dbd discharge process for voc depollution of gases through ... · 3. fundamental knowledge on...

39
DBD discharge process for VOC depollution of gases through radical mechanisms and polymerization - Industrial scale-up development . S. Dresvin (2) , J. Amouroux (1) , And the scientific team : S. Ognier (1) , L. Martin (1) , E. Gasthauer (3) , S. Zverev (2) A.Vargauzun (2) , A. Kruchinin (2) Industrial development: M. Maze (3) , P. Rousseau (3) (1) LGPPTS / UPMC / ENSCP (2) Polytechnic University of St-Petersburg (3) Centre de Recherche Eurovia Management St-Petersburg 20012

Upload: trankhanh

Post on 09-Mar-2019

213 views

Category:

Documents


0 download

TRANSCRIPT

DBD discharge process for VOC depollution of

gases through radical mechanisms and

polymerization -

Industrial scale-up development .

S. Dresvin(2) , J. Amouroux(1),

And the scientific team : S. Ognier(1), L. Martin(1), E. Gasthauer (3), S. Zverev(2)

A.Vargauzun (2), A. Kruchinin (2)

Industrial development: M. Maze(3), P. Rousseau(3)

(1) LGPPTS / UPMC / ENSCP

(2) Polytechnic University of St-Petersburg

(3) Centre de Recherche Eurovia Management St-Petersburg 20012

Outline

1. General aspects of european regulations on VOC

2. Industrial processes for gas depollution and energy consumption

3. Fundamental knowledge on toluene depollution by an experimental DBD discharge

3.1. Set-up

3.2. Analytic control by GC-MS and mechanisms

3.3. Competition mechanisms between oxygen species

3.4. Competition mechanisms between carbon ring

4. Industrial scale-up and first results/ Eurovia company

[Patent n° 24/12/2004 PCT/FR 2004/ 003382]

5. Conclusion

What’s a volatile organic compound?

• Ethane (30):

• 1-butene (56):

• Isoprene (68):

• Ethylbenzene (106):

• Ethylene (28):

• trans-2-Butene (56):

• n-Hexane (86):

• o-m-p-Xylene (106):

• Acetylene (26):

• cis-2-Butene(56):

• Propene (42):

• n-Pentane (72):

• n-Octane (114):

• 1,2,3- Trimethylbenzene (120):

• n-Butane (58):

• i-Pentane (72):

• i-Octane (114):

•1,3,5- Trimethylbenzene (120):

• i-Butane (58):

• 1,2,4-Trimethylbenzene (120):

•1-Pentene (70):

• Benzene (78):

• Formaldehyde (30):

• 2-Pentene (70):

• Toluene (92):

• i-Hexane (86):

• Propane (44):

• 1,3-Butadiene (54):

• n-Heptane (100):

CH3

CH3

O

VOCs listed by the European Union (Directive 2002/3/CE)

European and French laws define a volatile organic compound as an "organic compound,

except methane, with a vapor pressure higher than 0,01 kPa at the temperature of 293,5 K or

having a same volatility in particular using conditions".

Evolution of VOC emissions in French air

Maximum emission

permitted in 2010:

1050 kt/y (directive

2001/80/CE)

ISO 14001: international norm which permit industrial plants to certify the establishment of

an amelioration program of their environmental performances.

In application of the legal norm ISO 14001

Other

Other carrying

Road carrying

Residential - Tertiary

Manufacturing industry

Energy transformation

Agriculture - sylviculture

Classical VOCs treatment process: thermal and catalytic oxidation

CnHm + (m + n/4) O2 m CO2 + n/2 H2O

source: ADEME technical form

limitations:

1- Secondary effluent

2- High energy consumption

Thermal oxydation Catalytic burn

Temperature 800 °C 300 to 350°C

Concentration 1 to 8 g/Nm³ 0 to 5 g/Nm³

Gas flow 1000 to 300 000 Nm³/h up to 70 000 Nm³/h

Power needed to heat a

gas flow of 1.000 m3/h

300 kW 150 kW

Dirty effluent

Heat exchanger Air treated Combustion chamber

Burner

Plan tubular plaque

Burner

Ventilator

Air treated

Heat

exchanger

Dirty effluent

Pre-heating zone

Reactor conception • Discharge type choice

• Interaction discharge /catalyst

point-to-plane HT

HT

wire-

cylinder

Fixed bed / discharge

HT

particles

Plasma processes for VOCs treatment

Fluidized bed

Langleron Symposium of

catalysis & plasma chem.istry,

220 th Nat. Meeting, 2000, 415

J. S. Chang, Journal of

Electrostatics, 2003, 57, 273

Francke, ISPC 14, 1999, 2655

Mok, Ind. Eng. Chem. Res. 2003, 42, 2960

Coupling plasma

and catalysis

Plasma as a tool

to enhance adsorption

VOCs CO2 + H2O

Current trend:

Our strategy:

VOCs polymerised and/or

oxidised molecules

ENERGY

COMSUMPTION

COMPARISON

Thermal oxidation (800 °C)

900 J/L

Plasma assisted catalysis

200 J/L

Catalytic oxidation (300 °C)

450 J/L

Plasma + Adsorption

10 J/L

Experimental setting

by-product

characterization by

GC-MS

System controlling the electrical discharge

(numerical oscilloscope 500 MHz)

0

5 000

10 000

15 000

20 000

25 000

30 000

35 000

40 000

45 000

50 000

0 5 10 15 20 25 30

I: 0,4 mA

U: 10 kV

10 µs

U

I

gas mixing:

O2 (10 %), H2O (0,48 %), toluene (1000 ppmv) in N2

at 100 °C and 105 Pa

Mass flowmeters

water toluene

Heat exchanger

Sampling filter and

syringe

R

E

A

C

T

O

R

N2 O2

Chromatogram of molecules cached

by sampling filter

Applied tension and discharge

puled signal

The multipoint-to-plane geometry dielectric barrier discharge reactor

Parallel Batch reactors (one for each point)

Gas entrance

Gas way out

Stainless steel electrode

13 points F 1mm, high

5mm

Dielectric F 31mm 4

mm thick

Stainless steel low field

electrode

F 25mm, 6mm thick

26 mm

120 mm

2 mm

200 mm

35 mm

Stainless steel high field

electrode

HV 10-20 kV

45 kHz

Strong

recycling

zone

The wire-to-cylinder geometry dielectric barrier discharge reactor

Gas entrance

Gas way out

44 mm

Stainless steel high

field electrode

Copper low field electrode

300 mm

gap = 2 mm

35 mm

80 mm

glass:

ceramic:

FID = 11mm

FOD = 14mm

FID = 20mm

Two layer- dielectric

battery of batch reactors HV 10-20 kV

45 kHz

Discharge hydrodynamic in a wire-to-cylinder DBD reactor

electric pulses:

adding O (3P, 1D)

discharge reactor = 35 steps of elementary batch

reactors

Sortie

35 1 n n+1

N2, O2, H2O,

toluene

Hydrodynamic deeply modified by

electrical wind due to elementary

discharges

35 mm

on one axe: 35 points computed by

35 unitary reactors

HV electrode

HV electrode

dielectric

Ground electrode

HV electrode

Impulsion

time: 100 ns

Frequency time 20 s

Residence time 200 s

Isotopic labeling as a help for the reaction mechanisms comprehension

VOC isotopic labeling:

VOC destruction mechanisms study

CH

2

H2

H2

Analytic technique interest (GC-MS):

• Retention time unchanged

• Mass spectrum different

CH2

+

CH2

+

H

H

H

C+

H

H

H

C+H

H

H

CH2

+

CH2

+

H

H

H

C+

H

H

H

C+H

H

H

D

D

D

Reactant isotopic labeling:

Validation of the O2 oxidation activity and his action

in VOC destruction

18O2 16O2

C H

H

H

+1 +2 +3

Deutérium

H2O non labeled

Labeled molecules:

Labeled molecules

acid Hydroxyacetic

C H 3

O

O H D3 23 %

Acetaldehyde O 18 C H 3 18 C H 3 between 1% and 2%

O 18

34 %

Acetone O

C H 3

D 55 %

Propyne CH 3 C CD 51 %

Isocyanomethane DN CH 20 %

Cumene C H C H 3

C H 3

D 38 %

Hydroxypropanone C H 3 C

C H 2 O H

O

D 4 %

Methylpropylbenzene C H 2 D

56 %

Diethylbiphenyl C H 2

D

between 57% and 61%

Dimethylbenzene C H 2

C H 3

D

27 %

Cymene C H 3 D

between 2 % and 7 %

Non labeled molecules

11 saturated linear molecules

12 unsaturated linear molecules

18 linear oxidized molecules

28 cyclic molecules

2 •CH3 + 6 O° CO + CO2 + 3 H2O

Labeled molecules produced by the DBD discharge

Isotopic ratio

The entire oxidation phenomena is important:

Labeled molecules Isotopic ratio

Acetone formation mechanism

0

20

40

60

80

100

120

140

160

180

200

7,9 7,95 8 8,05 8,1 8,15

61 58

0

20

40

60

80

100

120

140

160

180

200

7,9 7,95 8 8,05 8,1 8,15

61 58

CH3

CH3

O

Temps de rétention (min)

