crack growth

66
Crack Growth Stress Intensity Functions NC-CG 6.02.002 Crack Growth Stress Intensity Functions Help Map

Upload: chandra-clark

Post on 08-Sep-2015

71 views

Category:

Documents


8 download

DESCRIPTION

jtf

TRANSCRIPT

  • Crack Growth Stress Intensity FunctionsNC-CG 6.02.002

    Crack Growth Stress Intensity Functions

    Help Map

  • Copyright 2010 HBM

    nCode Confidential

    Standard Stress Intensity Function Library.

    Series 1

    Standard Specimens

    (c) nCode International 2003 Page 1 of 65

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    1.1 Single Edge Crack in Tension (SENT)

    P Reference: Murakami, page 9 (Originally from Srawley) B

    W

    a

    PNominal Stress: S = B W

    Crack ratio: = a W

    Limits: 0.2 0.8 If > 0.8 then return error. If < 0.2 then let = 0.2

    P User inputs: W := 0.05

    SIF: y := 1.12 0.231 + 10.55 21.72 +( ) 2 3 30.394

    Net section stress:

    P and = Where P = S BW a = W

    B(W a)

    S BW so ( ) STherefore = :=

    B(W W) 1 Plot SIF and the net section stress constant: := 0.2 0.201 .. 0.8 ,

    0.2 0.4 0.6 0.8 Crack ratio

    610

    0.2 0.4 0.6 0.8 Crack ratio

    4

    Net

    str

    ess

    SIF

    5

    2

    0 0

    SIF KSN comparison

    Checksums for validating main algorithms:

    0.8 0.8 ( )y d = 2.149354 ( ) d = 1.386294 S

    0.2 0.2

    (c) nCode International 2003 Page 2 of 65

    hurtkiRectangle

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    1.2 Single Edge Crack in Pure Bending (SENB)

    M Reference: Murakami, page 11 (Originally from Gross & Srawley) B

    W

    a

    6M Nominal Stress: S = 2B W

    Crack ratio: = a W

    Limits: 0.2 0.8 If > 0.8 then return error. If < 0.2 then let = 0.2

    M User inputs: W := 0.05

    SIF: y ( ) := 1.122 1.4 + 7.332 13.083 + 144

    Net section stress is assumed to be 2/3 maximum bending stress:22 6M B W

    = where M = S and a = W3 2 6B(W a)

    22 6S BWTherefore = so ( ) := 2 S 3 6B (W W)2 3 (1 )2

    Plot SIF and the net section stress constant: := 0.2 0.201, .. 0.8

    4

    0.2 0.4 0.6 0.8 Crack ratio

    SIF

    20

    0.2 0.4 0.6 0.8

    3

    Net

    str

    ess

    10

    2

    1 0

    Crack ratio SIF KSN comparison

    Checksums for validating main algorithms: 0.8 0.8

    ( )y ( )

    d = 1.067088 d = 2.5 S 0.2 0.2

    (c) nCode International 2003 Page 3 of 65

    hurtkiRectangle

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    1.3 Double Edge Crack in Tension (DENT)

    P Reference: Murakami, page 6 (Originally from Nisitani)

    2W

    B

    aa

    PNominal Stress: S = 2 BW

    Crack ratio: = a W

    Limits: 0.2 0.8 If > 0.8 then return error. If < 0.2 then let = 0.2

    P User inputs: W := 0.05

    SIF: y ( ) := 1.122 0.154 + 0.8072 1.8943 + 2.4944

    Net section stress: ( ) := S As before described. 1

    Plot SIF and the net section stress constant: := 0.2 0.201, .. 0.8

    61.6

    0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

    1.2

    1.4

    SIF

    Net

    str

    ess 4

    2

    1 0

    Crack ratio Crack ratio SIF KSN comparison

    Checksums for validating main algorithms: 0.8 0.8

    ( )y d = 0.732675 ( ) d = 1.386294 S

    0.2 0.2

    (c) nCode International 2003 Page 4 of 65

    hurtkiRectangle

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    1.4 Centre Cracked Plate in Tension , L > 6W (CCP)

    Reference: Murakami, page 3 (Originally from Fedderson & Tada)

    := As before described ( ) S

    2W

    B

    2a

    P

    P

    L

    L > 6W

    PNominal Stress: S = 2 BW

    Crack ratio: = a W

    Limits: 0.2 0.8 If > 0.8 then return error. If < 0.2 then let = 0.2

    User inputs: W := 0.05

    (

    )

    2 4 y ( )SIF: 0.025 0.06 1:= + sec

    2

    Net section stress: 1

    Plot SIF and the net section stress constant: := 0.2 0.201 .. 0.8 ,

    62

    0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

    4

    Net

    str

    ess

    SIF

    1.5

    2

    1 0

    Crack ratio Crack ratio SIF KSN comparison

    Checksums for validating main algorithms:

    0.8 0.8 ( )y d = 0.752719 ( ) d = 1.386294 S

    0.2 0.2

    (c) nCode International 2003 Page 5 of 65

    hurtkiRectangle

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    1.5 Centre Cracked Square Plate in Tension (CCSP)

    Reference: T. F. Gray, Int. Jnl. Fracture, P vol 13, 1977, p65

    PNominal Stress: S = 2 BW

    Crack ratio: = a W

    B

    2a

    2W

    Limits: 0 0.8 If > 0.8 then return error.

    P If < 0 then let = 0 2W

    User inputs: W := 0.05

    SIF: y ( ) := 1 1.1 (1 )0.9

    Net section stress: ( ) := S As before described 1

    Plot SIF and the net section stress constant: := 0 0.01, .. 0.8

    62

    1 0 0 0.5

    Crack ratio Crack ratio SIF KSN comparison

    Checksums for validating main algorithms:

    0 0.5 1

    4

    Net

    str

    ess

    SIF

    1.5

    2

    0.8 0.8 ( )y d = 1.040902 ( ) d = 1.609438 S

    0 0

    (c) nCode International 2003 Page 6 of 65

    1

    hurtkiRectangle

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    1.6 Three Point Bend Specimen, Span 4:1 (3SENB4)

    Reference: Murakami, page 13 (originally from Srawley)

    6P

    a

    B Nominal Stress: S =B W

    W Crack ratio: = a W

    Limits: 0.2 0.8 P If > 0.8 then return error.

    4W If < 0.2 then let = 0.2

    User inputs: W := 0.05

    21.99 (1 )(2.15 3.93 + 2.7 )SIF: y( ) :=

    (1 + 2)(1 )1.5

    :=Net section stress: ( ) 2 S As before described 3 (1 )2

    Plot SIF and the net section stress constant: := 0.2 0.201 .. 0.8 ,

    10 20

    Net

    str

    ess

    10SIF

    5

    0 0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

    Crack ratio Crack ratio SIFKSN comparison (See note)

    PNote: KSN assumes normalised stress as S = , the author disagrees with this B W

    normalisation. For comparison, therefore, the KSN results should be divided by 6.

