corrensite mineralogical ambiguities and geologic significance

Upload: rodolfo-salomon

Post on 10-Oct-2015

18 views

Category:

Documents


0 download

TRANSCRIPT

  • 5/20/2018 CORRENSITE Mineralogical Ambiguities and Geologic Significance

    1/54

    UNITED STATES DEPARTMENT OF THE INTERIOR

    GEOLOGICAL SURVEY

    CORRENSITE: Mineralogical Ambiguities

    and

    Geologic Significance

    By

    Phoebe

    L . Hauff

    Open-File

    Report 81-850

    1 9 8 1

    T h i s report

    i s

    preliminary a n d has n o t been

    edited o r

    reviewed

    f o r conformity

    with

    U . S .

    Geological Survey

    standards.

  • 5/20/2018 CORRENSITE Mineralogical Ambiguities and Geologic Significance

    2/54

    TABLE OF

    CONTENTS

    Page

    A b s t r ac t . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 1

    I nt ro d uct ion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 2

    History

    o f

    t h e Study o f Corrensite......................................

    2

    Definition

    o f

    Corrensit e .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .. . .

    3

    Physical

    and

    Chemical Criteria f o r t h e Identification o f Corrensite..... 5

    X-ray

    Diffraction

    Analysis Criteria................................ 5

    Differential Thermal Analysis

    Criteria............................. 1 4

    Chemical Criteria.................................................. 1 6

    Scanning Electron Microscopy Criteria............... ............ ...

    2 0

    Swelling Layer

    Characteristics.......................................... 2 2

    Summary o f

    Mineralogical

    Data

    Implications..............................

    2 5

    Geologic

    Significance o f Corrensite Occurrences............... .......... 2 5

    Distribution o f Corrensite Occurrences Through Geologic

    Time.......

    2 6

    Hypothesized

    Origins o f

    Sedimentary Corrensite

    Species............. 2 8

    Occurrences

    o f

    Corrensite i n Sedimentary Environments..............

    3 2

    E v a p o r i t e - B e a r i n g

    H o s t

    R o c k s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    32

    Carbonate-Bearing Host Rocks..................................

    3 2

    Transitional Marine Environments............ ......... ........ . 3 2

    Occurrence o f Corrensite i n t h e

    Supai

    Group Rocks.................. 3 2

    Summary o f Sedimentary Occurrences................................. 3 6

    Occurrence o f Corrensite i n Hydrothermal and Low-grade

    Metamorphic

    R ocks . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 3 7

    Summary

    and Discussion..................................................

    3 7

    R ef erences . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 4 1

  • 5/20/2018 CORRENSITE Mineralogical Ambiguities and Geologic Significance

    3/54

    LIST OF FIGURES

    Page

    Figure 1 .

    X-ray diffraction

    patterns o f

    various corrensite

    samples.....

    6

    2 . Differential

    thermal analysis

    curves

    from a corrensite

    s am ple. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7

    3 . Ternary diagrams showing elemental relationships from s o m e

    corrensite

    samples

    documented

    i n t h e

    literature............

    1 9

    4 . Scanning

    electron microscope

    photographs

    and

    energy

    dispersive spectra o f corrensite specimens................. 2 1

    5 . A diagrammatic

    representation

    o f an

    intact

    chlorite

    structure which h a s been breached o r not completed......... 2 3

    6 . Distribution

    o f

    corrensite and associated magnesium-bearing

    minerals

    through

    geologic time.............................

    2 7

    7 . Diagrammatic representation

    o f

    t h e hypothesized origins

    o f

    authigenic, sedimentary corrensites.................... .

    2 9

    8 . Stability f i e l d s f o r authigenic corrensites and

    associated minerals........................................ 3 1

    LIST

    OF TABLES

    Page

    Table I . T h e reactions

    o f

    various corrensite species

    t o

    standard

    clay analyses

    t e s t s

    a s

    shown

    b y t h e superorder

    angstrom

    positions derived b y X-ray powder diffraction methods....... 4

    I I . Tabulation

    o f

    X-ray diffraction data

    from

    patterns

    o f

    corrensite species

    shown

    i n F i g u r e 1........................

    7

    I I I .

    X-ray

    diffraction

    data

    f o r corrensite

    species

    from t h e

    literature which cite vermiculite

    a s

    swelling-layer

    cons t it u ent . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . 9

    I V .

    X-ray diffraction

    data

    f o r

    corrensite

    species

    from

    t h e

    literature t h a t

    c i t e

    swelling chlorite a s swelling

    layer

    constituent.......................................... 1 1

    V .

    X-ray diffraction

    data f o r corrensite

    species from

    t h e

    literature t h a t

    cite

    montmorillonite a s t h e swelling

    layer constituent..........................................

    1 2

    V I .

    X-ray diffraction data f o r corrensite species from t h e

    literature

    t h a t

    c i t e

    saponite a s t h e swelling

    layer

    cons tit u ent . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3

    V I I . Compilation

    o f DTA

    data f o r corrensite-like phases

    from

    literature

    s ou rces . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 1 5

    V I I I . Chemical analyses

    o f

    s o m e corrensite

    samples

    from t h e

    lit erat u re. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 1 8

    I X .

    Corrensite

    occurrences i n

    evaporite-bearing rocks

    X . Corrensite occurrences i n primarily carbonate-bearing

    rocks . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 3 4

    X I . Corrensite occurrences i n transitional

    marine o r

    near-marine environments.................................... 3 5

    X I I . Hydrothermal

    corrensite

    occurrences...........................

    3 8

    X I I I . Low-grade metamorphic corrensite occurrences..................

    3 9

    i i

  • 5/20/2018 CORRENSITE Mineralogical Ambiguities and Geologic Significance

    4/54

    ABSTRACT

    This

    paper

    i s a

    summary

    of

    the information available on the mixed-layer

    clay

    mineral

    corrensite.

    For 30

    years

    corrensite

    and

    corrensite-like

    phases

    have been reported

    in

    the literature.

    The

    best-known occurrences are

    in

    the

    German

    and

    English

    Keuper

    Marl, the German Zechstein, the

    French

    Jura Basin,

    and the

    Texas-New

    Mexico Delaware Basin. Corrensite

    i s

    d efined

    a s a

    1 : 1 ,

    regularly, interstratified , probably

    trioctahedral

    c l a y mineral species

    composed

    o f a 14A

    chlorite and

    a swelling-clay layer. The

    latter

    has

    been

    variously

    d efined

    a s a

    v ermlculite, a

    montmorillonite,

    a

    saponite, and a

    swelling

    chlorite. The most

    common constituent

    o f

    the

    swelling

    layer appears

    t o be a

    smectite w i t h swelling chlorite

    the

    next most

    common.

    Vermiculite

    does not seem t o

    be a

    v alid species name

    for

    the swelling

    layer.

    Differential

    Thermal

    Analysis curves show

    endothermic

    peaks

    at

    100-200C, 550-660C, and

    8 30-8 5 0C

    w i t h

    an

    exothermic

    peak

    at

    850-900C.

    The eleven

    chemical

    analyses

    for corrensite, taken

    from

    the literature, can be

    separated

    on

    an

    environmental

    and chemical

    basis; hy drothermal

    samples

    lie in

    the

    vermiculite

    field; sedimentary samples

    cluster

    into the

    saponite

    field.

    Corrensite

    i s

    found in three ty pes

    o f

    en v ironm ent s ed im ent ar y ,

    hyd rothermal, and low -grade

    metamorphic. I t has

    a

    d efinite

    distribution

    through geologic

    time

    w i t h the

    major sedimentary occurrences being

    in the

    Paleozoic

    and

    early Mesozoic

    while

    the

    hy drothermal

    occurrences

    are

    grouped

    in the

    Cretaceous

    and Tertiary.

    Sedimentary

    corrensite i s hy pothesized t o

    form

    by

    ion aggradation

    o f

    a

    less-ordered

    species. Sedimentary corrensites are shown t o exist

    in

    evaporite-bearing rocks, in carbonate-bearing host rocks, and in

    transitional

    marine

    lithologies.

    I n general, t h e shallow

    marine conditions

    o f a warm,

    e p i c o n t i n e n t a l

    sea

    seem

    t o favor corrensite formation.

  • 5/20/2018 CORRENSITE Mineralogical Ambiguities and Geologic Significance

    5/54

    INTRODUCTION

    T h i s article

    i s a survey o f t h e

    corrensite d i l e m m a t h e unfortunate

    assignment

    o f

    t h e mineral name corrensite

    t o

    a t least four discrete

    mixed-layer clay s p e c i e s ; chlorite-vermiculite, chlorite-montmorillonite,

    chlorite-swelling chlorite, a n d

    chlorite-saponite. I t i s t h e author's

    intent

    t o present a summary o f t h e ambiguities

    a n d

    contradictions encountered i n t h e

    literature under

    t h e heading

    o f corrensite

    o r

    corrensite-like p h a s e s .

    There

    i s

    considerable

    reference

    material available on

    corrensite.

    Unfortunately, many researchers have been confronted with t h e

    problems

    o f

    duplicitous definitions a n d much

    o f

    t h e subsequent work

    h a s

    been poorly

    defined

    tending

    t o compound

    t h e confusion.

    I t i s

    n o t

    t h e objective o f t h e author t o offer any definite solutions

    at

    t h i s

    t i m e .

    Additional

    research,

    compilations

    a n d

    data integration must b e

    carried o u t o n representative samples a n d an extensive research

    project t o

    t h i s e n d

    i s being

    implemented. H o w e v e r ,

    i t i s t h e

    intent

    o f

    t h i s work

    t o

    summarize

    t h e

    available information

    i n a s

    useful detail

    a s

    i s

    practical,

    outline

    specifically

    t h e existing

    problem a r e a s ,

    offer

    s o m e

    guidelines

    f o r

    phase identification,

    a n d

    discuss why t h e dilemma

    exists.

    A s many literature citations a s possible

    a r e

    included i n t h i s p a p e r .

    H o w e v e r , some references

    have

    been excluded. T h e criteria used f o r exclusion

    were duplications, incomp lete d a t a , a n d lack o f t i m e

    t o

    translate o r t o

    abstract.

    I t

    w a s not

    t h e

    intention

    t o

    slight any

    researcher.

