56: Deep Feedforward Generative Models - GitHub Pagesaliensunmin.github.io/project/accv16tutorial/media/generative.pdf · •We will focus on deep feedforward generative models. ... perceptual

Conclusions

• We discussed two popular deep generative models• Variational Autoencoders

• Generative Adversarial Networks

• We discussed their pros and cons and how to take the best from both.

• We discussed several computer vision applications of these models.

• Many other applications and interesting properties of these deep generative models are waiting for your exploration.

56