Inte

nsit

é r

ela

tive (

ua

)

CH3

O

D

0

20

40

60

80

100

120

140

160

180

200

7,9 7,95 8 8,05 8,1 8,15

61 58

0

20

40

60

80

100

120

140

160

180

200

7,9 7,95 8 8,05 8,1 8,15

61 58

CH3

CH3

O

Temps de rétention (min)

Inte

nsit

é r

ela

tive (

ua

)

CH3

O

D

CH3

CH3

O

DCH3

CH3

O

D

30 % of C H 3 C H 3

O 18

benzene ring preferential cut

CH3

CH3

O

D D no

CH3

CH3

O

and 60 % of

oxidation by a hydroxyl radical

the carbonated string is coming from ring opening

area (peak m/z=61) = 1015

area (peak m/z=58) = 2006

1 015 + 2 006

1 015 = 0,336

from toluene, there is 2 on 7

possibilities to produce a 3-

carbon chain containing the

methyl group.

7

2 = 0,286

CH C

CH3

OH

CH C

CH3

OH

CH2

CH3

O

H

CH3

18O

18O

• Ring excitation and rupture by atomic oxygen

radicals

•Benzene ring opening according to preferential

mechanisms

• Radicals coming from toluene are getting down

in energy by reorganization, oxidation by

hydroxyl radical, or hydrogenation

• Little nitrated molecule formation

• Strong oxidation phenomena between methyl

group and O2

Conclusions

•O: 1 S, 1 D and 3 P

C

C

C C

C

C

• CH 3

C

C

HAP

cycles

fonctionalized by

linear molecules

linear molecules

C 11 H 24

C H 2

Deposits

Oxidation

par O 2 , •O,

•OH

O

C O 2

O

O

O

O

O

O O H

O

N N

O

O N

NO 2

Nitration

Ring activation Ring opening

mixing pollutants

and activated radical

particles

air

and VOCs flow

fixe-bed reactor

out flow of

purified air

fixe-bed reactor

VOCs from bitumen treatment by plasma reactor coupled with fixed beds:

Saint Petersburg Polytechnic University’s pilot/ S.Dresvin

Activated oxygen

production by DBD

plasma cassettes

air air

Conception of the discharge pilot.

Electric characteristics

cassettes: 60 electrodes plighted with glass

(1’) or quartz (1&2) gap: 1 mm

P(1’) = 150W P(1,2) = 200W

Electric signal produced by the HV

generator 5 kHz

i (A)

u (kV)

200 µm

2 A

10 k

V

80 mm

150 mm

80 mm

160 mm

150 mm

150 mm

F 80 mm 200 mm

100 mm

80 mm

100 mm

F 120 mm

310 mm

Bitumen reservoir

inferior fixed-bed of stones

DBD

discharge cassette

superior fixed-bed of stones

Tbitume = 300 °C

Sampling filter

chemical analyses

156 m3/h 156 m3/h

352 m3/h

40 m3/h

Conception of the discharge pilot.

Hydrodynamic characteristics

Flow modeling with CFD software FLUENT©

Grid velocity (m/s)

20cm

40,49cm

Plaque perforée 2

1st stone bed (20 cm)

porosity = 0,4

2nd stone bed (20 cm)

porosity = 0,4

V = 10,5 m/s

D = 800 m3/h

V = 1,39 m/s

D = 200 m3/h

V = 1,39 m/s

D = 200 m3/h

V =3,84 m/s

D = 400 m3/h

Sampling filter coloration as a witness of the treatment efficiency

Paraffinic Naphthenic

non treated

fume

« oxidized »

fume and

retained on 2

fixed stone beds

« oxidized » fume

and retained on 1

fixed stone bed and

1 chalk bed

« oxidized »

fume

yellow - ocher coloration:

heavy molecules are retained

clarified filters: diminution of

the heavy molecules quantity

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

Ben

zaldeh

yde

M=1

06

Ben

zaldeh

yde

met

hyl M

=120

Ben

zaldeh

yde

dim

ethy

l M=1

34

Pht

halic

acid

M=1

66

Ben

zo[b

]thioph

ene,

sub

M=1

76

Pht

halic

acid

met

hyl M

=180

Phe

nant

hren

e dim

ethy

l M=2

06

Are

a o

f sp

ecie

s m

ass p

eak /

Are

a o

f in

tern

al

sta

nd

ard

mass p

eak

An

thra

cen

e d

10 M

=188

VOC from naphtenic bitumen

VOC from naphtenic bitumen treated by DBD

O

O

S

OOHOH

O

+100%

+100%

+100%

+100%

+100%

-35%

-95%

OOHOH

O

O

Modification of molecular species by Dielectric Barrier Discharge treatment

GC-MS analysis

For naphtenic bitumen

Oxidation mechanisms

Desulfurisation

Destruction of HAP by oxidation diacide

DBD effect (active oxygen)