    T h e author

    would appreciate t h a t oversights b e brought

    t o

    her attention s o t h a t

    subsequent work can b e a s complete a s

    possible.

    HISTORY OF THE

    STUDY

    OF CORRENSITE

    Corrensite h a s appeared in t h e literature a s a recognized species

    f o r

    nearly thirty y e a r s .

    A

    mixed-layer

    phase

    with what

    w a s later

    defined a s

    corrensite characteristics w a s synthesized b y

    Calliere

    and Henin

    in 1 9 4 9 . A s

    a naturally occurring species i t w a s f i r s t documented from t h e Triassic Keuper

    Marl in England b y I . Stephen

    and

    D . M . C .

    MacEwan

    in

    1 9 5 0

    and 1 9 5 1 . Honeyborne

    ( 1 9 5 1 )

    also

    reported i t from t h i s

    locality. T w o excellent a n d more

    detailed

    characterizations o f corrensite from t h e Keuper i n England were

    done

    i n Davis

    ( 1 9 6 7 ) and MacNeill ( 1 9 7 8 ) .

    The term corrensite was first used b y Friedrich

    Lippmann

    in

    h i s

    1 9 5 4

    paper on

    t h e

    G e r m a n , Triassic,

    Keuper

    M a r l .

    T h e

    mineral was

    named i n honor o f

    Professor

    C .

    W .

    Correns

    o f

    Gottingen, Germany.

    D r .

    Lippmann,

    i n h i s o w n

    research

    ( 1 9 5 4 , 1 9 5 6 , 1 9 7 6 )

    a n d i n t h a t

    o f

    h i s

    various

    countrymen

    (Lippmann

    and S a v a s c i n , 1 9 6 9 ; E c h l e ,

    1 9 6 1 ;

    B e c h e r , 1 9 6 5 ; Schlenker,

    1 9 7 1 ) ,

    presented

    detailed examinations

    o f

    corrensite

    occurrences

    in

    t h e

    primarily evaporite

    sequences

    o f

    t h e Keuper a n d associated

    formations.

    Corrensite

    was

    reported from another evaporite deposit, t h e famous

    Permian

    Zechstein

    o f

    Germany b y Dreizler

    ( 1 9 6 2 )

    a n d Braitsch

    ( 1 9 6 0 , 1 9 7 1 ) .

    I t

    was found

    in

    t h e

    evaporite-bearing Permian S a l a d o Formation

    o f

    t h e Delaware

    B a s i n , o f New Mexico b y Grim

    a n d h i s

    co-authors ( 1 9 6 0 ) with additional

    work

    done b y

    Fournier ( 1 9 6 1 ) ,

    Madsen ( 1 9 7 8 ,

    personal communication),

    Bodine

    ( 1 9 7 8 )

    and

    Loehr ( 1 9 7 9 ) .

    2

  • 5/20/2018 CORRENSITE Mineralogical Ambiguities and Geologic Significance

    6/54

    Another

    famous

    basin occurrence f o r corrensite i s t h a t

    o f

    t h e Jura i n

    F r a n c e . Here corrensite

    was

    documented b y Millot

    and his

    associates ( 1 9 6 3 ) ;

    by Martin

    Vivaldi and MacEwan ( 1 9 5 7 ) ,

    Lucas a n d Ataman

    ( 1 9 6 8 ) , b y

    Lucas

    ( 1 9 6 2 ) ;

    a n d

    T a r d y ,

    e t

    a l . ( 1 9 7 2 ) .

    There are also numerous

    reports

    o f t h i s

    mineral

    from hydrothermal

    environments.

    J a p a n , i n

    particular, hosts

    many

    corrensites

    a n d

    corrensite-

    like minerals formed

    a s

    byproducts

    o f

    o r e deposition. Corrensite species have

    been

    identified from

    widespread geographic localities: South West A f r i c a ,

    I c e l a n d , J a p a n ,

    Mozambique,

    I t a l y ,

    I n d i a ,

    Austria, R u s s i a ,

    S p a i n ,

    S c o t l a n d ,

    and

    i n t h e United S t a t e s , N e v a d a , North C a r o l i n a , C o l o r a d o , Tennessee, Kansas,

    California,

    I l l i n o i s , and

    Arizona; and from diverse geologic enviro nments

    such

    a s

    pegmatites,

    geothermal s y s t e m s , ore-rock

    alteration

    z o n e s , dike-intruded

    s h a l e s , hydrothermally altered calcareous argillites, altered basalts, various

    low-grade

    metamorphic

    alteration r e g i m e n s , transitional marine and near-shore

    marine environments,

    and

    shallow marine carbonates. Most o f

    these

    occurrences

    have been summarized i n t a b l e s which appear later i n t h i s p a p e r .

    T h i s

    brief

    historical summary

    o f

    documented corrensite occurrences

    indicates t h a t t h e mineral

    has

    been recognized b y , relatively

    s p e a k i n g ,

    a

    great

    number o f workers i n

    t h e l a s t

    thirty

    y e a r s .

    DEFINITION OF CORRENSITE

    The

    most confusing

    aspect o f t h e

    corrensite problem

    i s

    i n

    t h e

    definition

    o f corrensite. I n

    g e n e r a l ,

    t h e literature i s

    i n

    agreement

    t h a t

    corrensite

    i s

    a

    1 : 1 , r e g u l a r , interstratified, probably trioctahedral, species composed

    o f a chlorite layer

    and

    a

    swelling-clay l a y e r . Disputation a r i s e s , however,

    when attempts a r e made t o characterize t h e swelling-clay l a y e r .

    Corrensite

    h a s

    been documented

    a s

    regularly interlayered:

    chlorite-swelling c h l o r i t e ,

    chlorite-saponite,

    chlorite-montmorillonite, a n d

    chlorite-ven niculite. These different

    species do

    seem surficially t o conform

    t o t h e definitions given

    by their authors. The

    lattice

    s p a c i n g s ,

    i n

    angstroms, shown i n Table

    1 , attempt t o define

    numerically

    t h e components

    o f

    t h e various

    mixed-layer

    s p e c i e s . T h i s i s a generalized v e r s i o n ,

    a s

    variations

    on

    these spacings seem

    t h e

    rule

    rather

    than

    t h e exception. T h e swelling-

    chlorite

    variety

    expands with g l y c o l , b u t

    d o e s

    n o t collapse with h e a t .

    The

    montmorillonite

    layer

    both expands

    with glycol a n d contracts with h e a t , a s

    does

    t h e

    s a p o n i t e ,

    although t h e saponite ma y expand more with glycol

    than d o e s

    t h e montmorillonite. T h e vermiculite constituent d o e s n o t expand with glycol

    b u t d o e s

    collapse with h e a t .

    Each

    o f t h e s e ,

    t h e r e f o r e , s e e m s

    t o b e a distinct

    definable

    p h a s e .

    T o simplify nomenclature, throughout

    t h i s

    paper

    t h e

    t e r m s smectite,

    montmorillonite, vermiculite,

    a n d

    swelling-chlorite will b e

    used

    without

    t h e

    chlorite modifier

    t o

    mean

    t h e nonchlorite layers

    o f a

    corrensite

    s p e c i e s . Unless otherwise n o t e d , t h e species designations used are those

    assigned b y t h e original authors. Although corrensite

    i s

    defined a s

    possessing a

    1 : 1

    relationship between i t s l a y e r s , t h i s

    i s

    seldom

    t r u e , a s

    will

    be shown

    through t h e

    compilations i n t h e

    section

    on

    X-ray

    diffraction

    d a t a .

    There are

    usually minor

    discrepancies,

    and

    many t i m e s ,

    major o n e s .

  • 5/20/2018 CORRENSITE Mineralogical Ambiguities and Geologic Significance

    7/54

    T

    a

    b

    l

    e

    I

    .

    T

    h

    e

    r

    e

    a

    c

    t

    i

    o

    n

    s

    o

    f

    v

    a

    r

    i

    o

    u

    s

    c

    o

    r

    r

    e

    n

    s

    i

    t

    e

    s

    p

    e

    c

    i

    e

    s

    t

    o

    s

    t

    a

    n

    d

    a

    r

    d

    c

    l

    a

    y

    a

    n

    a

    l

    y

    s

    e

    s

    t

    e

    s

    t

    s

    s

    h

    o

    w

    n

    b

    y

    t

    h

    e

    s

    u

    p

    e

    r

    o

    r

    d

    e

    r

    a

    n

    g

    s

    t

    r

    o

    m

    p

    o

    s

    i

    t

    i

    o

    n

    s

    d

    e

    r

    i

    v

    e

    d

    b

    y

    X

    -

    r

    a

    y

    p

    o

    w

    e

    r

    d

    i

    f

    f

    r

    a

    c

    t

    i

    o

    n

    m

    e

    t

    h

    o

    d

    s

    ,

    S

    p

    a

    c

    i

    n

    g

    s

    g

    i

    v

    e

    n

    i

    n

    t

    h

    e

    l

    a

    s

    t

    c

    o

    l

    u

    m

    n

    a

    p

    p

    l

    y

    t

    o

    v

    a

    l

    u

    e

    s

    o

    f

    t

    h

    e

    c

    o

    l

    l

    a

    p

    s

    e

    d

    s

    t

    r

    u

    c

    t

    u

    r

    e

    a

    f

    t

    e

    r

    h

    e

    a

    t

    i

    n

    g

    t

    o

    5

    5

    0

    C

    .

    L

    A

    C

    P

    O

    S

    C

    N

    C

    R

    T

    S

    E

    C

    O

    R

    T

    S

    W

    E

    N

    C

    O

    T

    C

    O

    R

    T

    M

    O

    N

    M

    O

    R

    L

    O

    N

    T

    C

    O

    R

    T

    S

    O

    N

    T

    C

    O

    R

    T

    V

    M

    I

    C

    T

    U

    R

    2

    A

    2

    A

    2

    A

    2

    A

    E

    H

    E

    G

    L

    Y

    L

    3

    A

    3

    A

    3

    A

    2

    A

    5

    C

    S

    N

    S

    2

    A

    1

    1

    2

    A

    2

    1

    +

    1

    0

    2

    0

    A

    +

    1

    0

    A

    2

    1

    A

    10

  • 5/20/2018 CORRENSITE Mineralogical Ambiguities and Geologic Significance

    8/54

    From

    t h e numerical values f o r t h e layer components listed i n Table

    I ,

    i t

    becomes apparent t h a t t h e

    C

    axis

    dimension

    can

    vary with

    species

    t y p e . T h e

    assumption

    i s

    made t h a t t h e chlorite component

    remains

    a constant

    1 4 A .