    Checksums for validating main algorithms:

    0.8

    0.8

    ( )y d = 1.881321

    ( ) d = 2.5 S 0.2 0.2

    (c) nCode International 2003 Page 7 of 65

    hurtkiRectangle

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    1.7 Three Point Bend Specimen, Span 8:1 (3SENB8)

    Reference: Murakami, page 13 (originally from Srawley)

    12P

    a

    Nominal Stress: S = B B W

    W Crack ratio: = a W

    Limits: 0.2 0.8

    P If > 0.8 then return error. If < 0.2 then let = 0.2

    8W

    User inputs: W := 0.05

    SIF: y := 1.107 2.12 + 7.71 13.55 + 14.25( ) 2 3 4

    Net section stress: ( ) 2 S As before described :=3 (1 )2

    Plot SIF and the net section stress constant: := 0.2 0.201 .. 0.8 ,

    4 20

    3

    Net

    str

    ess

    SIF

    2 10

    1

    0 0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

    Crack ratio Crack ratio SIFKSN comparison (See note)

    PNote: KSN assumes normalised stress as S = , the author disagrees with this B W

    normalisation. For comparison, therefore, the KSN results should be divided by 12.

    Checksums for validating main algorithms:

    0.8 0.8 ( )y d = 0.874356 ( ) d = 2.5 S

    0.2 0.2

    (c) nCode International 2003 Page 8 of 65

    hurtkiRectangle

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    1.8 Compact Tension Specimen (CTS)

    Reference: Murakami, page 18 (originally from Srawley)

    PNominal Stress: S = B W

    Crack ratio: = a

    W

    B

    a W

    Limits: 0.2 0.8 If > 0.8 then return error. If < 0.2 then let = 0.2

    User inputs: W := 0.05

    2 3 4(2 + )(0.886 + 4.64 13.32 + 14.72 5.6 )SIF: y ( ) :=( )1.5 1

    Net section stress is taken as 2/3 of maximum stress:

    B MNA P Where = +max Z A

    W

    a

    N A net

    max

    =

    =

    a +W a

    2

    PMNA P ( + W)= = 2 a

    B(W a)2 Z = A = B(W a)

    6

    3 P(a ) P P [3(a + W + (W a + W ) )]+ =Therefore = max

    B(W a)2 B(W a) B(W a)2

    2 W)So = 2 P (a + where P = W and a = W S Bmax B(W a)2

    Therefore net = W 2 W So ( ) 4 S( + 2)2 2 SB (W + ) :=

    3B(W W)2 3 (1 )2

    (c) nCode International 2003 Page 9 of 65

    hurtkiRectangle

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    30

    Dr. Andrew Halfpenny 17/11/2004

    Plot SIF and the net section stress constant: 0.2 0.201 .. 0.8 := ,

    100

    0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

    SIF

    20

    Net

    str

    ess

    50

    10

    0 0

    Crack ratio Crack ratio SIF KSN comparison

    Checksums for validating main algorithms:

    0.8 0.8 ( )y d = 5.864474 ( ) d = 13.151608 S

    0.2 0.2

    (c) nCode International 2003 Page 10 of 65

    hurtkiRectangle

    hurtkiRectangle

    hurtkiRectangle

  • y

    W

    Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    1.9 Round Compact Tension Specimen (RCTS)

    Reference: Murakami, page 13 (originally from Newman)

    W

    B

    a

    pp

    PNominal Stress: S = B W

    Crack ratio: = a W

    Limits: 0.2 0.8 If > 0.8 then return error. If < 0.2 then let = 0.2

    Dia = 1.35W User inputs: := 0.05

    ( ) := 2 + ( ) 0.76 4.8+ 11.582

    11.433

    + 4.084

    ( )

    1 ( )1.5

    Net section stress: ( ) := 4 S( + 2) As before described 3 (1 )2

    Plot SIF and the net section stress constant: := 0.2 0.201, .. 0.8

    10030

    0 0 0.2 0.4 0.6 0.8

    Crack ratio Crack ratio SIF KSN comparison

    Checksums for validating main algorithms:

    0.2 0.4 0.6 0.8

    SIF

    20

    Net

    str

    ess

    50

    10

    0.8 0.8 ( )y d = 6.115357 ( ) d = 13.151608 S

    0.2 0.2

    (c) nCode International 2003 Page 11 of 65

    hurtkiRectangle

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    1.A Wedge Opening Load Specimen (WOL)

    Reference: E. F. Walker & M. J. May, BISRA Report MG/E/307/67, 1967.

    W

    B

    a

    Nominal Stress: S = P B W

    Crack ratio: = a W

    Limits: 0.2 0.8 If > 0.8 then return error. If < 0.2 then let = 0.2

    User inputs: W := 0.05

    y ( ) := 17.47 110.47 + 412.22 669.33 + 425.74

    Net section stress: ( ) := 4 S( + 2) As before described 3 (1 )2

    Plot SIF and the net section stress constant: := 0.2 0.201, .. 0.8

    10030

    0 0 0.2 0.4 0.6 0.8

    Crack ratio Crack ratio SIF KSN comparison

    Checksums for validating main algorithms:

    0.2 0.4 0.6 0.8

    SIF

    20

    Net

    str

    ess

    50

    10

    0.8 0.8 ( )y d = 6.19343 ( ) d = 13.151608 S

    0.2 0.2

    (c) nCode International 2003 Page 12 of 65

    hurtkiRectangle

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    1.B Quarter Circular Corner Crack Tension Specimen (CCTS)

    a

    a

    P

    P

    W

    W

    Reference: A. Pickard, Book ISBN 0 947817 22 0, 1983, p135.

    PNominal Stress: S = 2W

    Crack ratio: = a W

    Limits: 0 0.8 If > 0.8 then return error. If < 0 then let = 0

    User inputs: W := 0.05

    2 3 4 5 y 0.7334 0.06746 0.9218( ) 0.2781 0.4799 2.445:= + + +

    Net section stress:

    P 2 = where P = and a = WS W

    2 a2

    W 4

    :=S W2 ( ) S Therefore = so 22

    2 2 1

    W W 44

    Plot SIF and the net section stress constant: := 0 0.001 .. 0.8 ,

    2.5 2.5

    2 2

    Net

    str

    ess

    SIF

    1.5

    1.5 1

    0.5 1 0 0.5 1 0 0.5

    Crack ratio Crack ratio SIFKSN comparison

    Checksums for validating main algorithms:

    0.8 0.8 ( )y d = 0.826304 ( ) d = 0.998766 S

    0 0

    (c) nCode International 2003 Page 13 of 65

    1

    hurtkiRectangle

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    Blank

    (c) nCode International 2003 Page 14 of 65

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    Series 2

    Cracks at Holes

    (c) nCode International 2003 Page 15 of 65

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    2.1 Single Crack at Hole in Tension

