d. c. b. a. e. ct1. x x x x d. c. b. a. ct2 x x x

30
D. C. B. A. E. CT1

Post on 20-Dec-2015

263 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: D. C. B. A. E. CT1. X X X X D. C. B. A. CT2 X X X

D.

C.

B.

A.

E.

CT1

Page 2: D. C. B. A. E. CT1. X X X X D. C. B. A. CT2 X X X

X

X

X

X

Page 3: D. C. B. A. E. CT1. X X X X D. C. B. A. CT2 X X X

D.

C.

B.

A.

CT2

Page 4: D. C. B. A. E. CT1. X X X X D. C. B. A. CT2 X X X

X

X

X

Page 5: D. C. B. A. E. CT1. X X X X D. C. B. A. CT2 X X X

D.

C.

B.

A.

CT3

Page 6: D. C. B. A. E. CT1. X X X X D. C. B. A. CT2 X X X

X The engine or battery exerts a force on the object.

X If an object is moving there is a “force of motion.”.

X An object can’t exert a force on itself.

X

X

X

Page 7: D. C. B. A. E. CT1. X X X X D. C. B. A. CT2 X X X

D.

C.

B.

A.

CT4

Page 8: D. C. B. A. E. CT1. X X X X D. C. B. A. CT2 X X X

X The more active or energetic object exerts more force.

X The bigger or heavier object exerts more force.

X The student uses the effects of a force as an indication of the relative magnitudes of the forces in an interaction.

X

X

X

Newton’s Third Law!

Page 9: D. C. B. A. E. CT1. X X X X D. C. B. A. CT2 X X X

D.

C.

B.

A.

CT5

Page 10: D. C. B. A. E. CT1. X X X X D. C. B. A. CT2 X X X

X If an object moves, the third law pair forces must be unbalanced.

X The student identifies equal force pairs, but indicates that both forces act on the same object. (For the example of a book at rest on a table, the gravitational force down on the book and the normal force up by the table on the book are identified as an action-reaction pair.)

X The bigger or heavier object exerts more force.

Newton’s Third Law!

X

X

X

Page 11: D. C. B. A. E. CT1. X X X X D. C. B. A. CT2 X X X

Ch6: Applications of Newton’s Laws

Equilibrium is defined as F = 0.

Remember Galileo!

Ropes, strings, cords, etc. are assumed massless unless otherwise stated.

Thus tensions are the same throughout the rope, string, cord, etc.

Pulleys are assumed massless and mounted on frictionless bearings unless otherwise stated.

Thus pulleys only change the direction of the force.

Page 12: D. C. B. A. E. CT1. X X X X D. C. B. A. CT2 X X X

Applications of Newton’s Laws - Method

Draw picture of the problem.

Choose body (bodies) to isolate.

Draw Free Body Diagrams (FBDs) for isolated bodies.

Choose and label coordinate axes.

Apply Newton’s 2nd Law: Fx = max and Fy = may

Solve for F, m or a.

Work out kinematics.

Check solution is reasonable.

Page 13: D. C. B. A. E. CT1. X X X X D. C. B. A. CT2 X X X

6-1 Frictional Forces

Page 14: D. C. B. A. E. CT1. X X X X D. C. B. A. CT2 X X X

Force of Friction - Model Static Friction

fs,max = sn

0 fs fs,max

fs sn

(as needed to

maintain

equilibrium)

Kinetic Friction

fk = kn

(opposing motion)

Page 15: D. C. B. A. E. CT1. X X X X D. C. B. A. CT2 X X X

A.

B.

C.

D.

E.

CT6

Page 16: D. C. B. A. E. CT1. X X X X D. C. B. A. CT2 X X X

P6.8 (P.171)

You have P6.7

Page 17: D. C. B. A. E. CT1. X X X X D. C. B. A. CT2 X X X

6-2 Strings and SpringsHooke’s Law for springs:

Fx = -kx

Fx is the force of the spring x is the extension (>0) or compression (<0) of the springk is the spring constant

Page 18: D. C. B. A. E. CT1. X X X X D. C. B. A. CT2 X X X

P6.19 (p.171)

You have P6.20

Page 19: D. C. B. A. E. CT1. X X X X D. C. B. A. CT2 X X X

Concept Question 7P6.19b:If the mass of the backpack is doubled, the answer to part a will

A. double.

B. halve.

C. stay the same.

Page 20: D. C. B. A. E. CT1. X X X X D. C. B. A. CT2 X X X

6-3 Translational Equilibrium

P6.32 (p.173)Like your 6.37

except your a 0.

Page 21: D. C. B. A. E. CT1. X X X X D. C. B. A. CT2 X X X

6-3 Translational Equilibrium

P6.35 (p.173)

Page 22: D. C. B. A. E. CT1. X X X X D. C. B. A. CT2 X X X

6-4 Connected Objects

P6.39 (p.174)

Page 23: D. C. B. A. E. CT1. X X X X D. C. B. A. CT2 X X X

F.

E.

D.

C.

B.

A.

6-5 Circular MotionCT8

Page 24: D. C. B. A. E. CT1. X X X X D. C. B. A. CT2 X X X

The red and black triangles are similar triangles:

r/r = v/v

r/t (1/r) = v/t (1/v)

Take the limit of both sides as t 0.

v/r = acp/v

acp = v2/r (inward towards center of circle)

acp and v are always changing.

constant speed in a circle

ri = rf = r

vi = vf = v

Page 25: D. C. B. A. E. CT1. X X X X D. C. B. A. CT2 X X X

CT9: When I whirl a nurf ball in a vertical circle attached to a rubber band, which statement is true? A. The rubber band will contract to provide an outward force on the nurf ball. B. The rubber band will contract because of the inward force on the nurf ball. C. The rubber band will not change in length. D. The rubber band will stretch because of the outward force on the nurf ball. E. The rubber band will stretch to provide an inward force on the nurf ball.

Page 26: D. C. B. A. E. CT1. X X X X D. C. B. A. CT2 X X X

A.

B.

C.

D.

CT10

Page 27: D. C. B. A. E. CT1. X X X X D. C. B. A. CT2 X X X

P6.51 (p.175)

Like your P6.50

except n = the

apparent weight

in P6.50

Page 28: D. C. B. A. E. CT1. X X X X D. C. B. A. CT2 X X X

CT11: At the top of the path when I whirl a bucket of water over my head, the water in the bucket will

A. stay in the bucket because it is forced outward and stopped by the bottom of the bucket. B. stay in the bucket because gravity is temporarily suspended. C. stay in the bucket only if I whirl the bucket with enough speed so that the bottom of the bucket must supply an inward force. D. stay in the bucket at any speed that I whirl the bucket. E. not stay in the bucket.

Page 29: D. C. B. A. E. CT1. X X X X D. C. B. A. CT2 X X X

P6.61 (p.175)

Page 30: D. C. B. A. E. CT1. X X X X D. C. B. A. CT2 X X X

CT12: If the mass of the bucket and water are doubled, at the top of the path

A. both vmin and the tension in the string will double.B. both vmin and the tension in the string will remain the same. C. vmin will remain the same and the tension in the string will double. D. vmin will double and the tension in the string will remain the same