    The

    variation

    i s

    then

    attributed t o t h e interlayer

    space

    between t h e t w o

    components and/or t h e octahedral

    layer

    o f t h e

    swelling-clay component.

    These

    variations and their potential causes will b e discussed after s o m e

    o f

    t h e

    physical

    and

    chemical information

    f o r

    corrensite

    h a s

    been

    presented.

    D r . Lippmann

    o f

    t h e University o f Tubingen i n Germany prefers t h a t t h e

    controversial layer b e

    referred

    t o

    a s

    a swelling clay layer without a

    species name

    (personal communication, 1 9 7 9 ) . H e i s currently researching t h e

    thermodynamic properties

    o f

    corrensite

    from

    t h e Keuper Marl i n Germany

    t o

    define t h e

    mineral

    more precisely

    ( L i p p m a n n ,

    1 9 7 7 a , b ; 1 9 7 9 ) .

    PHYSICAL AND CHEMICAL CRITERIA FOR THE IDENTIFICATION

    OF

    CORRENSITE

    An examination o f

    t h e

    various physical and chemical criteria used t o

    identify

    t h i s

    mineral will

    b e

    helpful toward an understanding

    o f

    i t .

    T h e

    following sections assess t h e literature data and present research performed

    b y t h e author and assistants using X-ray diffraction, differenti al thermal

    analyses,

    scanning

    electron

    microscopy,

    a n d chemical

    analyses o f various

    corrensite

    s p e c i e s . Unfortunately there

    i s

    very

    little

    cross-referencing

    o f

    samples

    between t h e

    different

    t y p e s

    o f analyses

    compiled

    from t h e

    literature. However, interesting

    t r e n d s

    d o appear

    a n d

    some new perspectives

    on

    corrensite

    can b e

    g a i n e d .

    X-Ray Diffraction Analysis

    Criteria

    The most commonly used method f o r t h e identification

    o f

    corrensite i s

    X-ray diffraction.

    A

    comprehensive

    study

    b y t h e

    author

    o f

    powder-diffraction

    data presented i n t h e literature a s identification

    criteria, h o w e v e r , s h o w s

    t h a t

    t h e

    values given are anything b u t

    consistent.

    Considering t h e

    inconsistent nature

    o f

    t h e mineral under discussion, t h i s inconsistency i s n o t

    surprising.

    Selected X-ray powder

    diffraction

    patterns o f

    corrensite samples given

    t o

    t h e author b y other researchers

    a r e

    shown i n Figure 1

    A n

    attempt

    h a s been

    made

    t o

    present

    cross

    section

    o f

    types

    and

    environments f o r t h e r e a d e r s '

    comparison. T h e corresponding numerical

    data

    from these patterns are

    tabulated

    i n

    Table I I .

    T h e

    patterns were

    run on

    t h e less-than-2 micron

    f r a c t i o n ;

    carbonates,

    sulphates, a n d other silicates were removed by routine

    processes

    ( J a c k s o n , 1 9 7 4 ) .

    The sample i n Figure 1 A i s

    from

    t h e

    P e r m i a n ,

    evaporite-bearing Salado

    Formation o f

    New

    Mexico. I t

    i s

    termed chlorite-vermiculite by Madsen

    (personal communication, 1 9 7 9 ) .

    T h e

    mid-Tertiary

    evaporite

    layers o f

    nonmarine r e d

    beds

    from t h e California S e s p e Formation ( F l e m a l , 1 9 7 0 ) yielded

    t h e chlorite-montmorillonite

    o f

    Figure

    I B . Sample 1 C

    comes also

    from an

    evaporite deposit, t h e

    famous

    Triassic Keuper

    Marl

    o f

    Germany

    ( L i p p m a n n ,

    1 9 5 4 ,

    1 9 5 6 , 1 9 7 6 ) .

    The swelling-layers have been

    called

    swelling-chlorite,

    vermiculite

    and

    montmorillonite. T h e chlorite-montmorillonite o f t h e

    Pennsylvanian a n d

    Permian

    Supai Group

    o f

    t h e Grand C a n y o n , Arizona i s shown i n

    Figure I D ( M c K e e , e d . ,

    in p r e s s ) .

    T h i s i s a transitional,

    marginal marine

    5

  • 5/20/2018 CORRENSITE Mineralogical Ambiguities and Geologic Significance

    9/54

    Figure 1 . X - r a y

    diffraction

    patterns o f various corrensite

    s a m p l e s .

    Machine

    parameters

    w e r e :

    Copper

    K-alpha radiation

    scanned

    a t o n e degree

    2-theta

    per m i n u t e ;

    t w o degrees 2-theta

    p e r inch

    (samples D

    and

    F were

    r u n

    a t

    four degrees 2-theta per i n c h ) ;

    counts

    p e r second varied with t h e

    s a m p l e s .

    A . Chlorite-vermiculite from t h e Salado Formation, New Mexico.

    B .

    Chlorite-montmorillonite from

    t h e

    Sespe Formation, California.

    C . Chlorite-swelling chlorite from t h e

    Keuper

    M a r l , Germany.

    D . Chlorite-montmorillonite from t h e S u p a i G r o u p , Arizona.

    E . Chlorite-swelling chlorite from t h e Crescent Formation,

    Washington.

    F . Chlorite-saponite from t h e Elena

    F o r m a t i o n ,

    Nevada

  • 5/20/2018 CORRENSITE Mineralogical Ambiguities and Geologic Significance

    10/54

    g

    e

    1

    A

    Q

    A

    R

    D

    E

    G

    M

    A

    1

    1

    1

    1

    2

    0

  • 5/20/2018 CORRENSITE Mineralogical Ambiguities and Geologic Significance

    11/54

    g

    e

    6

    C

    2

    1

    t

    e

    1

    1

    1

    6

    1

    2

    6

    C

    3

    2

    0

    4

    C

    O

    .

    A

    R

    D

    E

    W

    A

    N

    O

    6

    6

    0

    *

    C

    2

    0

    .

    4

    1

    4

    1

    2

    1

    0

    2

    6

    0

    1

    A

    1

    2

    J

    5

    8

    j

    7

    7

    7

    2

    0

    2

    4

    2

    2

    2

    0

    1

    8

    1

    0

    1

    4

    1

    2

    1

    0

    0

    0

    4

    4

    C

    4

    0

    i

    *

    i

    \

    \A

    Q

    .

    3

    6

    A

    R

    D

    E

  • 5/20/2018 CORRENSITE Mineralogical Ambiguities and Geologic Significance

    12/54

    T

    a

    b

    l

    e

    I

    I

    .

    T

    a

    b

    u

    l

    a

    t

    i

    o

    n

    o

    f

    X

    -

    r

    a

    y

    d

    i

    f

    f

    r

    a

    c

    t

    i

    o

    n

    d

    a

    t

    a

    f

    r

    o

    m

    p

    a

    t

    t

    e

    r

    n

    s

    o

    f

    c

    o

    r

    r

    e

    n

    a

    i

    t

    e

    a

    p

    c

    c

    i

    e

    e

    s

    h

    o

    w

    n

    i

    n

    F

    i

    g

    u

    r

    e

    1

    R

    e

    s

    p

    o

    n

    s

    e

    s

    t

    o

    t

    h

    e

    c

    o

    m

    m

    o

    n

    c

    l

    a

    y

    t

    r

    e

    a

    t

    m

    e

    n

    t

    s

    a

    r

    e

    g

    t

    v

    a

    n

    f

    o

    r

    e

    a

    c

    h

    s

    a

    m

    p

    l

    e

    .

    O

    O

    l

    r

    e

    f

    l

    e

    c

    t

    i

    o

    n

    a

    a

    r

    e

    i

    n

    d

    i

    c

    a

    t

    e

    d

    a

    s

    w

    e

    l

    l

    a

    s

    o

    t

    h

    e

    r

    ,

    d

    i

    s

    c

    r

    e

    t

    e

    c

    l

    y

    p

    h

    a

    a

    c

    a

    )

    A

    B

    C

    D

    E

    F

    O

    r

    d

    e

    r

    o

    t

    h

    e

    r

    p

    h

    a

    s

    e

    s

    e

    w

    W

    a

    a

    h

    t

    n

    g

    t

    o

    n

    _

    A

    I

    R

    G

    L

    Y

    4

    0

    0

    C

    5

    5

    0

    C

    A

    I

    R

    C

    L

    Y

    4

    0

    0

    C

    5

    5

    0

    C

    A

    I

    R

    C

    L

    Y

    4

    0

    0

    C

    5

    5

    0

    C

    A

    I

    R

    G

    L

    Y

    4

    0

    0

    C

    5

    5

    0

    C

    A

    I

    R

    C

    L

    Y

    4

    0

    0

    C

    5

    5

    0

    C

    A

    I

    R

    G

    L

    Y

    4

    0

    0

    C

    5

    5

    0

    C

    0

    0

    1

    3

    0

    .

    5

    3

    2

    .

    0

    2

    8

    .

    0

    3

    0

    .

    5

    3

    1

    .

    5

    2

    3

    b

    2

    3

    .

    0

    3

    0

    -

    3

    1

    3

    2

    .

    0

    2

    1

    -

    2

    4

    b

    2

    1

    -

    2

    4

    b

    2

    9

    .

    0

    -

    3

    1

    .

    0

    2

    5

    .

    0

    2

    4

    .

    0

    2

    8

    .

    0

    3

    2

    .

    0

    2

    3

    .

    0

    2

    3

    -

    2

    6

    2

    9

    .

    4

    3

    2

    .

    6

    2

    9

    .

    4

    2

    4

    .

    5

    2

    9

    .

    0

    >

    2

    4

    .

    5

    2

    0

    .

    5

    2

    1

    .

    0

    0

    0

    2

    1

    3

    .

    7

    5

    1

    5

    .

    2

    1

    3

    .