    P Reference: T. F. Gray, Int. Jnl. Fracture, vol 13, 1977, p65

    PNominal Stress: S = 2W B

    Crack ratio: = a W

    RLimits: 0.1 1 0.001 W

    If > upper then return error. If < 0.1 then let = 0.1

    User inputs: W := 0.1 R := 0.01 P

    ( ) R R ( ) 1 W

    := F1 :=W 1.08 )1.8 R + 1 (0.5 + G 2

    ( ) ( ( ( ))) ( ( )16.6 )0.9 ( )0.333 ( ( ))F2 := 1 1 + 1.45 sin sin

    y ( ) :=( ) F2 ( ) ( )F1 0.5 + G

    Net section stress:

    P = where P = B and a = W 2S W

    B(2W 2R a)

    2S WBTherefore = so ( ) := S B(2W 2R a) R

    1 W 2

    R a

    2W

    G :=

    (c) nCode International 2003 Page 16 of 65

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    1.4

    Dr. Andrew Halfpenny 17/11/2004

    RPlot SIF and the net section stress constant: := 0.1 0.101 .. 1, 0.001 W

    2.5

    0 0.5 0 0.5 1

    SIF

    1.2 2

    Net

    str

    ess

    1 1.5

    0.8 1

    Crack ratio Crack ratio SIF KSN comparison

    Checksums for validating main algorithms:

    R R 0.001 0.001 1 1

    W W ( )y d = 0.771211 ( ) d = 1.269757 S

    0.1 0.1

    (c) nCode International 2003 Page 17 of 65

    1

    hurtkiRectangle

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    R a

    2W

    a

    2.2 Double Crack at Hole in Tension

    P Reference: T. F. Gray, Int. Jnl. Fracture, vol 13, 1977, p65

    PNominal Stress: S = 2W B

    Crack ratio: = a W

    RLimits: 0.1 1 0.001 W

    If > upper then return error. If < 0.1 then let = 0.1

    User inputs: W := 0.1 R := 0.01 P

    F1 :=( ) := R G := R ( ) 1 W 1.08 R + W )1.8 1 ( + G

    F2 := 1 ( ) )(1 )0.78 + 1.23 sin )( ) ( sin ( ) ( )5 ( )0.19 ( ( )( ) F2( ) ( )

    y :=

    ( ) F1 + G

    Net section stress:

    P = where P = B and a = W 2S W

    2B (W R a)

    = :=Therefore 2S WB so ( ) S 2B (W R a) R

    1 W

    (c) nCode International 2003 Page 18 of 65

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    RPlot SIF and the net section stress constant: := 0.1 0.101 .. 1, 0.001 W

    100040

    0 0.5 1 0 0.5 1

    Net

    str

    ess

    500SIF

    20

    0 0

    Crack ratio Crack ratio SIF KSN comparison

    Checksums for validating main algorithms:

    R R 0.001 0.001 1 1

    W W ( )y d = 1.56331 ( ) d = 6.684609 S

    0.1 0.1

    (c) nCode International 2003 Page 19 of 65

    hurtkiRectangle

    hurtkiRectangle

    hurtkiRectangle

  • G

    T R

    Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    2.3 Surface Crack at a Hole in Tension

    Reference: Newman & Raju, ASTM STP 2R

    c

    2a

    2T P

    791, 1983, p238

    Nominal Stress: S = P 4B T

    Crack ratio: = a T

    Limits: 0.1 0.9

    If > 0.9 then return error. B > T + 2R 2B If < 0.1 then let = 0.1

    = parametric angle, angle of crack to longitudinal axis User inputs: := 0.01 := 0.01

    B := 0.1 := 35deg Crack aspect ratio, a/c := 1.5

    c ( ) := T G

    ( ) := 1 1

    c ( ) cos 0.9( )+

    R

    1.65 0.5 Q := (1 + 1.464G ) if (G > 1) M1 := G if (G > 1) 1.65 1.0 otherwise (1 + 1.464G ) otherwise

    40.05 0.29 ( ) ( )M2 := M3 := M4 := 1 cos 1.5 1.5 1 + 4G 0.11 + G 0.23 + G

    ( ) := ( ) ( )2 ( )3 ( )41 + 0.358 + 1.425 1.578 + 2.156

    M5 1 + 0.08 ( )2

    0.25 ( )2 + sin )2 (1 )10 )2( ) ( ( )M6 1 0.1 1 cos (

    :=

    ( )G cos M7 :=:= + 0.5 0.5 (

    ( )) 2 R + c R

    sec

    ( ) ( )M8 ( ( ))sec := ( ) 2 c 2B 4B

    4

    2F ( ) ( ) ( ) ( ) ( )M4 M5 M6 M7 M8 M2 M3M1 +:= +

    ( )y ( ) :=

    QF

    (c) nCode International 2003 Page 20 of 65

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    Net section stress:

    P T( ) where P = 4S BT a = T c = G = 4T (B R) acsin

    4 S BTTherefore = 2 2T ( )4T (B R) sin G

    :=so ( ) 4 S BG 2 ( )4G (B R) T sin

    Plot SIF and the net section stress constant: := 0.1 0.101 .. 0.9 ,

    2.5

    1 0 0.5 1

    SIF

    1.1 0 0.5

    Crack ratio Crack ratio SIF KSN comparison

    Checksums for validating main algorithms:

    2

    Net

    str

    ess 1.14

    1.5 1.12

    0.9 0.9 ( )y d = 1.267756 ( ) d = 0.898035 S

    0.1 0.1

    (c) nCode International 2003 Page 21 of 65

    1

    hurtkiRectangle

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    Blank

    (c) nCode International 2003 Page 22 of 65

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    Series 4

    Cracks at Corners

    (c) nCode International 2003 Page 23 of 65

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    4.1 Quarter Elliptical Corner Crack in Tension

    Reference: Newman & Raju, ASTM STP 791, 1983, p238

    PNominal Stress: S = B T

    P T

    c

    a

    Crack ratio: = a T

    Limits: 0 1.0

    If > 1.0 then = 1.0 B If G > 1.0 then let lo = 0.001

    = parametric angle, angle of crack to longitudinal axis User inputs: T := 0.01 B := 0.1

    := 35deg Crack aspect ratio, a/c G := 1.5

    1.65 (1 + 1.464G ) if (G > 1)c ( ) := T Q :=

    G 1.65 (1 + 1.464G ) otherwise (0.375G )0.03

    if (G > 1)

    0.5 2M1 ( ) := G( )

    1.08 M2 := if (G > 1)+

    0.44 +1.06

    0.3 + G

    otherwise 1.08 0.03 otherwise +

    2M3 := (0.25G ) if (G > 1)

    15

    0.5 + 0.25G 14.8 (1 G) otherwise +

    2 )3

    2 ( ( ))31 + (0.08 + 0.4 ) 1 sin otherwise ( )c

    M4 ( ) ( ( ) sin 1 0.08 0.4 1 if (G > 1):= + + T

    2

    ( ( ) cos

    )3

    otherwise

    ( )c

    M5 ( )

    ( ( )

