cutting processes - mit opencourseware · pdf file1 2.008-spring-2004 s.kim 1 2.008 design...

6
1 2.008-spring-2004 S.Kim 1 2.008 Design & Manufacturing II Spring 2004 Metal Cutting II 2.008-spring-2004 S.Kim 2 Cutting processes Objectives Product quality: surface, tolerance Productivity: MRR , Tool wear Physics of cutting Mechanics Force, power Tool materials Design for manufacturing 2.008-spring-2004 S.Kim 3 Orthogonal cutting in a lathe Rake angle Shear angle T o : depth of cut Shear plane Assume a hollow shaft 2.008-spring-2004 S.Kim 4 Velocity diagram in cutting zone ( ) () () φ sin c V α cos s V α φ cos V = = () ( ) α φ cos φ sin r c t o t V c V = = = () ( ) α φ cos φ Vsin c V = () ( ) α φ cos φ sin r c t o t V c V = = = Cutting ratio: r <1 2.008-spring-2004 S.Kim 5 E. Merchant’s cutting diagram α φ R F t F c F n F s F N α β Source: Kalpajkian F t F c β−α 2.008-spring-2004 S.Kim 6 () () α) β Rcos(φ φ sin t F φ cos c F s F + = = () () φ cos t F φ sin c F n F + = () β sin R F = () β cos R N = ( ) β tan μ = Angle Friction β = 2 μ 0.5 : Typcially < < FBD of Forces () () α tan t F c F α tan c F t F N F μ + = = ( ) α - β sin R Ft = ( ) α - β cos R Fc =

Upload: phamtruc

Post on 31-Jan-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Cutting processes - MIT OpenCourseWare · PDF file1 2.008-spring-2004 S.Kim 1 2.008 Design & Manufacturing II Spring 2004 Metal Cutting II 2.008-spring-2004 S.Kim 2 Cutting processes

1

2.008-spring-2004 S.Kim 1

2.008 Design & Manufacturing II

Spring 2004

Metal Cutting II

2.008-spring-2004 S.Kim 2

Cutting processes

ObjectivesProduct quality: surface, toleranceProductivity: MRR , Tool wear

Physics of cuttingMechanicsForce, power

Tool materialsDesign for manufacturing

2.008-spring-2004 S.Kim 3

Orthogonal cutting in a lathe

Rake angle

Shear angle

To: depth of cut

Shear plane

Assume a hollow shaft

2.008-spring-2004 S.Kim 4

Velocity diagram in cutting zone

( ) ( ) ( )φsincV

αcossV

αφcosV

==−

( )( )αφcos

φsinr

ctot

VcV

−===

( )( )αφcos

φVsincV

−=

( )( )αφcos

φsinr

ctot

VcV

−===

Cutting ratio: r <1

2.008-spring-2004 S.Kim 5

E. Merchant’s cutting diagram

α

φ

R

Ft

Fc

Fn

Fs

F

β

Source: Kalpajkian

Ft

Fc

β−α

2.008-spring-2004 S.Kim 6

( ) ( ) α)βRcos(φφsintFφcoscFsF −+=⋅−⋅=

( ) ( )φcostFφsincFnF ⋅+⋅=

( )βsinRF ⋅=

( )βcosRN ⋅=( )βtanµ =

AngleFrictionβ =

2µ0.5:Typcially <<

FBD of Forces

( )( )αtantFcF

αtancFtF

NF

µ⋅−

⋅+==

( )α-βsinRFt ⋅=

( )α-βcosRFc ⋅=

Page 2: Cutting processes - MIT OpenCourseWare · PDF file1 2.008-spring-2004 S.Kim 1 2.008 Design & Manufacturing II Spring 2004 Metal Cutting II 2.008-spring-2004 S.Kim 2 Cutting processes

2

2.008-spring-2004 S.Kim 7

Analysis of shear strain

What does this mean:Low shear angle = large shear strain

Merchant’s assumption: Shear angle adjusts to minimize cutting force or max. shear stressCan derive:

45φo

−+=

( )αφtancotφaccdbc

γ −+=+

=

2.008-spring-2004 S.Kim 8

Shear Angle 2β

45φo

−+=

Fs

Fcφ

w

sinφAFs

AsFs

τ ==

σsAsFs ⋅=

( ) ( ) α)βRcos(φφsintFφcoscFsF −+=⋅−⋅=

( )α-βcosRFc ⋅=

Maximize shearstress

Minimize Fc

0ddτ

0ddFc

2.008-spring-2004 S.Kim 9

Power

ss VF ⋅:shearingfor Power

VFc ⋅:inputPower

cVF ⋅:friction viadissipatedPower

VtwVFu

o

sss ⋅⋅

⋅=:shearingfor energy Specific

VtwVFuo

cf ⋅⋅

⋅=:frictionfor energy Specific

VtwVF

VtwVFuu

o

ss

o

cfs ⋅⋅

⋅+

⋅⋅⋅

=+:energy specific Total

MRR

=> shearing + friction

Experimantal data

MRR (Material Removal Rate) = w.to.V

2.008-spring-2004 S.Kim Kalpakjian 10

Cutting zone picturescontinuous secondary shear BUE

serrated discontinuous

2.008-spring-2004 S.Kim 11

Chip breaker

- Stop and go- milling

Continuous chip: bad for automation

2.008-spring-2004 S.Kim 12

Cutting zone distribution

Hardness Temperature

770

500

316

Mean temperature: CVafbHSS: a=0.5, b=0.375

Page 3: Cutting processes - MIT OpenCourseWare · PDF file1 2.008-spring-2004 S.Kim 1 2.008 Design & Manufacturing II Spring 2004 Metal Cutting II 2.008-spring-2004 S.Kim 2 Cutting processes

3

2.008-spring-2004 S.Kim 13

Built up edgeWhat is it?Why can it be a good thing?Why is it a bad thing?

Thin BUE

How to avoid it…

•Increasing cutting speed•Decreasing feed rate•Increasing rake angle•Reducing friction (by applying cutting fluid)

2.008-spring-2004 S.Kim 14

ToolsHSS (1-2 hours)

Inserts

-High T-High σ-Friction-Sliding on cut surface

2.008-spring-2004 S.Kim 15Source: Kalpajkian

Tool wear up close

Crater wear

Depth of cut lineFlank wear

Wear land

2.008-spring-2004 S.Kim 16Source: Kalpajkian

Taylor’s tool wear relationship (flank wear)

CTV n =⋅ ) fpm ( velocity cuttingV =(min) failure totimeT =

F. W. Taylor, 1907

Workpiece hardness

fpm

CTV n =⋅⋅⋅ yx fd

rate feedfcut of depthd

==

41-77 fdVCT −− ⋅⋅⋅=Ex.

Optimum for max MRR?

2.008-spring-2004 S.Kim Kalpakjian 17

Taylor’s tool life curves (Experimental)

Coefficient n varies from:Steels Ceramics0.1 0.7

As n increases, cutting speed can be increased with less wear.

Given that, n=0.5, C=400, if the V reduced 50%, calculate the increase of tool life?

Log scale

2.008-spring-2004 S.Kim 18Source: Kalpajkian

What are good tool materials?

Hardnessweartemperature

Toughnessfracture

Page 4: Cutting processes - MIT OpenCourseWare · PDF file1 2.008-spring-2004 S.Kim 1 2.008 Design & Manufacturing II Spring 2004 Metal Cutting II 2.008-spring-2004 S.Kim 2 Cutting processes

4

2.008-spring-2004 S.Kim Sandvik Coromant, Kalpakjian 19

History of tool materials

Trade off: Hardness vs Toughnesswear vs chipping

2.008-spring-2004 S.Kim 20

HSS

High-speed steel, early 1900Good wear resistance, fracture resistance, not so expensiveSuitable for low K machines with vibration and chatter, why?M-series (Molybdenum)

Mb (about 10%), Cr, Vd, W, CoLess expensive than T-seriesHigher abrasion resistance

T-series (Tungsten 12-18%)Most common tool material but not good hot hardness

2.008-spring-2004 S.Kim 21

Carbides

Hot hardness, high modulus, thermal stabilityInsertsTungsten Carbide (WC)

(WC + Co) particles (1-5 µ) sinteredWC for strength, hardness, wear resistanceCo for toughness

Titanium Carbide (TiC)Higher wear resistance, less toughnessFor hard materials

Uncoated or coated for high-speed machiningTiN, TiC, TiCN, Al2O3Diamond like coatingCrC, ZrN, HfN

2.008-spring-2004 S.Kim 22

Crater wear

Diffusion is dominant for crater wearA strong function of temperatureChemical affinity between tool and workpieceCoating?