    5

    1

    2

    .

    5

    1

    4

    .

    2

    1

    5

    .

    2

    1

    2

    .

    5

    1

    2

    .

    2

    1

    4

    .

    2

    1

    5

    .

    2

    1

    2

    .

    5

    1

    2

    .

    0

    1

    4

    .

    5

    1

    5

    .

    5

    1

    2

    .

    0

    1

    2

    .

    0

    1

    4

    .

    2

    1

    5

    .

    2

    1

    3

    .

    5

    1

    3

    .

    2

    1

    4

    .

    7

    1

    6

    .

    3

    5

    1

    2

    .

    2

    1

    2

    .

    2

    c

    h

    l

    o

    r

    i

    t

    e

    1

    4

    .

    0

    1

    4

    .

    0

    1

    4

    .

    0

    1

    4

    .

    0

    ;

    1

    4

    .

    0

    1

    4

    .

    6

    1

    4

    .

    0

    ?

    1

    4

    .

    0

    1

    4

    .

    0

    1

    4

    .

    5

    1

    4

    .

    0

    1

    4

    .

    2

    1

    4

    .

    0

    1

    1

    2

    .

    5

    :

    1

    0

    .

    5

    i

    l

    l

    l

    t

    e

    1

    0

    .

    0

    1

    0

    .

    0

    1

    0

    .

    0

    1

    0

    .

    0

    1

    0

    .

    0

    1

    0

    .

    0

    1

    0

    .

    0

    1

    0

    .

    0

    1

    0

    .

    0

    1

    0

    .

    0

    1

    0

    .

    0

    1

    0

    .

    0

    1

    0

    .

    0

    1

    0

    .

    0

    1

    0

    .

    0

    1

    0

    .

    0

    1

    0

    .

    0

    1

    0

    .

    0

    1

    0

    .

    0

    1

    0

    .

    0

    9

    .

    5

    9

    .

    6

    0

    0

    3

    8

    .

    8

    9

    .

    0

    8

    .

    3

    8

    b

    8

    .

    1

    5

    8

    -

    8

    .

    2

    5

    8

    .

    0

    8

    .

    5

    8

    .

    8

    8

    8

    .

    3

    3

    8

    .

    1

    v

    j

    -

    I

    0

    0

    4

    7

    .

    8

    7

    .

    7

    7

    .

    7

    5

    7

    .

    3

    7

    .

    7

    0

    7

    .

    2

    7

    .

    6

    7

    .

    6

    ]

    7

    .

    7

    5

    7

    .

    3

    ,

    ;

    7

    .

    2

    4

    7

    .

    2

    4

    c

    h

    l

    o

    r

    i

    t

    e

    7

    .

    1

    5

    7

    .

    1

    5

    7

    .

    1

    5

    7

    .

    1

    5

    7

    .

    1

    3

    7

    .

    1

    3

    7

    .

    1

    3

    7

    .

    1

    5

    7

    .

    1

    5

    7

    .

    1

    5

    7

    .

    1

    3

    7

    .

    2

    7

    .

    2

    5

    7

    .

    1

    8

    7

    .

    1

    8

  • 5/20/2018 CORRENSITE Mineralogical Ambiguities and Geologic Significance

    13/54

    environment.

    The chlorite-swelling chlorite

    o f

    Figure I E

    i s

    a low-grade

    metamorphic

    variety o f corrensite from t h e Eocene

    Crescent

    Formation o f t h e

    Olympic Peninsula, Washington ( P e v e a r , written communication, 1 9 7 9 ) .

    T h i s

    corrensite occurs i n volcaniclastic lenses o f a

    s e a floor

    basalt u n i t .

    Figure

    I F illustrates t h e pattern o f a chlorite-saponite variety from t h e

    hydrothermally altered argillites o f t h e Devonian

    a n d

    Mississippian Eleana

    Formation i n Nye

    C o u n t y ,

    Nevada.

    Six X-ray patterns provide insufficient data f o r more

    than

    j u s t a

    discussion o f their identification. I f t h e criteria shown i n Table I are

    applied t o t h e superorders tabulated

    i n

    Table I I , t h e

    first

    conclusion i s

    t h a t

    very

    few o f

    these samples conform exactly

    t o t h e

    criteria. S a m p l e s B , C ,

    D ,

    a n d

    F give

    fairly good f i t s a n d probably can

    b e

    classified, from

    t h e

    X-ray

    d a t a , a s smectites (montmorillonites, saponites).

    S a m p l e

    C

    a n d

    especially

    sample F show greater swelling characteristics than d o samples B a n d D . This

    swelling might indicate t h a t

    they are saponites. H o w e v e r , sample

    A ,

    which

    swells significantly (32A=14A+18A), a n d collapses insignificantly

    ( 2 8 A = * 1 4 A + 1 4 A ) , does not

    exhibit

    t h e acceptable criteria f o r

    a

    vermiculite

    ( t h a t

    i s

    nonswelling and collapse t o a 24A=14A+10A p h a s e ) . This nonconformity

    also applies

    t o

    sample

    E .

    I t

    collapses more

    than

    A ,

    b u t n o t a s

    low

    a s t h e

    vermiculite required 1 0

    angstroms. Subsequently,

    sample

    A

    and more certainly

    sample E are

    probably

    o f t h e swelling-chlorite

    variety. O n e problem

    with

    t h e identification

    o f

    t h e s e phases

    i s t h a t ,

    d u e

    t o

    degree

    o f

    crystallinity and

    instrument limitations, superorders

    cannot

    always

    b e

    resolved adequately.

    Unfortunately, t h e superorder positions

    are

    t h e

    r e a l

    key t o t h e identification

    o f

    t h e s e different s p e c i e s .

    I t appears t h a t ,

    based on

    t h e X-ray diffraction d a t a , t h e species t y p e s

    could

    b e reduced

    from four

    t o t w o

    (smectite and

    swelling

    chlorite). T h e

    literature data compiled f o r t h i s study

    a n d

    other data presented i n t h i s

    paper

    suggest

    such

    a t r e n d .

    An examination o f literature data b y species

    i s

    in order h e r e .

    A

    clarification o f X-ray identification criteria

    may

    n o t b e possible from t h i s ,

    b u t a t l e a s t

    a

    better understanding

    o f t h e source o f t h e

    confusion should

    emerge. T h e majority o f t h e vermiculite

    species

    o f corrensites reported i n

    t h e literature swell where they should n o t and/or d o n o t collapse e n o u g h .

    A

    compilation

    o f

    these

    data i s given

    in Table

    I I I . S o m e references have

    been

    omitted because either n o data from X-ray analysis were reported o r they were

    inconclusive; even s o m e

    o f

    t h e d a t a

    included

    are many times insufficient f o r a

    valid identification. When considering t h i s compilation, please recall t h e

    criteria shown i n Table I ,

    i . e . :

    a phase ( u n t r e a t e d , 28A=14A+14A) t h a t d o e s

    n o t swell with glycolation (glycol = 2 8 A ) b u t collapses with heat

    t o

    24A

    ( 1 4 A + 1 0 A ) i s probably

    a

    vermiculite. Certain interpretive latitudes must b e

    allowed b u t 3 0 and 3 1 angstroms i s very generous f o r t h e untreated values.

    H o w e v e r ,

    other

    variables

    such a s t h e

    retention

    o f

    additional

    interlayer waters

    due

    t o high

    humidity

    conditions

    can also

    affect

    these

    superorder

    spacings.

    T h e presence o f interlayer aluminum hydroxyl complexes

    could also

    influence

    t h e

    reactions o f t h e clay structure t o glycol

    and

    h e a t .

    A l l

    t h e

    s a m p l e s ,

    presented

    i n

    t h i s t a b l e , except o n e ,

    s w e l l

    t o varying

    d e g r e e s ,

    which

    vermiculites should n o t

    d o . O f

    t h e 1 2 samples i n t h e t a b l e , 6

    collapse t o

    24A

    o r

    l e s s

    a s

    those

    with

    vermiculite

    ( o r

    smectite) layers s h o u l d ,

    and a t l e a s t

    4

    collapse

    with

    heat

    t o values

    greater t h e n

    2 4 A , indicating

    t h a t

    t h e swelling

    layers

    might b e

    more validly

    considered t o

    b e

    swelling

    chlorites.

    8

  • 5/20/2018 CORRENSITE Mineralogical Ambiguities and Geologic Significance

    14/54

    x

    .*

    4 f J

    ^f>

    ^

  • 5/20/2018 CORRENSITE Mineralogical Ambiguities and Geologic Significance

    15/54

    Table III. X-ra y diffraction d a t a f o r corrensite

    s p e c i e s

    from

    t h e

    literature

    which cite vermiculite a s

    t h e

    swelling

    l a y e r

    constituent

    [ N u m e r i c a l

    Reference

    B r a d l e y and Weaver

    1 9 5 6

    Alietti

    1 9 5 8

    Grim

    e t

    a l .

    1 9 6 0

    F o u r n i e r

    1 9 6 1

    Peterson

    1 9 6 1

    Johnson

    1 9 6 4

    Becher

    1 9 6 5

    Gradusov

    1 9 6 9

    R a o a n d Bhattacharya

    1 9 7 3

    K o p p

    a n d

    F a l l i s

    1 9 7 4

    Lippmann

    1 9 5 6

    values

    a r e

    Untreated

    2 9 . 2

    1 4 . 7

    9 . 7

    7 . 3

    2 9 . 0

    30.0

    1 4 . 4 8

    3 0 . 5

    1 4 . 2 6

    2 9 . 4

    1 4 . 7

    1 0 . 0

    7 . 4

    2 8 . 5

    2 8 . 5

    1 4 . 2

    7 . 0 8

    2 9 . 0

    1 4 . 3

    3 0 . 9

    1 4 . 9

    7 . 2

    1 3 . 8

    9 . 0

    7 . 1

    2 9 . 0

    1 4 . 5

    7 . 2

    4 . 7 9

    given

    i n

    a n g s t r o m s ]

    Glycol

    3 1 . 0

    1 5 . 5

    1 0 . 2

    7 . 7

    3 1 . 0

    1 5 . 4 9

    3 1 . 5

    1 5 . 5

    3 1 . 2

    1 5 . 6

    1 0 . 0

    7 . 8

    2 8 . 5

    3 2 - 3 3

    1 6 . 2

    1 4 . 2

    8 . 1

    3 1 . 9

    3 1 . 5

    1 5 . 2

    7 . 2

    1 5 . 8

    7 . 9

    7 . 1

    3 1 . 0

    1 5 . 5

    7 . 7 5

    5 . 1 5

    550C

    ( 2 4 ) ?