    )3 cos 1 0.08 0.15 1 if (G > 1):= + +

    T

    2( + 0.15 )1 0.08 1+ 2( ( )2 ( )2)0.25 M6 := G sin + cos if (G > 1) 2( ( )2 ( )2)0.25 G cos + sin otherwise

    (c) nCode International 2003 Page 24 of 65

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    F ( ) := ( )M1 + 2 M2 + M34

    ( ) ( )M4 M5 M6

    ( )y :=( ) F

    Q

    Net section stress:

    P T= where P = S BT a = T c =

    ac ( ) G B T sin 4

    S BTTherefore = 2 2

    B T sin T ( )4G

    ( ) 4 S BG so :=4 GB T2 ( ) sin

    Plot SIF and the net section stress constant: := 0 0.001 .. 1.0 ,

    1.04 20

    0 0.5 0 0.5 1

    1.02

    Net

    str

    ess

    SIF

    10

    1

    0 0.98

    Crack ratio Crack ratio SIF KSN comparison

    Checksums for validating main algorithms:

    1 1 ( )y d = 0.787256 ( ) d = 1.009195 S

    0.001 0.001

    (c) nCode International 2003 Page 25 of 65

    1

    hurtkiRectangle

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    4.2 Quarter Elliptical Corner Crack at a Hole in Tension NOT VALIDATED!

    Reference: Newman & Raju, ASTM STP 2R

    c

    aT P

    791, 1983, p238

    Nominal Stress: S = P 2B T

    Crack ratio: = a T

    0.2 GLimits: 0 1.0 T

    If > 1.0 then = 1.0 B > T + 2R 2B If G < 0 then = 0 = parametric angle, angle of crack to longitudinal axis User inputs: T := 0.01 B := 0.1

    R := 0.01 := 35deg Crack aspect ratio, a/c G := 1.5

    1.65 c ( ) := T ( ) :=

    c

    1 ( ) Q := (1 + 1.464G ) if (G > 1)G ( ) cos 0.85

    1 + 1.65 (1 + 1.464G ) otherwise R

    0.04 1 +

    G G

    if (G > 1) (0.2G ) 4M1 := M2 := if (G > 1) 0.89

    0.54

    otherwise +(1.13 0.09G ) otherwise 0.2 + G

    4M3 := (0.11G ) if (G > 1) otherwise

    10.5

    if (G > 0.8 )

    24

    0.65 + G 1

    0.5 G)14 (1 otherwise +0.65 + G

    2

    )2

    1 + (0.1 + 0.35 ) 1 ( ) otherwise 2 ( sin )2

    M4 ( ) := ( ( ) sin 1 0.1 0.35 1 if (G > 1)+ + G

    (c) nCode International 2003 Page 26 of 65

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    ( ) := ( ) ( )2 ( )3 ( )4

    M5 1 + 0.13

    1 + 0.358 + 1.425 1.578 + 2.156

    ( )2

    ( )0.09

    1.13 )2 0.25 ( )M6 := ( ( ) cos 0.151 0.1 1 0.85 if (G > 1)+ +G

    0.25 ( ( ))2 ( ) cos 0.85 + 0.15 1 + 0.04 G)( 1 0.1 1 otherwise +

    2( ( )2 ( )2)0.25 M7 := G sin + cos if (G > 1) (G cos + sin )0.25 otherwise 2 ( )2 ( )2

    2 R c ( )+( ) 2 c ( )

    R

    ( ) ( )M8 := ( ( ))sec := sec 2B 4B

    M1 + M2

    2 + M3

    4

    ( )F ( ) ( ) ( ) ( )M4 M5 M6 M7 M8 :=

    ( )y :=( ) F

    :=

    Q

    Net section stress: ( ) 4 S BG As before described 4 G(B R) T2 ( ) sin

    Plot SIF and the net section stress constant: 0 0.001 .. 1:= ,

    2

    1 0 0.5 1

    Crack ratio

    1.1 0 0.5

    Crack ratio SIF KSN comparison

    (c) nCode International 2003 Page 27 of 65

    1.14

    Net

    str

    ess

    SIF

    1.5

    1.12

    1

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    Blank

    (c) nCode International 2003 Page 28 of 65

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    Series 5

    Cracks in Solid Cylinders

    (c) nCode International 2003 Page 29 of 65

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    5.1 Circumferential crack in tension

    Reference: T. F. Gray, Int. Jnl. Fracture, a

    P

    vol 13, 1977, p65

    Nominal Stress: S = 4P

    D2 Crack ratio: = 2a

    D

    Limits: 0.1 0.7

    If > 0.7 then return error.If < 0.1 then let = 0.1D

    User inputs: D := 0.05

    y ( ) 1.25 :=Net section stress: ( )2.4 1.47 1 24P D D

    = where P = S and a = (D 2a )2 4 2

    2 Therefore = SD so ( ) := S

    (D D)2 (1 )2

    Plot SIF and the net section stress constant: := 0.1 0.101, .. 0.7

    4 15

    1 0 0 0.2 0.4 0.6 0.8

    Crack ratio Crack ratio SIF KSN comparison

    Checksums for validating main algorithms:

    0 0.2 0.4 0.6 0.8

    SIF

    3 10

    Net

    str

    ess

    2 5

    0.7

    0.7

    ( )y ( )

    d = 1.071026

    d = 2.222222 S 0.1 0.1

    (c) nCode International 2003 Page 30 of 65

    hurtkiRectangle

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    5.2 Straight crack in tension

    Reference: James & Mills, Eng. Fract. Mech., vol 30, 1988, p641

    Crack ratio:

    Nominal Stress:

    a

    D =

    S = 4P

    D2

    Limits: 0.1 0.65

    D

    If > 0.65 then return error. If < 0.1 then let = 0.1

    a

    P

    User inputs: D := 0.05

    y ( ) := 0.926 1.771 + 26.4212 78.4813 + 87.9114

    Net Section Stress:

    Net Section Stresses are not currently available for this section as the formulae would be excessivly complicated for cycle-by-cycle calculation.

    Plot SIF and the net section stress constant: := 0.1 0.101, .. 0.65

    Checksums for validating main algorithms:

    0.65

    ( ) y d = 1.093342 0.1

    Crack ratioSIFKSN comparison

    0 0.2 0.4 0.6 0.8 0

    2

    4

    6

    SIF

    (c) nCode International 2003 Page 31 of 65

    hurtkiRectangle

    hurtkiRectangle

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    5.3 Semi-circular crack in tension

    Reference: James & Mills, Eng. Fract. Mech., vol 30, 1988, p641

    4P Nominal Stress: S = 2

    DCrack ratio: = a

    D

    Limits: 0.1 0.6

    If > 0.6 then return error. If < 0.1 then let = 0.1 D

    a

    P

    User inputs: D := 10

    ( ( ))

    M1 ( ) := 1.84 tan 1( ) := ( ( )) ( ( ))2 cos

    M2 ( ) ( ( ( )))3 := 0.752 + 2.02 + 0.37 1 sin

    y ( ) ( ) M2 := M1 ( )

    Net Section Stress:

    Net Section Stresses are not currently available for this section as the formulae would be excessivly complicated for cycle-by-cycle calculation.