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

Ben

zaldeh

yde

M=1

06

Ben

zaldeh

yde

met

hyl M

=120

Ben

zaldeh

yde

dim

ethy

l M=1

34

Pht

halic

acid

M=1

66

Ben

zo[b

]thioph

ene,

sub

M=1

76

Pht

halic

acid

met

hyl M

=180

Nap

htha

lene

M=1

28

2-M

ethy

lnap

htalen

e M

=142

Diben

zoth

ioph

ene

met

hyl M

=198

Alkan

e C21

H44

M=2

96

Are

a o

f sp

ecie

s m

ass p

eak /

Are

a o

f in

tern

al

sta

nd

ard

mass p

eak

An

thra

cen

e d

10 M

=188

VOC from naphtenic bitumen treated by DBD

VOC from naphtenic bitumen treated by DBD and aggregate

O

O

S

S

OOHOH

O

-70%

-80%

-100%

-45%

-80%

-70%

-85%

-100%

-70%

-90%

OOHOH

O

O

CnH2n+2

Modification of molecular species by Dielectric Barrier Discharge treatment

GC-MS analysis

For naphtenic bitumen

Aggregate effect

Adsorption mechanisms on Aluminosilicate

• Fume treatment by a low activated oxygen flow is acquired. In 15’, an

augmentation of 45 % of the retained fume mass and until 300%

augmentation in 30’ with paraffinic bitumen fume.

• Activated oxygen attack sulfured (sulfurs and thiols) functions,

responsible of bad odors.

RSH + O3 RO + SO2 + ½ H2O

• Minerals fixed-beds (as stone) can adsorb by-products.

• The absence of CO: treatment is not a combustion.

Conclusions

Prototype

Gevrey-Chambertin - Vialco

Additional aspiration

2500 m 3 /h Air

(100 à 1000 m 3 /h)

Emissions

(5 m 3 /h + 25 à 100 m 3 /h)

Emissions

(1200 m 3 /h)

100 m3/h

100 m3/h

DBD Discharge

Filter 1 Chimney Filter 2

Gas flow

source : Pascal Rousseau

source : Pascal Rousseau

DBD

Plasma

Air

Fumes to

be treated

cleaned

gas

Air

Chimney

Filter 1 Filter 2

Gas flow

source : Pascal Rousseau

source : Pascal Rousseau

Concentrations schématiques des composés

émis dans l’atmosphère

CO

VM

olé

cule

soxy

gén

ées

Poly

mèr

es

Rad

icau

x

CO

VM

olé

cule

soxy

gén

ées

Poly

mèr

es

Rad

icau

x

CO

V

Molé

cule

soxy

gén

ées

Poly

mèr

es

Rad

icau

x

+Plasma

+Granulat

1 2 3

Oxygène

excité

Principe

1

Concentrations schématiques des composés

émis dans l’atmosphère

CO

VM

olé

cule

soxy

gén

ées

Poly

mèr

es

Rad

icau

x

CO

VM

olé

cule

soxy

gén

ées

Poly

mèr

es

Rad

icau

x

CO

V

Molé

cule

soxy

gén

ées

Poly

mèr

es

Rad

icau

x

+Plasma

+Granulat

1 2 3

Oxygène

excité

Modifications

chimiques des

COV et odeurs

Principe

2

1

Concentrations schématiques des composés

émis dans l’atmosphère

CO

VM

olé

cule

soxy

gén

ées

Poly

mèr

es

Rad

icau

x

CO

VM

olé

cule

soxy

gén

ées

Poly

mèr

es

Rad

icau

x

CO

V

Molé

cule

soxy

gén

ées

Poly

mèr

es

Rad

icau

x

+Plasma

+Granulat

1 2 3

Oxygène

excité

Piégeage sur

matériaux

granulaires

Principe

3

Modifications

chimiques des

COV et odeurs

2

1

Depollution of gas waste by dielectric barrier

discharge (DBD)

Collaboration with University of Pierre and Mary

Curie

Vertical variant

Montage of

Installation for

Depollution of gas

waste by dielectric

barrier discharge

(DBD)

Laboratory Universite Pierre et MarieCurie

Discharge (DBD) experiments

Bitume Plant in Perigor FRANCE

Bitume Plant in Perigor FRANCE

Capasitiv discharge

Plasma torch with

Capasitivity

contact

Plasma torch with Dielectric Barier Discharge (DBD)

Cilindrical model