    1 2

    8

    6

    29.0

    1 2 . 0

    n o t

    given

    2 1 . 5 5

    1 3 . 8 1 ( c

    1 2 . 0

    1 0 . 0

    8 . 0

    2 4

    27.7-28

    1 3 . 9

    2 3 . 6 5

    13.7

    1 2 . 1

    8 . 0

    7 . 1 ( c h

    13.0

  • 5/20/2018 CORRENSITE Mineralogical Ambiguities and Geologic Significance

    16/54

    There i s only

    one

    sample

    in the

    table

    that

    ad heres

    t o the

    vermiculite

    p a r a m e t e r s t h a t o f

    Johnson

    (1964).

    Therefore, what emerges from

    the

    perusal

    o f

    Table

    I I I , i s that

    perhaps

    the

    term

    vermiculite applied

    t o

    t h e

    swelling layer

    o f a

    corrensite

    species

    identified

    by

    X-ray diffraction techniques i s not necessarily

    a

    v alid

    usage.

    This

    conclusion assumes

    acceptance o f the

    premise

    that

    v ermiculites

    d o

    not

    swell. Some o f these samples

    ( Bradley

    and Weaver, 1 9 5 6 ; Fournier, 1 9 6 1 ;

    Peterson, 1 9 6 1 ; Gradusov, 1 9 6 9 ;

    Kopp

    and Fallis, 1 9 7 4 ) might be

    reclassified

    as

    falling

    closer

    t o

    the

    smectite variety

    w hereas

    the samples o f

    Alietti

    (1958), Becher

    (1965), Rao

    and Bhattacharya

    ( 1 9 7 3 ) ,

    and

    Lippmann ( 1 9 5 6 )

    seem

    t o act more a s a swelling-chlorite

    v ariety.

    I f one

    next examines various swelling-chlorite samples

    a s

    presented

    in

    the

    literature and compiled here

    in

    Table

    I V , they

    seem

    t o

    hold slightly

    more

    true t o their definition of

    28A

    (untreated)

    swelling

    t o 3 1 A (14A+17A) w i t h

    g l y c o l

    and collapsing t o

    28A

    (14A+14A) w i t h heat. O f the

    nine data

    sets i n

    Table I V , four are

    fairly close

    t o the 28A

    untreated

    value; nearly all swell

    greater

    than the theoretical value

    o f

    31A and

    a l l ,

    except the

    two

    o f

    Kimbara

    and

    Sudo (1973) in

    w h i c h

    the

    swelling layer behaves more like

    a smectite,

    collapse

    t o 26-28A.

    The

    literature values

    for t h e montmorillonite-cited species o f corrensite

    are tabulated

    in

    Table V .

    These samples

    s h o w the

    best fit

    t o

    the

    established

    criteria

    w i t h few digressions. The

    same

    applies t o

    the

    saponite

    variety

    samples listed

    in

    Table V I .

    I f one calculates the distribution and percentages

    o f

    all the v alues

    given

    for the samples in Tables

    I I I ,

    I V , V ,

    and VI

    on

    an

    unweighted ,

    v olume

    basis,

    the v alues having

    the

    higher percentages a r e :

    untreated

    glycol

    2 9A

    30A

    3 1 A

    3 2A

    3 1 .

    5A

    3 3 A

    2 4A

    2 8A

    38 .5% o f

    20 .5%

    2 9%

    2 3 . 7 %

    1 6 %

    1 6 %

    43%

    1 6 %

    5 5 0C

    Choosing

    the

    highest from each group

    yields:

    untreated

    = 29A (14A +

    1 5 A )

    glycol

    = 31A (14A + 1 7 A )

    550C

    =

    24A

    (14A

    +

    1 0 A )

    10

  • 5/20/2018 CORRENSITE Mineralogical Ambiguities and Geologic Significance

    17/54

    Table

    IV. X -r a y diffraction

    data

    for corrensite s p e c i e s

    from

    t h e literature

    t h a t

    c i t e

    swelling-chlorite a s s w e l l i n g l a y e r constituent

    [ N u m e r i c a l

    values a r e given in a n g s t r o m s ]

    Reference

    Honeyborne

    1 9 5 1

    Lippmann

    1 9 5 4

    Martin

    Vivaldi

    a n d

    MacEwan

    1 9 5 7

    Martin Vivaldi

    a n d

    MacEwan

    1 9 6 0

    Heckrodt a n d Roering

    1 9 6 5

    Rimbara

    and

    S u d o

    1 9 7 3

    MacNeill

    1 9 7 8

    Pevear

    1 9 7 9

    Personal communication

    Untreated

    1 4 . 5

    2 8 . 3

    1 4 . 2

    3 0 . 0

    1 4 . 7

    3 0 . 0

    2 8

    3 0 . 0

    1 4 . 4

    3 1 . 5

    1 4 . 9 7

    3 0 . 2

    1 4 . 7 7

    2 8 . 5

    1 4 . 3

    7 . 0 5

    2 8 . 0

    1 4 . 2

    8 . 8 8

    Glycol

    1 6 . 4

    3 2 . 3 3

    1 6 . 2

    3 5 . 0

    1 6 . 8

    3 2 . 7

    3 1

    3 1 . 0

    1 5 . 0

    3 2 . 9

    1 5 . 7 1

    3 2 . 5

    1 5 . 4 4

    3 - 2 . 7 2

    1 5 . 5

    7 . 8

    3 2 . 0

    1 5 . 2

    8 . 0

    550C

    1 3 . 8

    2 8 . 0

    ( 1 4 )

    1 3 . 1

    28.5

    1 3 . 6

    8 . 8

    2 8

    1 3 . 6 4

    2 2 . 6

    1 2 . 1

    2 3 . 9

    1 1 . 9

    2 7 . 6 1

    1 3 . 8

    6 . 8 6

    2 3 - 2 6

    1 3 . 2

    1 1

  • 5/20/2018 CORRENSITE Mineralogical Ambiguities and Geologic Significance

    18/54

    Table V . X - r a y diffraction data

    for

    corrensite

    species

    from the literature

    t h a t cite montnorillonite a s t h e swelling layer

    constituent

    [Numerical

    values

    Reference

    Earley and Milne

    1 9 5 6

    Earley

    e t

    a l .

    1956

    Sudo and Kodama

    1 9 5 7

    Sudo

    1 9 5 9

    Lucas

    1962

    W y art

    and

    Sabatier

    1 9 6 7

    Flemal

    1970

    Wilson and Bain

    1 9 7 0

    Schlenker

    1 9 7 1

    Tomasson and

    Rris

    tmanns o

    ttir

    1 9 7 2

    Blatter

    e t a l .

    1973

    Savatzki

    1 9 7 5

    Almon e t

    a l *

    1 9 7 6

    McKee,

    e d .

    ( i n

    press)

    are given

    Untreated

    29.0

    29.0

    1 4 . 1

    30.0

    15.0

    9.96

    7.52

    29.8

    28.5

    1 4 . 2

    9 . 5

    7 . 1

    29.1

    28.5

    13.65

    7 .14

    29.0

    13.9-14

    29.0

    1 4 . 6

    14-14.6

    29.0

    14-15

    28-29.5

    14-14.5

    2 9

    14.48

    7.23

    2 9

    1 4 . 5

    7 . 2

    in angstroms]

    Glycol

    31.7

    32.0

    31.8

    1 5 . 5

    32.3

    30.5

    1 5 . 2

    9 . 9

    8 . 8

    30.9

    33.0

    15.55

    7 . 8 1

    32.0

    15-15.1

    31.5

    1 5 . 5

    15.3-15.8

    31.0

    1 7

    1 4

    30-31.5

    15.2-15.5

    3 1

    15.2 3

    7 . 6 2

    31+

    1 5 . 5

    7 .7 5

    550C

    23.3

    24.0

    12.0

    24.0

    11.9

    11.7

    2 4

    1 2

    8 . 0

    2 3 . 7

    13.7

    28.5

    1 3 . 2

    2 4

    1 2 . 4

    2 3.5

    1 2 . 1

    12-14

    12-12.9

    23-24

    1 2

    2 4

    11.8-12.2

    23.8

    11.9

    7.9

    2 4

    1 2

  • 5/20/2018 CORRENSITE Mineralogical Ambiguities and Geologic Significance

    19/54

    Table V I . X - r a y diffraction data for corrensite species from the literature

    that cite

    saponite

    a s

    the swelling

    layer constituent

    [Numerical

    values

    are

    given

    i n angstroms]

    Reference

    Alietti

    1 9 5 8

    Kimbara

    1 9 7 3

    Kimbara and

    Sudo

    1 9 7 3

    Blackmon

    1979

    Personal

    communication

    Loehr

    1 9 7 9

    Untreated

    29.4

    30.4

    14.72

    9.82

    7 . 3 1

    30.0

    15.8

    9 . 8

    7 . 4

    29.4

    1 4 . 7

    29.0

    13.7

    9 . 6

    Glycol

    3 1 . 6 - .

    7

    31.5

    1 5 . 4 9

    32.7

    32.6

    16.35

    8.33

    32.0

    1 5 . 4

    550C

    23.5

    11.8

    8.75

    23.9

    11.94

    23.0

    24.5

    1 2 . 2

    ( 2 4 . 9 ) ?

    12.45

    13

  • 5/20/2018 CORRENSITE Mineralogical Ambiguities and Geologic Significance

    20/54

    This does n o t necessarily support

    a

    conclusion toward corrensite

    being

    primarily a smectite-type species

    b u t d o e s

    indicate t h a t t h e majority o f t h e

    samples researched t o date seem t o have smectite-like characteristics. I t

    would also seem less confusing

    t o refer t o

    t h i s species a s having smectite

    rather

    then

    montmorillonite o r saponite l a y e r s , a t

    least

    until more

    specific identification criteria are developed, o r chemical analyses

    a r e

    available.