    Plot SIF and the net section stress constant: := 0.1 0.101, .. 0.6

    0 0.2 0.4 0.6 0

    1

    2

    3

    SIF

    Checksums for validating main algorithms:

    0.6

    ( ) y d = 0.612199 0.1

    Crack ratio SIF KSN comparison

    (c) nCode International 2003 Page 32 of 65

    hurtkiRectangle

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    5.4 Crack at thread in tension

    Reference: James & Mills, Eng. Fract. a Mech., vol 30, 1988, p641

    4P Nominal Stress: S = 2

    DCrack ratio: = a

    D P Limits: 0.1 0.6

    If > 0.6 then return error. If < 0.1 then let = 0.1

    D User inputs: D := 0.05

    y ( ) := 2.043 e 31.332 + 0.6507 + 0.5367 + 3.04692 19.5043 + 45.6474

    Net Section Stress:

    Net Section Stresses are not currently available for this section as the formulae would be excessivly complicated for cycle-by-cycle calculation.

    Plot SIF and the net section stress constant: := 0.1 0.101, .. 0.6

    0

    2

    4

    SIF

    Checksums for validating main algorithms:

    0.6

    ( ) y d = 0.718844 0.1

    0 0.2 0.4 0.6 Crack ratio

    SIFKSN comparison

    (c) nCode International 2003 Page 33 of 65

    hurtkiRectangle

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    5.5 Straight Crack in Bending

    a

    Diameter DDM

    M

    M iameter D

    M

    Reference: James & Mills, Eng. Fract. Mech., vol 30, 1988, p641

    32MNominal Stress: S = 3

    DCrack ratio: = a

    D

    Limits: 0.1 0.6

    If > 0.6 then return error. If < 0.1 then let = 0.1

    User inputs: D := 0.05

    y ( ) := 1.04 3.64 + 16.862 32.593 + 28.44

    Net Section Stress:

    Net Section Stresses are not currently available for this section as the formulae would be excessivly complicated for cycle-by-cycle calculation.

    Plot SIF and the net section stress constant: := 0.1 0.10, .. 0.6

    0 0.2 0.4 0.6 0.5

    1

    1.5

    2

    SIF

    Checksums for validating main algorithms:

    0.6

    ( ) y d = 0.477819 0.1

    Crack ratio SIF KSN comparison

    (c) nCode International 2003 Page 34 of 65

    hurtkiRectangle

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    5.6 Semi-circular Crack in Bending

    Reference: James & Mills, Eng. Fract. Mech., vol 30, 1988, p641

    32MNominal Stress: S = 3MM D

    Crack ratio: = a D

    Limits: 0.1 0.6

    If > 0.6 then return error. If < 0.1 then let = 0.1MM Diameter DDiameter D

    User inputs: D := 0.05

    ( ) 1.84

    M1 ( ))

    ( )(tan M1 ( ) := M1 ( ) := ( ) := ( ( ))2 cos

    M2 ( ) ( ( ( )))4

    y ( ) := M1 ( ):= 0.923 + 0.199 1 sin

    ( )M2

    Net Section Stress:

    Net Section Stresses are not currently available for this section as the formulae would be excessivly complicated for cycle-by-cycle calculation.

    Plot SIF and the net section stress constant: := 0.1 0.10, .. 0.6

    Checksums for validating main algorithms:

    0.6

    ( ) y d = 0.366788 0.1

    Crack ratioSIFKSN comparison

    a

    0 0.2 0.4 0.6 0.6

    0.8

    1

    1.2

    SIF

    (c) nCode International 2003 Page 35 of 65

    hurtkiRectangle

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    Blank

    (c) nCode International 2003 Page 36 of 65

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    Series 6

    Cracks in Hollow Cyclinders

    (c) nCode International 2003 Page 37 of 65

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    6.1 Internal Surface Crack Under Hoop Stress

    Reference: Murakami page 751 (originally = Parametric angle, angle of crack to longitudinal axis from Newman & Raju)

    RInternal pressure Nominal Stress: S = T

    2c

    a

    R

    Crack ratio: = a T

    Limits: 0 1.0

    If > 1.0 then return error. If < 0 then let = 0

    Wall thickness T User inputs: R := 0.02 T := 0.01

    := 90deg Outer radius: Ro := R + T Crack aspect ratio, a/c

    0.2 G 2.0 G := 1

    1.65 1 + 1.464 GQ := 0.89

    M1 := 1.13 0.09G M2 := 0.54 + 0.2 + G

    1

    M3 := 0.5

    if [(G > 0.8 )(G < 1.2 )]

    24

    0.65 + G 1

    G)0.5 14 (1 otherwise +0.65 + G

    2M4 ( ) ( ) ( ( ))2 := 1 + 0.1 + 0.35 1 sin

    2M5 ( ) ( ( )2 ( )2)0.25 := sin + cos

    :=

    + 1 0.5

    T R

    2 2Ro + R2 2Ro R

    M6 ( )

    M1 + M2

    2 + M3

    4 F ( ) := ( ) ( ) ( )M4 M5 M6 0.97

    ( )y ( ) :=

    QF

    (c) nCode International 2003 Page 38 of 65

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    Net Section Stress:

    Net Section Stresses are not currently available for this section as the formulae would be excessivly complicated for cycle-by-cycle calculation.

    Plot SIF and the net section stress constant: := 0 0.001, .. 1.0

    0 0.5 1 1.05

    1.1

    1.15

    SIF

    Checksums for validating main algorithms:

    1

    ( ) y d = 1.094941 0

    Crack ratio SIF KSN comparison

    (c) nCode International 2003 Page 39 of 65

    hurtkiRectangle

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    6.2 Circumferential Crack in Thin Walled Tube in tension

    Reference: Rooke and Cartwright

    R

    a

    P

    Wall thickness T

    PNominal Stress: S = 2

    (T )2 RT Crack ratio: = a

    T

    Limits: 0 1.0

    If > 1.0 then return error. If < 0 then let = 0

    User inputs: R := 0.02 T := 0.002

    y ( ) := 1.2114 1.6578 + 11.7432 16.67293 + 9.77084

    2 2 RTNet section stress: ( ) := S(T + )(R + T T)2 R2

    Plot SIF and the net section stress constant: := 0 0.001, .. 1.0

    6 1500

    0 0.5 1

    SIF

    0 0.5 1

    4

    Net

    str

    ess 1000

    5002

    0 0

    Crack ratio Crack ratio SIF KSN comparison

    Checksums for validating main algorithms: 1

    0.999

    ( )y ( )

    d = 2.082768

    d = 7.201966 S 0 0

    (c) nCode International 2003 Page 40 of 65

    hurtkiRectangle

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    Series 8

    Cracks in Welded Tubular Joints

    (c) nCode International 2003 Page 41 of 65

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    8.1 Cracks in Welded Tubular Joints (All dimensions for this in mm!)