Crater wear

2.008-spring-2004 S.Kim 23

Multi-phase coating

TiN low friction

Al2O3 thermal stability

TiCN wear resistance

Carbide substratehardness and rigidity

Custom designed coating for heavy duty, high speed, interrupted, etc.

2.008-spring-2004 S.Kim 24

Ceramics and CBN

Aluminum oxide, hardness, high abrasion resistance, hot hardness, low BUELacking toughness (add ZrO2, TiC), thermal shockCold pressed and hot sinteredCermets (ceramic + metal)

Al2O3 70%, TiC 30%, brittleness, $$$Cubic Boron Nitride (CBN)

2nd hardest materialbrittle

Polycrystalline Diamond

Page 5: Cutting processes - MIT OpenCourseWare · PDF file1 2.008-spring-2004 S.Kim 1 2.008 Design & Manufacturing II Spring 2004 Metal Cutting II 2.008-spring-2004 S.Kim 2 Cutting processes

5

2.008-spring-2004 S.Kim 25

Range of applications

V

f

High

High2.008-spring-2004 S.Kim 26

Chatter

Severe vibration between tool and the workpiece, noisy.In general, self-excited vibration (regenerative)Acoustic detection or force measurementsCutting parameter control, active control

2.008-spring-2004 S.Kim 27

Turning parameters

MRR = π Davg. N. d . fN: rotational speed (rpm), f: feed (in/rev), d: depth of cut (in)l; length of cut (in)

Cutting time, t = l / f NTorque = Fc (Davg/2)Power = Torque. Ω1 hp=396000 in.lbf/min = 550 ft.lbf/sec

Example6 inch long and 0.5 in diameter stainless steel is turned to 0.48 in diameter. N=400 rpm, tool in traveling 8 in/min, specific energy=4 w.s/mm2=1.47 hp.min/in3

Find cutting speed, MRR, cutting time, power, cutting force.

2.008-spring-2004 S.Kim 28

Sol.

Davg=(0.5+0.48)/2= 0.49 inV=π. 0.49.400 = 615 in/mind=(0.5-0.48)/2=0.01 inF=8/400=0.02 in/revMRR=V.f.d=0.123 in3/minTime to cut=6/8=0.75 min

P=1.47 x 0.123 = 0.181 hp=Torque x ω1hp=396000 in-lb/minT=P/ω=Fc. (Davg/2)Then, Fc=118 lbs

2.008-spring-2004 S.Kim 29

Drilling parameters

MRR:Power: specific energy x MRRTorque: Power/ω

A hole in a block of magnesium alloy, 10 mm drill bit, feed 0.2 mm/rev, N=800 rpmSpecific power 0.5 W.s/mm2

MRRTorque

Nf4

DπMRR2

⋅⎟⎠

⎞⎜⎝

⎛=

2.008-spring-2004 S.Kim 30

Sol

MRR=π (10x10/4 ) . 0.2 . 800 =210 mm3/sPower= 0.5 W.s/mm2 . 210 mm3/s

=105 W = 105 N.m/s= T.ω=T 2π. 800/60=1.25 N.m

Page 6: Cutting processes - MIT OpenCourseWare · PDF file1 2.008-spring-2004 S.Kim 1 2.008 Design & Manufacturing II Spring 2004 Metal Cutting II 2.008-spring-2004 S.Kim 2 Cutting processes

6

2.008-spring-2004 S.Kim 31

Milling

Chip continuous?

2.008-spring-2004 S.Kim 32

Milling parameters (slab)

Parameters:Cutting speed, V=πDNtc, chip depth of cut d; depth of cutf; feed per toothv; linear speed of the workpiecen; number of teetht; cutting time, w; width of cut

Torque: Power/ωPower: sp. Energy x MRR

wdvtlwd

==MRR

Nnv

f =

Dfd

t c

2=

vll

t c+=

approximation

2.008-spring-2004 S.Kim 33

DFM for machining

Geometric compatibility

Dimensional compatibilityAvailability of toolsDrill dimensions, aspect ratio

ConstraintsProcess physicsDeep pocket Machining on inclined faces

Set up and fixturingTolerancing is $$$Minimize setups