    The

    swelling-chlorite variety a s opposed t o vermiculite appears t o b e t h e

    other common s p e c i e s . T h i s hypothesis

    i s

    supported b y t h e t r e n d shown in

    Table I I

    a n d

    Figure 1 and will b e given further credence with data presented

    i n

    later sections.

    Differential Thermal Analysis Criteria

    Differential

    thermal

    analysis

    ( D T A )

    i s another useful technique f o r

    characterizing clay minerals. Unfortunately,

    n o t

    a

    great deal

    o f work

    h a s

    been done on

    t h e corrensite

    s p e c i e s .

    I n MacKenzie's book

    o n

    DTA

    curves f o r

    clays

    ( 1 9 5 7 ) ,

    Caillere

    a n d

    Henin present

    a

    helpful summary

    on

    DTA

    curves

    f o r

    corrensite and related t y p e s .

    A s

    would b e anticipated, there

    i s

    a distinctive

    suite

    o f

    peaks t h a t

    can b e used

    effectively

    t o

    characterize s o m e

    o f t h e

    components o f corrensite p h a s e s .

    O n e

    specific reaction

    range

    i s a direct

    manifestation

    o f t h e

    brucite l a y e r ,

    which may

    b e most useful structurally

    toward identifying

    corrensite.

    There i s

    first

    a

    lower

    temperature endothermic peak between 1 0 0

    O -200C,

    closer

    t o 1 5 0 C ,

    which indicates l o s s o f absorbed w a t e r . T h e hydroxyls o f t h e

    brucite

    layer a r e l o s t

    between 550C t o a little more

    than 6 0 0 C , and

    sometimes a s

    high a s 6 6 0 C . T h e

    structure

    still maintains integrity, however,

    until

    t h e mica

    layer

    i s

    also dehydrated, around

    830-850C.

    T h e exothermic

    peak

    o f

    recrystallization also

    falls

    very close

    h e r e ,

    between 850C

    t o

    near

    9 0 0 C .

    Table VII i s a

    compilation

    o f

    s o m e

    o f t h e

    published

    DTA

    c u r v e s . Most

    o f

    t h e s e

    values

    are estimates from t h e published

    diagrams.

    They generally

    conform t o t h e criteria postulated

    b y

    Caillere

    and

    Henin ( i n

    Mackenzie,

    1 9 5 7 ) . H o w e v e r , there a r e n o apparent species correlations. Until

    t h e

    more

    definite parameters o f chemical

    composition,

    X-ray diffraction data

    a n d

    interlayer configurations can b e established, t h e s e temperature

    values can

    only serve

    a s guidelines

    f o r

    future investigations.

    T h e

    DTA

    curves i n Figure 2 are from Bradley

    a n d

    Weaver ( 1 9 5 6 ) .

    They

    were

    chosen

    t o

    b e

    included here because

    they

    n o t

    only

    illustrate

    t h e

    corrensite

    species

    under

    discussion, b u t also

    i t s hypothesized constituent p a r t s . T h e

    bottom curve

    i s indicative o f

    t h e s e represented b y numerical

    values

    i n

    Table

    V I I . T h e X-ray data

    in Table

    I I I f o r t h e Bradley

    a n d

    Weaver sample

    has

    smectite characteristics. Because corrensite i s defined a s a trioctahedral

    s p e c i e s , t h o s e

    samples

    designated dioctahedral

    have

    been

    labeled

    questionably

    corrensite.

    14

  • 5/20/2018 CORRENSITE Mineralogical Ambiguities and Geologic Significance

    21/54

    T

    a

    b

    l

    e

    V

    I

    I

    *

    C

    o

    m

    p

    i

    l

    a

    t

    i

    o

    n

    o

    f

    D

    T

    A

    d

    a

    t

    a

    f

    o

    r

    c

    o

    r

    r

    e

    n

    s

    l

    t

    e

    -

    l

    l

    k

    e

    p

    h

    a

    s

    e

    s

    f

    r

    o

    m

    l

    i

    t

    e

    r

    a

    t

    u

    r

    e

    s

    o

    u

    r

    c

    e

    s

    [

    )

    I

    n

    d

    i

    c

    a

    t

    e

    v

    a

    l

    u

    e

    s

    e

    s

    t

    i

    m

    a

    t

    e

    d

    f

    r

    o

    m

    d

    i

    a

    g

    r

    a

    m

    s

    .

    *

    I

    n

    d

    i

    c

    a

    t

    e

    s

    a

    d

    l

    o

    c

    t

    a

    h

    e

    d

    r

    a

    l

    p

    h

    a

    s

    e

    w

    h

    i

    c

    h

    I

    s

    q

    u

    e

    s

    t

    i

    o

    n

    a

    b

    l

    y

    c

    o

    r

    r

    e

    n

    a

    l

    t

    e

    ]

    S

    p

    e

    c

    i

    e

    s

    C

    h

    l

    o

    r

    l

    t

    e

    -

    s

    a

    p

    o

    n

    l

    t

    e

    C

    h

    l

    o

    r

    l

    t

    e

    -

    v

    e

    r

    m

    l

    c

    u

    l

    l

    t

    e

    C

    h

    l

    o

    r

    l

    t

    e

    -

    m

    o

    n

    t

    m

    o

    r

    l

    l

    l

    o

    n

    l

    t

    e

    /

    C

    h

    l

    o

    r

    l

    t

    e

    -

    v

    e

    r

    m

    l

    c

    u

    l

    l

    t

    e

    *

    C

    h

    l

    o

    r

    l

    t

    e

    -

    s

    w

    e

    l

    l

    l

    n

    g

    l

    a

    y

    e

    r

    C

    h

    l

    o

    r

    l

    t

    e

    p

    l

    u

    s

    c

    h

    l

    o

    r

    l

    t

    e

    -

    v

    e

    r

    m

    l

    c

    u

    l

    l

    t

    e

    C

    h

    l

    o

    r

    l

    t

    e

    -

    v

    e

    r

    m

    l

    c

    u

    l

    l

    t

    e

    *

    C

    h

    l

    o

    r

    l

    t

    e

    -

    m

    o

    n

    t

    m

    o

    r

    l

    l

    l

    o

    n

    l

    t

    e

    *

    C

    h

    l

    o

    r

    i

    t

    e

    -

    s

    w

    e

    l

    l

    l

    n

    g

    l

    a

    y

    e

    r

    C

    h

    l

    o

    r

    l

    t

    e

    -

    s

    w

    e

    l

    l

    l

    n

    g

    c

    h

    l

    o

    r

    l

    t

    e

    C

    h

    l

    o

    r

    l

    t

    e

    -

    v

    e

    r

    r

    o

    l

    c

    u

    l

    l

    t

    e

    C

    h

    l

    o

    r

    l

    t

    e

    -

    v

    e

    r

    m

    l

    c

    u

    l

    l

    t

    e

    E

    n

    d

    t

    h

    e

    r

    l

    1

    5

    0

    C

    1

    5

    0

    (

    1

    5

    0

    )

    1

    0

    0

    ,

    2

    0

    0

    (

    1

    5

    0

    +

    )

    (

    1

    8

    0

    )

    (

    1

    5

    0

    )

    (

    1

    5

    0

    )

    b

    r

    o

    a

    d

    (

    1

    2

    0

    )

    (

    1

    0

    0

    ,

    2

    0

    0

    )

    1

    0

    0

    ,

    2

    1

    0

    6

    6

    0

    C

    6

    5

    5

    (

    5

    5

    0

    +

    )

    5

    5

    5

    (

    5

    8

    0

    )

    (

    5

    8

    0

    )

    (

    6

    1

    0

    )

    5

    1

    0

    (

    6

    1

    0

    )

    (

    6

    1

    0

    )

    5

    5

    0

    8

    3

    0

    C

    8

    3

    0

    (

    8

    5

    0

    )

    8

    5

    0

    (

    8

    5

    0

    )

    (

    8

    5

    0

    )

    (

    8

    7

    0

    )

    (

    8

    5

    0

    +

    )

    (

    8

    3

    0

    )

    (

    8

    2

    0

    )

    (

    8

    5

    0

    +

    )

    .

    E

    x

    o

    t

    h

    e

    r

    m

    i

    c

    8

    5

    0

    C

    8

    5

    0

    (

    8

    7

    5

    )

    8

    8

    0

    ,

    9

    1

    5

    (

    8

    9

    0

    )

    (

    9

    0

    0

    )

    (

    9

    4

    0

    )

    (

    9

    5

    0

    )

    (

    8

    6

    0

    )

    (

    8

    4

    0

    )

    (

    8

    9

    0

    )

    R

    e

    f

    e

    r

    e

    n

    c

    e

    A

    l

    l

    e

    t

    t

    l

    ,

    1

    9

    5

    8

    A

    l

    l

    e

    t

    t

    l

    ,

    1

    9

    5

    8

    G

    r

    i

    m

    a

    n

    d

    J

    o

    h

    n

    s

    ,

    1

    9

    5

    3

    H

    e

    c

    k

    r

    o

    o

    d

    t

    a

    n

    d

    R

    o

    e

    r

    l

    n

    g

    ,

    1

    9

    6

    5

    H

    e

    y

    s

    t

    e

    k

    ,

    1

    9

    5

    5

    H

    e

    y

    s

    t

    e

    k

    ,

    1

    9

    5

    5

    S

    u

    d

    o

    a

    n

    d

    K

    o

    d

    a

    m

    a

    ,

    1

    9

    5

    7

    K

    l

    a

    g

    e

    s

    a

    n

    d

    W

    h

    i

    t

    e

    ,

    1

    9

    5

    7

    L

    l

    p

    p

    m

    a

    n

    n

    ,

    1

    9

    5

    4

    ,

    1

    9

    5

    6

    P

    e

    t

    e

    r

    s

    o

    n

    ,

    1

    9

    6

    1

    B

    r

    a

    d

    l

    e

    y

    a

    n

    d

    W

    e

    a

    v

    e

    r

    ,

    1

    9

    5

    6

  • 5/20/2018 CORRENSITE Mineralogical Ambiguities and Geologic Significance

    22/54

    Chemical

    Criteria

    There a r e only a few chemical analyses f o r corrensite t y p e minerals i n

    t h e literature. T h i s i s understandable when t h e difficulty i n obtaining a

    pure representative separate i s considered. Table VIII i s

    a

    compilation o f

    t h e s e

    chemical analyses. I t

    w a s n o t

    always clear from t h e

    t e x t

    what

    w a s

    being

    analyzed,

    a clay separate o r t h e whole

    r o c k ;

    or how refined t h e analytical

    sample w a s .