    D T

    d

    t a

    Reference: J. C. Kam and W. D. Dover, in proc. 6th OMAE Conference, vol 3, 1987.

    PNominal Stress: S = 2

    (d t t )Crack ratio: = a

    T

    Limits: 0.1 1.0

    If > 1.0 then return error. If < 0.1 then let = 0.1

    User inputs: 16 T 45mm T := 20

    = d/D ratio 0.48 0.76 := 0.5 Maximum Stress concentration factor: 2.66 SCF 9.4 SCF := 3

    Average Stress Concentration Factor: 1.1 aveSCF 2.22 aveSCF := 2

    0.11

    T 16

    M2 := (0.669 0.1625 aveSCF)

    0.099

    T 16

    M3 := (0.353 + 0.057 aveSCF)

    1.71 M4 := 0.231

    T 16

    0.31 0.18 SCF

    M1 ( ) := 1.0 if ( > 0.25 ) M4

    0.25

    otherwise

    y ( ) := ( )M2 M3

    M1

    (c) nCode International 2003 Page 42 of 65

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    Net Section Stress:

    Net Section Stresses are not currently available for this section as the formulae would be excessivly complicated for cycle-by-cycle calculation.

    Plot SIF and the net section stress constant: := 0.1 0.11, .. 1.0

    0.2

    0.4

    0.6

    0.8

    SIF

    Checksums for validating main algorithms:

    1

    ( ) y d = 0.455746 0.1

    0 0.5 1 Crack ratio

    SIFKSN comparison

    (c) nCode International 2003 Page 43 of 65

    hurtkiRectangle

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    Blank

    (c) nCode International 2003 Page 44 of 65

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    Series 9

    Cracks at Spot Welds in Tension

    (c) nCode International 2003 Page 45 of 65

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    9.1 Cracks at Spot Welds in Tension (All dimensions for this in mm!)

    Reference: R. F. Smith, Unpublished Research, Sheffield University, 1993.

    PNominal Stress: S = T W

    Crack ratio: = a T

    Limits: 0.1 1.0

    P T If > 1.0 then return error. If < 0.1 then let = 0.1

    W

    User inputs: 0.5 T 4 T := 2 3 D 10 D := 5

    ( ) := T base := T a 1.5 D

    2 3 M3 := 7.407 base M4 := 11.2 baseM2 := 1.877 base

    y' := M1 M2 + M3 M4 y ( ) := ( )

    y' WT

    a

    Net Section Stress:

    Net Section Stresses are not currently available for this section.

    Plot SIF and the net section stress constant: := 0.1 0.101, .. 1.0

    Checksums for validating main algorithms:

    1

    y d( ) = 10.687032 0.1

    Crack ratioSIFKSN comparison

    D

    M1 0.2608 :=

    W 100 :=

    0 0.5 1 0

    10

    20

    30

    SIF

    (c) nCode International 2003 Page 46 of 65

    hurtkiRectangle

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    Series 3 & 7

    Elliptical & Semi-elliptical Surface Cracks in

    Welded and Unwelded Plates

    The following calculations are based on the work by Newman & Raju, ASTM STP 791, 1983, p238. These provide a standard set of formulae pertaining to surface cracks in plates subjected to tension and bending stresses. The work was subsequantly extended by BSI Published Document PD6493, 1991 (originally from TWI and based on Newman & Raju) to include the effects of welds.

    The following section derives a basic set of equations and then determines the SIFs for the common set of geometries contained in the KRAKEN database.

    Note:

    Net Section Stress values are not currently available for these geometries!

    (c) nCode International 2003 Page 47 of 65

    hurtkiRectangle

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    Basic Cracks in Tension

    2c

    a

    B

    T P

    = Parametric angle, angle of crack to longitudinal axis B > T

    Surface Cracks

    T

    B

    L

    a

    2c

    P

    P 6M Nominal Tension Stress: St = Nominal Bending Stress: Sb = B T 2 B TCrack ratio: = a Limits: 0.2 0.9

    T If > 0.9 then return error. If < 0.2 then let = 0.2

    User inputs: T := 0.01 B := 0.1 := 90deg L := 0.02

    Crack aspect ratio, a/c G := 1.0 Ratio of bending to tension: U := 5

    Derived properties: Crack depth: a ( ) := T Crack half width: c ( ) := T

    G

    Coefficient common to all plates: := 1 + 1.464G1.65 if (G 1.0 ) 1.65 1 + 1.464G otherwise

    LWeld length ratio, L/T :=T

    (c) nCode International 2003 Page 48 of 65

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    SIF calculations:

    B1 Special case for Full Width Cracks where C 2

    This special case is common for all plates whether welded or unwelded.

    y ( ) ( ( ) )' := 0.89127 if 0.999B < a < 1.001B ( )

    2 T

    cos a

    otherwise

    1 y

    2. Partial Width Surface Cracks in Unwelded Plates in Tension:

    2M1 := (1.13 9.000001 10 G) if ( G 1.0 ) 0.5 G

    0.04

    1 otherwise +G

    M2 0.54 0.2

    G4

    :=0.89

    +0.2 + G

    1.0 )

    24

    if (G

    otherwise

    10.5 G) if (G 1.0 )M3 := 14 (1+0.65 + G 0.11

    otherwise 4G

    0.25 ( )2sin )2(

    ( )G cos 1.0 )M4 := if (G+

    0.25

    ( )2 cos 2( )sin

    otherwise +G

    2( + 0.35 )

    )2

    ( sin ( ) )2

    M5 ( ) ( ( ) sin 1.0 )1 0.1 1 if (G:= +

    2

    1 + 0.1 0.35 + 1 otherwise

    G

    (c) nCode International 2003 Page 49 of 65

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    1( ) :=M6 cos

    ( ) c

    B

    M1 + M2

    2 + M3

    4 M4

    ( )MM := ( ) ( )M5 M6

    3. Partial Width Surface Cracks in Unwelded Plates in Bending:

    M7 ( ) := 1 0.34 0.11G if (G 1.0 ) 1

    0.04 +

    0.41 +

    0.55 1.93 1.38 2 otherwise +

    0.75 1.5 G G

    G

    M9 := 1.22 0.12G if (G 1.0 ) 0.77

    2.11 + otherwise G

    M10 := 0.55 1.05G0.75

    + 0.47G1.5 if (G 1.0 ) 0.72 0.14

    0.55 + otherwise 0.75 1.5 G G

    M8 ( ) := 1 + M9 + M10 2

    ( )P1 := 0.2 + G + 0.6 if (G 1.0 ) 1

    0.2 + 0.6 + otherwise G

    H ( ) := 0 if ( < 1deg ) + ( > 179deg ) sin otherwise ( )H ( ) + ( ) ( ) P1( ) M7 (M8 M7 )max H 0( , )

    (c) nCode International 2003 Page 50 of 65

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    4. Modification Factors for Surface Cracks in the Weld Toe:

    Uniaxial Tension:

    0.55 1 := 0.05

    ( )MKM := if ( 2.0 )MKM 0.51 0.27 0.31 if ( 1)

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    3.1 Surface Cracks in Tension

    Reference: Newman & Raju, ASTM STP 791, 1983, p238

    PNominal Stress: S = B T

    a

    Crack ratio: = a T

    2c

    B

    P

    T Limits: 0.2 0.9

    If > 0.9 then return error. If < 0.2 then let = 0.2 = Parametric angle, angle of

    crack to longitudinal axis User inputs: T 0.01 = B 0.1 =

    90 deg =Crack aspect ratio, a/c G 1=

    B > T

    if ( )c B

    y ( ) ( )y' :=

    2

    MM ( )otherwise

    Plot SIF and the net section stress constant: := 0.2 0.201, .. 0.9

    Checksums for validating main algorithms:

    0.2 0.4 0.6 0.8

    0.7

    0.2

    0.65

    Crack ratioSIFKSN comparison

    SIF 0.9

    ( )y d = 0.489581

    (c) nCode International 2003 Page 52 of 65

    hurtkiRectangle

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    3.2 Surface Cracks in Bending

    Reference: Newman & Raju, ASTM STP 791, 1983, p238

    2c

    B

    P

    6M Nominal Stress: S = 2

    a B TCrack ratio: = a

    T T

    Limits: 0.2 0.9

    If > 0.9 then return error. If < 0.2 then let = 0.2 = Parametric angle, angle of

    crack to longitudinal axis User inputs as above: T 0.01 = B 0.1 =

    90 deg =Crack aspect ratio, a/c G 1=

    B > T

    if ( )c B

    2

    y ( ) ( )y' :=H ( )

    otherwise

    Plot SIF and the net section stress constant: := 0.2 0.201, .. 0.9

    0.6 Checksums for validating main algorithms:

    0.4

    0.2 0.4 0.6 0.8

    SIF

    0.2 0.2

    0

    Crack ratioSIFKSN comparison

    0.9 ( )y d = 0.124839

    (c) nCode International 2003 Page 53 of 65

    hurtkiRectangle

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    3.5 Surface Cracks in Combined Tension and Bending

    Reference: Newman & Raju, ASTM STP 791, 1983, p238

    2c

    B

    T M

    P

    P 6M Nominal Stress: St = =SbB T 2a B T

    Crack ratio: = aT

    Limits: 0.2 0.9

    If > 0.9 then return error. If < 0.2 then let = 0.2 = Parametric angle, angle of crack to

    longitudinal axis U = Bending / Tension ratio User inputs as above: T = 0.01 B = 0.1 B > T

    = 90 degCrack aspect ratio, a/c G = 1

    SbRatio of Bending stress to tension stress, 0 10: U = 5 St

    SIF is calculated by the weighted sum of the above formulae following the expression:

    y ( ) ( )y' (1 + U) if ( )c B

    2

    :=

    ( )( ) ( )MM + U H MM

    otherwise

    Net Section Stress:

    Net Section Stresses are not currently available for this section.

    Plot SIF and the net section stress constant: := 0.2 0.201, .. 0.9

    4

    3 Checksums for validating main algorithms:

    0 0.2 0.4 0.6 0.8

    Crack ratioSIFKSN comparison

    (c) nCode International 2003 Page 54 of 65

    SIF

    2 0.9 ( )y d = 1.157583

    1 0.2

    hurtkiRectangle

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    7.1 Weld Toe Surface Cracks in Tension

    Reference: BSI Published Document PD6493, 1991 (originally from TWI and based on Newman & Raju) to include the effects of welds.

    Nominal Stress: S = P B T

    Crack ratio: = a T

    T If < 0.2 then let = 0.2

    B

    L

    a

    2c

    P

    Limits: 0.2 0.9

    If > 0.9 then return error.

    User inputs: T = 0.01 B = 0.1 = 90 deg L = 0.02

    Crack aspect ratio, a/c G = 1

    y ( ) ( )y' if ( )c B

    2

    :=

    ( ) MKM MM ( )otherwise

    Plot SIF and the net section stress constant: := 0.2 0.201, .. 0.9

    Checksums for validating main algorithms:

    0.75

    0.7

    0.2 0.4 0.6 0.8

    SIF

    0.2

    0.65

    Crack ratioSIFKSN comparison

    0.9 ( )y d = 0.498878

    (c) nCode International 2003 Page 55 of 65

    hurtkiRectangle

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    7.2 Weld Toe Surface Cracks in Bending

    Reference: BSI Published Document PD6493, 1991 (originally from TWI and based on Newman & Raju) to include the effects of welds.

    Nominal Stress: S = 6M

    B T2 Crack ratio: = a

    T

    T If < 0.2 then let = 0.2

    B

    L

    a

    2c

    M

    Limits: 0.2 0.9

    If > 0.9 then return error.

    User inputs: T = 0.01 B = 0.1 = 90 deg L = 0.02

    Crack aspect ratio, a/c G = 1

    y ( ) ( )y' if ( )c B

    2

    :=

    ( ) MKB H ( )otherwise

    Plot SIF and the net section stress constant: := 0.2 0.201, .. 0.9

    0.6

    Checksums for validating main algorithms: 0.4

    0.2 0.4 0.6 0.8

    0.2

    SIF

    0.2

    0

    Crack ratioSIFKSN comparison

    0.9 ( )y d = 0.124839

    (c) nCode International 2003 Page 56 of 65

    hurtkiRectangle

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    7.5 Weld Toe Surface Cracks in Combined Tension and Bending

    Reference: BSI Published Document PD6493, 1991 (originally from TWI and based on Newman & Raju) to include the effects of welds.

    Nominal Stress: St = P

    B TSb =

    6M

    B T2 Crack ratio: = a

    T

    T If < 0.2 then let = 0.2

    B

    L

    a

    2c

    M

    Limits: 0.2 0.9

    If > 0.9 then return error.

    P User inputs: T = 0.01 B = 0.1 = 90 deg L = 0.02

    Crack aspect ratio, a/c G = 1 Bending ratio: U = 5

    y ( ) ( )y' (1 + U) if ( )c B

    2

    :=

    ( ) ( ) ( ) ( )otherwise

    MM + MM ( ) MKM U H MKB

    Plot SIF and the net section stress constant: := 0.2 0.21, .. 0.9

    4

    3 Checksums for validating main algorithms:

    0 0.2 0.4 0.6 0.8

    Crack ratio SIF KSN comparison

    SIF

    2

    0.9 ( )y d = 1.166879

    0.2 1

    (c) nCode International 2003 Page 57 of 65

    hurtkiRectangle

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    Blank

    (c) nCode International 2003 Page 58 of 65

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    Series 3 & 7

    Elliptical & Semi-elliptical Embedded

    Cracks in Welded and Unwelded Plates

    The following calculations are based on the work by Newman & Raju, ASTM STP 791, 1983, p238. These provide a standard set of formulae pertaining to embedded cracks in plates subjected to tension and bending stresses. The results apply similarly for welded details following an assumption that the weld has negligable effect on the SIF.