    The

    elemental percentages

    were

    calculated

    from

    these

    data

    and projected

    onto t h e ternary diagrams shown i n Figure 3 .

    Approximate fields f o r

    montmorillonite,

    s a p o n i t e ,

    vermiculite,

    a n d

    magnesium-bearing chlorites

    have

    been plotted on Figure 3 A . T h e Mg-bearing

    chlorite field i s

    included

    f o r comparison

    because

    there w a s insufficient

    chemical

    analyses

    t o

    plot a swelling-chlorite f i e l d . T h e

    chemical data

    were

    taken

    from

    analyses reported

    i n

    D e e r , H o w i e ,

    a n d

    Zussman ( v o l . 3 , 1 9 6 2 ) ,

    Grim

    ( 1 9 6 8 ) , Weaver and Pollard ( 1 9 7 3 ) , Starkey and Blackmon ( 1 9 7 9 ) .

    The

    effect o f t h e chlorite constituent

    h a s n o t been considered a n d

    t h e

    chlorite most likely varies i n composition

    among

    t h e s a m p l e s , although i t i s

    probably magnesium-bearing.

    I f

    t h e chlorite layer

    can be

    characterized

    with

    any

    confidence, and

    i t s influence

    subtracted,

    a

    s h i f t

    t o t h e

    l e f t

    would

    b e

    postulated.

    Until

    there a r e more corrensite

    chemical

    data generally available,

    i t i s

    rather

    pointless t o speculate t o o f a r

    o n

    t h e

    distribution

    shown

    i n

    Figure 3 .

    H o w e v e r , s o m e

    inferences can b e

    drawn

    from

    these diagrams.

    I n general

    there

    i s credible separation between

    samples

    from hydrothermal environments

    and

    those

    from sedimentary environments except f o r

    sample

    5

    (which

    was identified

    a s

    coming

    from

    a

    sedimentary environment).

    T h e

    term

    hydrothermal

    i s

    an

    author designated o n e .

    There

    were n o chemical data reported f o r low-grade

    metamorphic corrensite

    occurrences.

    Another very interesting observation i s

    t h e scattered pattern

    o f

    t h e various s p e c i e s . Using t h e a u t h o r s '

    designations,

    there i s only s o m e consistency

    t o

    species distribution. T h i s

    could

    suggest

    t h a t there are perhaps fewer discrete

    phases

    than previously

    identified.

    I t i s interesting t o note t h a t t h e majority o f t h e

    hydrothermal

    corrensites f a l l i n t o t h e vermiculite

    field

    even though

    only

    t w o

    o f

    them ( n o .

    8 and

    n o .

    9 )

    have

    been

    identified

    a s having vermiculite

    layers

    while

    n o . 6 , a

    sedimentary chlorite-vermiculite, plots o n

    t h e fringe

    o f t h a t f i e l d . T h e

    saponite

    variety

    o f

    n o .

    2

    falls

    definitely

    i n t o t h e

    vermiculite

    f i e l d .

    N o .

    4 ,

    identified a s a chlorite-saponite,

    seems by

    t h i s criteria t o b e o n e .

    However,

    neither

    o f t h e

    montmorillonite species ( n o . 5

    and n o .

    7 ) a r e close

    t o

    t h e

    montmorillonite f i e l d .

    16

  • 5/20/2018 CORRENSITE Mineralogical Ambiguities and Geologic Significance

    23/54

    Figure 2 Differen tial Thermal

    Analysis

    Curves from

    a

    corrensite s a m p l e .

    These show a corrensite

    o f

    t h e vermiculite

    variety

    and

    i t s

    constituent

    p a r t s .

    Reproduced from Bradley and Weaver ( 1 9 5 6 , p .

    5 0 2 )

    with t h e

    permission

    o f t h e

    authors.

    VERMICUUTE

    C H LOR ITE

    CORRENSITE

    100 C 300 C

    800

    C

    900C

    7

  • 5/20/2018 CORRENSITE Mineralogical Ambiguities and Geologic Significance

    24/54

    T

    a

    b

    l

    e

    V

    I

    I

    I

    .

    C

    h

    e

    m

    i

    c

    a

    l

    a

    n

    a

    l

    y

    s

    e

    s

    o

    f

    s

    o

    m

    e

    c

    o

    r

    r

    e

    n

    s

    l

    t

    e

    s

    a

    m

    p

    l

    e

    s

    f

    r

    o

    m

    t

    h

    e

    l

    i

    t

    e

    r

    a

    t

    u

    r

    e

    0

    0

    1

    c

    h

    l

    o

    r

    i

    t

    e

    -

    s

    w

    e

    l

    l

    i

    n

    g

    c

    h

    l

    o

    r

    i

    t

    e

    C

    o

    m

    p

    o

    s

    i

    t

    i

    o

    n

    h

    y

    d

    r

    o

    S

    1

    0

    2

    3

    2

    .

    7

    2

    A

    1

    2

    0

    3

    2

    0

    .

    2

    8

    M

    g

    O

    2

    4

    .

    4

    7

    F

    e

    2

    3

    1

    0

    0

    F

    e

    O

    C

    a

    O

    1

    .

    9

    7

    N

    a

    2

    0

    .

    2

    5

    K

    2

    0

    T

    r

    T

    1

    0

    2

    .

    0

    3

    M

    n

    O

    .

    0

    6

    H

    2

    0

    ~

    7

    .

    0

    2

    H

    2

    0

    1

    2

    .

    5

    7

    T

    O

    T

    A

    L

    1

    0

    0

    .

    3

    7

    2

    3

    4

    1

    1

    c

    h

    l

    o

    r

    l

    t

    e

    -

    s

    a

    p

    o

    n

    l

    t

    e

    h

    y

    d

    r

    o

    3

    6

    .

    1

    2

    1

    3

    .

    6

    7

    2

    5

    .

    1

    6

    2

    .

    1

    4

    6

    .

    8

    5

    1

    .

    7

    0

    .

    3

    7

    .

    1

    0

    .

    2

    3

    4

    .

    8

    1

    9

    .

    2

    5

    1

    0

    0

    .

    4

    h

    y

    d

    r

    o

    3

    5

    .

    9

    5

    1

    5

    .

    1

    3

    1

    4

    .

    7

    6

    6

    .

    6

    5

    9

    .

    1

    5

    1

    .

    8

    6

    1

    .

    1

    3

    1

    .

    1

    3

    -

    .

    3

    0

    .

    3

    8

    6

    .

    6

    2

    7

    .

    3

    0

    1

    0

    0

    .

    0

    0

    d

    o

    l

    3

    9

    .

    4

    6

    1

    2

    .

    5

    9

    2

    4

    .

    9

    1

    .

    3

    1

    .

    1

    4

    .

    0

    6

    .

    2

    2

    .

    0

    3

    .

    0

    2

    1

    0

    .

    9

    4

    1

    1

    .

    2

    9

    9

    .

    8

    8

    e

    v

    a

    p

    4

    8

    .

    2

    1

    0

    .

    3

    2

    7

    .

    7

    1

    .

    9

    8

    _

    -

    .

    1

    2

    1

    .

    2

    4

    1

    .

    1

    2

    .

    3

    .

    0

    2

    5

    6

    7

    c

    h

    l

    o

    r

    l

    t

    e

    -

    m

    o

    n

    t

    m

    o

    r

    i

    l

    l

    o

    n

    l

    t

    e

    d

    o

    l

    3

    5

    .

    5

    1

    5

    .

    1

    1

    3

    .

    2

    6

    .

    7

    1

    3

    .

    5

    1

    .

    0

    6

    1

    .

    3

    2

    .

    6

    7

    .

    1

    3

    .

    3

    2

    1

    2

    .

    1

    3

    9

    9

    .

    6

    3

    I

    s

    3

    7

    .

    2

    1

    5

    .

    5

    .

    1

    8

    .

    9

    6

    .

    7

    1

    .

    0

    .

    2

    1

    .

    4

    .

    4

    1

    8

    .

    4

    9

    9

    .

    7

    C

    0

    3

    -

    s

    l

    t

    4

    3

    .

    1

    1

    6

    .

    6

    1

    7

    .

    6

    5

    6

    .

    3

    2

    .

    9

    4

    .

    5

    2

    2

    .

    7

    2

    .

    7

    3

    7

    .

    4

    0

    1

    0

    0

    .

    4

    8

    8

    9

    1

    0

    c

    h

    l

    o

    r

    i

    t

    e

    -

    v

    e

    r

    m

    l

    c

    u

    l

    i

    t

    e

    h

    y

    d

    r

    o

    3

    3

    .

    9

    5

    1

    9

    .

    2

    0

    2

    6

    .

    3

    1

    .

    7

    1

    .

    6

    9

    -

    7

    0

    .

    7

    4

    .

    0

    5

    T

    r

    6

    .

    5

    5

    1

    1

    .

    2

    6

    1

    0

    0

    .

    1

    6

    h

    y

    d

    r

    o

    3

    2

    .

    9

    6

    1

    7

    .

    0

    7

    2

    3

    .

    0

    1

    2

    .

    7

    9

    8

    .

    6

    8

    .

    5

    8

    .

    5

    8

    .

    1

    6

    .

    4

    7

    2

    .

    6

    3

    1

    1

    .

    2

    8

    1

    0

    0

    .

    2

    1

    I

    s

    4

    1

    .

    2

    1

    2

    .

    1

    2

    2

    .

    0

    1

    .

    7

    4

    .

    3

    9

    1

    .

    4

    .

    0

    7

    .

    2

    2

    .

    0

    4

    6

    .

    8

    0

    1

    5

    .

    4

    1

    0

    1

    .