    The following section derives a basic set of equations and then determines the SIFs for the common set of geometries contained in the KRAKEN database.

    Note:

    Net Section Stress values are not currently available for these geometries!

    (c) nCode International 2003 Page 59 of 65

    hurtkiRectangle

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    Embedded Cracks in Tension

    T

    2c

    2a

    B

    P

    P

    T L

    2a

    2c

    P = Parametric angle, angle of crack tolongitudinal axisP = Minimum clearance to surface

    BB > T

    P 6M Nominal Tension Stress: St = Nominal Bending Stress: Sb = B T 2 B TCrack ratio: = a Limits: 0.2 0.9

    T If > 0.9 then return error. If < 0.2 then let = 0.2

    User inputs: T := 0.01 B := 0.1 := 90deg P := 0.05

    Crack aspect ratio, a/c G := 1 Ratio of bending to tension: U := 5 (Crack length L not required)

    Derived properties: Crack depth: a ( ) := T Crack half width: c ( ) := T

    G

    ( ) T T + P

    Effective crack ratio required for embedded cracks: ' :=

    Coefficient common to all plates: := 1 + 1.464G1.65 if (G 1.0 ) (as surface cracks)

    1.65 1 + 1.464G otherwise

    (c) nCode International 2003 Page 60 of 65

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    SIF calculations:

    B1 Special case for Full Width Cracks where C 2

    This special case is common for all plates whether welded or unwelded. (As surfacce cracks)

    y ( ) ( ( ) )' := 0.89127 if 0.999B < a < 1.001B ( )

    2 T cos

    a

    otherwise

    1 y

    2. Partial Width Embedded Cracks in Unwelded Plates in Tension:

    The modified M1-M6 are given as:

    M1 := 1.0 if (G 1.0 ) 0.5 G otherwise

    0.05 0.29 M2 := M3 :=1.5 1.5 0.11 + G 0.23 + G

    0.25 ( )2sin )2(

    ( )G cos if (G 1.0 )M4 := +

    0.25

    ( )2 cos 2( )sin

    otherwise +G

    4 2.6 2' M5 '( ) ( )cos ':= 1 1 + 4G

    1

    ' cos

    M6( ') :=,

    ( ) c

    B

    := M1 + M2'2 + M3'

    4MM ( ') ( ) ( , )M5 ' M6 'M4 ,

    (c) nCode International 2003 Page 61 of 65

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    3. Partial Width Embedded Cracks in Unwelded Plates in Bending:

    MB ( , ') := MB 0 (MB 1.044

    ) ( )( )P P a

    if > 89deg < 91deg

    if

    P T

    < 0.1841 2.44 3.166 T 2T

    otherwise

    MB 0.94 + 1.875 P 0.1146' 1.844 P if (' < 0.125 )T 2T

    P PMB 1.06 2.2 0.6666 ' 0.6666 otherwise

    T 2T

    MB max MB 0( , ) MB 1.0 otherwise MB

    4. Modification Factors for Embedded Cracks in the Weld Toe:

    No modification required. Welds do not affect the SIF.

    (c) nCode International 2003 Page 62 of 65

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    3.3 & 7.3 Embedded Cracks in Tension

    2c

    2a

    P

    P

    Limits: 0.2 0.9

    B If > 0.9 then return error. If < 0.2 then let = 0.2

    Reference: Newman & Raju, ASTM STP 791, 1983, p238

    PNominal Stress: S = B T

    Crack ratio: = a TT

    = Parametric angle, angle of crack to longitudinal axis P = Minimum clearance to surface User inputs as above: T = 0.01 B = 0.1 B > T

    90 deg = P 0.05 =Crack aspect ratio, a/c G 1=

    y ( ) ( )y' if ( )c B

    2

    :=

    MM , ' ( ( ))otherwise

    Plot SIF and the net section stress constant: := 0.2 0.201, .. 0.9

    0.64 Checksums for validating main algorithms:

    0.639

    0.2 0.4 0.6 0.8

    SIF

    0.2 0.638

    0.637

    Crack ratio SIF KSN comparison Welded KSN comparison

    0.9 ( )y d = 0.446623

    (c) nCode International 2003 Page 63 of 65

    hurtkiRectangle

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    3.4 & 7.4 Embedded Cracks in Bending NOT VALIDATED!

    2c

    2a

    B

    P

    Reference: Newman & Raju, ASTM STP 791, 1983, p238

    6M Nominal Stress: S = 2B T

    Crack ratio: = a T

    T

    Limits: 0.2 0.9 M

    If > 0.9 then return error. If < 0.2 then let = 0.2

    = Parametric angle, angle of crack to longitudinal axis User inputs as above: T = 0.01 B = 0.1 P = Minimum clearance to surface B > T = 90 deg P = 0.05

    Crack aspect ratio, a/c G = 1

    y ( ) ( )y' if ( )c B

    2

    :=

    MB , ' ( ( ))otherwise

    Plot SIF and the net section stress constant: := 0.2 0.201, .. 0.9

    10

    Checksums for validating main algorithms:

    0.2 0.4 0.6 0.8

    0.2

    0

    Crack ratioSIFKSN comparisonWelded KSN comparison

    SIF 5 0.9

    ( )y d = 0

    (c) nCode International 2003 Page 64 of 65

    hurtkiRectangle

    hurtkiRectangle

    hurtkiRectangle

  • Copyright 2010 HBM

    Dr. Andrew Halfpenny 17/11/2004

    3.6 Embedded Cracks in Combined Tension and Bending NOT VALIDATED!

    If > 0.9 then return error.

    0.2 0.9 Limits:

    a

    T =Crack ratio:

    Sb 6M

    B T2 =St

    P B T

    =Nominal Stress:

    Reference: Newman & Raju, ASTM STP 791, 1983, p238

    2c

    2a

    B

    P

    M

    P

    T

    If < 0.2 then let = 0.2 = Parametric angle, angle of crack to longitudinal axis P = Minimum clearance to surface User inputs as above: T = 0.01 B = 0.1 U = Bending / Tension ratio

    = 90 deg P = 0.05 Crack aspect ratio, a/c G = 1

    SbRatio of Bending stress to tension stress, 0 10: U = 5 St

    SIF is calculated by the weighted sum of the above formulae following the expression:

    y ( ) ( )y' (1 + U) if ( )c B

    2

    :=

    ( , ( )) ( , '( )) MM ( '( ))MM ' + U MB , otherwise

    Net Section Stress:

    Net Section Stresses are not currently available for this section.

    Plot SIF and the net section stress constant: := 0.2 0.201 .. 0.9 ,

    40

    0.2 0.4 0.6 0.8

    Checksums for validating main algorithms:

    SIF

    20 0.9

    ( )y d = 0.446623 0.2

    0

    Crack ratioSIFKSN comparison

    (c) nCode International 2003 Page 65 of 65

    hurtkiRectangle

    hurtkiRectangle

    hurtkiRectangle