    3

    6

    T

    h

    e

    s

    e

    a

    r

    e

    a

    r

    r

    a

    n

    g

    e

    d

    r

    e

    l

    a

    t

    i

    v

    e

    t

    o

    s

    p

    e

    c

    i

    e

    s

    t

    y

    p

    e

    s

    a

    n

    d

    e

    n

    v

    i

    r

    o

    n

    m

    e

    n

    t

    s

    a

    r

    e

    g

    i

    v

    e

    n

    f

    o

    r

    e

    a

    c

    h

    s

    a

    m

    p

    l

    e

    .

    T

    h

    e

    n

    u

    m

    b

    e

    r

    s

    a

    t

    t

    o

    p

    o

    f

    t

    h

    e

    c

    o

    l

    u

    m

    n

    s

    r

    e

    f

    e

    r

    t

    o

    l

    i

    t

    e

    r

    a

    t

    u

    r

    e

    c

    i

    t

    a

    t

    i

    o

    n

    s

    .

    1

    .

    S

    h

    l

    m

    o

    d

    a

    ,

    I

    n

    S

    u

    d

    o

    a

    n

    d

    S

    h

    i

    m

    o

    d

    a

    ,

    1

    9

    7

    8

    5

    .

    A

    l

    m

    o

    n

    e

    t

    a

    l

    .

    ,

    1

    9

    7

    6

    9

    .

    -

    A

    l

    i

    e

    t

    t

    l

    ,

    1

    9

    5

    8

    2

    .

    A

    l

    i

    e

    t

    t

    l

    ,

    1

    9

    5

    8

    6

    .

    P

    e

    t

    e

    r

    s

    o

    n

    ,

    1

    9

    6

    1

    ,

    1

    9

    6

    2

    1

    0

    .

    B

    r

    a

    d

    l

    e

    y

    a

    n

    d

    W

    e

    a

    v

    e

    r

    ,

    1

    9

    5

    6

    3

    .

    K

    l

    m

    b

    a

    r

    a

    e

    t

    a

    l

    .

    ,

    I

    n

    S

    u

    d

    o

    a

    n

    d

    S

    h

    l

    m

    o

    d

    a

    ,

    1

    9

    7

    8

    7

    .

    E

    a

    r

    l

    e

    y

    e

    t

    a

    l

    .

    ,

    1

    9

    5

    6

    1

    1

    *

    B

    o

    d

    i

    n

    e

    ,

    1

    9

    7

    8

    4

    .

    T

    a

    k

    a

    h

    a

    s

    h

    l

    ,

    1

    9

    5

    9

    B

    .

    S

    u

    g

    l

    u

    r

    a

    ,

    1

    9

    6

    2

    T

    h

    e

    n

    u

    m

    e

    r

    i

    c

    a

    l

    v

    a

    l

    u

    e

    s

    a

    r

    e

    r

    e

    p

    r

    o

    d

    u

    c

    e

    d

    e

    x

    a

    c

    t

    l

    y

    a

    s

    g

    i

    v

    e

    n

    I

    n

    t

    h

    e

    s

    o

    u

    r

    c

    e

    d

    o

    c

    u

    m

    e

    n

    t

    s

    .

    I

    n

    a

    c

    c

    u

    r

    a

    t

    e

    t

    o

    t

    a

    l

    s

    h

    a

    v

    e

    n

    o

    t

    b

    e

    e

    n

    c

    o

    r

    r

    e

    c

    t

    e

    d

    .

    I

    s

    -

    l

    i

    m

    e

    s

    t

    o

    n

    e

    ;

    d

    o

    l

    -

    d

    o

    l

    o

    m

    i

    t

    e

    ;

    h

    y

    d

    r

    o

    -

    h

    y

    d

    r

    o

    t

    h

    e

    r

    m

    a

    l

    ;

    s

    i

    t

    -

    s

    l

    l

    t

    s

    t

    o

    n

    e

    ;

    e

    v

    a

    p

    -

    -

    e

    v

    a

    p

    o

    r

    l

    t

    e

  • 5/20/2018 CORRENSITE Mineralogical Ambiguities and Geologic Significance

    25/54

    Figure 3 T e r n a r y diagrams showing elemental relationships from some

    corrensite

    samples

    documented i n t h e

    literature. A .

    S i - A l - M g ; B . S i -

    ( A l + F e

    ( t o t a l ) )

    - M g ;

    C . Si-Al-

    ( F e + M g ) ; D . Si-Al-(Fe +

    M g ) .

    Numbers on t h e

    plots refer

    t o t h e following

    references:

    1 . S h i m o d a , in

    Sudo and S h i m o d a ,

    1 9 7 8 (swelling

    c h l o r i t e ) ;

    2 .

    Alietti,

    1 9 5 8

    ( s a p o n i t e ) ;

    3 . Kimbara e t

    a l . ,

    i n S u d o

    a n d

    S h i m o da , 1 9 7 8 ( s a p o n i t e ) ; 4 .

    Takahashi,

    1 9 5 9 ( s a p o n i t e ) ; 5 .

    Almon

    e t a l . ,

    1 9 7 6 (montmorillonite);

    6 . Peterson,

    1 9 6 1 ,

    1 9 6 2 (vermiculite); 7 . Earley

    e t

    a l . , 1 9 5 6 (montmorillonite); 8 .

    S u g i u r a ,

    1 9 6 2

    (vermiculite); 9 . A l i e t t i ,

    1 9 5 8

    (vermiculite);

    1 0 .

    Bradley

    and W e a v e r ,

    1 9 5 6

    (vermiculite);

    1 1 . B o d i n e , 1 9 7 8

    ( s a p o n i t e ) . T h e

    species given

    in parentheses

    a r e

    t h e

    a u t h o r s ' designation f o r t h e

    swelling layer constituent;

    circles

    refer t o sedimentary occurrences,

    squares t o hydrothermal occurrences.

    1 9

  • 5/20/2018 CORRENSITE Mineralogical Ambiguities and Geologic Significance

    26/54

    g

    e

    A

    +

    A

    5

    S

    M

    A

    A

  • 5/20/2018 CORRENSITE Mineralogical Ambiguities and Geologic Significance

    27/54

    Table

    VIII

    also provides s o m e additional generalizations. T h e corrensite

    samples found i n t h e sedimentary environment have a higher silica content.

    T h e hydrothermally

    produced

    corrensites have both higher

    magnesium

    and

    aluminum

    contents

    than their

    sedimentary counterparts.

    F o r

    t h e most p a r t , t h e

    range

    within t h e magnesium

    percentage f o r hydrothermal corrensites i s small

    ( a b o u t

    3 %

    from 23%-26+%), whereas there

    i s a greater latitude

    f o r

    t h e A l

    content w i th a

    7.6%

    r a n g e . I n

    a hydrothermal environment

    where

    M g

    i s a

    less-common element b u t restrictions o n

    A l

    a r e n o t

    a s

    stringent, t h i s

    relationship

    i s

    n o t surprising. T h e

    reverse

    trend

    appears

    in

    t h e

    sedimentary

    environments where there i s a wide range

    o f

    magnesium content (nearly

    1 2 % )

    b u t

    a restricted range f o r A l ( 4 . 4 % ) .

    I t

    might

    b e

    generalized t h a t

    i t

    t a k e s l e s s aluminum a n d l e s s magnesium

    t o

    make a sedimentary

    corrensite; however,

    sedimentary

    samples have

    more silica

    then

    t h e

    hydrothermal

    varieties.

    T h i s might

    suggest

    different basic

    mechanisms

    o f

    formation o r a t least different

    precursors.

    Iron

    i s t h e confusing chemical

    v a r i a b l e .

    Theoretically, i f i t i s i n t h e

    structure i t s e l f , t h e

    iron

    potentially substitutes

    i n t o

    t h e cation positions

    o f t h e octahedral l a y e r . I n Figure 3 B ,

    t h e

    plot o f S i , M g , ( A l +

    F e

    tota i ) ,

    h a s a distribution relative t o t h e other figures toward t h e A l +

    F e

    e n d ,

    which

    would seem

    t o indicate

    t h a t t h e i r o n

    i s a t

    least i n p a r t

    substituting

    i n t o t h e

    A l

    positions. Both iron and aluminum

    may

    also substitute i n t o t h e magnesium,

    positions. This

    was substantiated

    b y

    a

    p l o t

    o f

    Mg-Fe-Si, which

    i s

    n o t shown

    h e r e . T h e

    separation o f t h e

    sample p o i n t s

    shown

    i n

    t h e Si-Al-(Fe + M g )

    p l o t

    i n Figure 3 C could

    imply

    t h a t t h e iron i s within t h e structure because a

    division between hydrothermal

    and

    sedimentary

    samples

    i s evident. T h i s i s i n

    contrast t o Figure 3 D ,

    t h e

    Si-Al-(Fe

    + M g ) p l o t , where

    t h e clustering

    i n d i c a t e s , b u t still with environmental segregation, t h a t t h e iron i s more

    likely external t o t h e

    s t r u c t u r e ,

    potentially

    an oxide

    coating

    o r

    impurities

    i n t h e s a m p l e .

    T o

    s u m m a r i z e ,

    t h e

    chemical

    data suggest

    t h a t depositional environment i s

    an important consideration

    toward t h e

    determination

    o f

    species

    t y p e .

    Scanning

    Electron

    Microscopy

    Criteria

    Few

    s c a n n i n g ,

    electron microscope

    ( S E M )

    photographs o f corrensite phases

    have been published because

    they a r e

    difficult t o

    o b t a i n . S a m p l e

    crystallinity

    i s

    usually

    p o o r ;

    grain s i z e i s

    s m a l l ; mixed-layer

    configurations

    a r e

    notorious

    f o r poorly

    defined morphology;

    and

    corrensites,

    especially from

    sedimentary environments, appear t o b e s o fragile t h a t concentration processes

    t e n d

    t o

    alter

    their

    morphological characteristics.

    T h e

    best

    SEM pictur e

    published t o

    date

    o f

    corrensite i s t h a t o f A l m o n ,

    e t

    a l . ( 1 9 7 6 ) .

    T h i s

    portrays a chlorite-montmorillonite variety found i n a transitional marine

    environment

    o f

    calcareous sandstones.

    T h e

    corrensite

    w a s

    found here a s pore

    a n d vein f i l l i n g s , t h u s making

    i t easier t o

    visually

    locate

    a n d also

    giving

    i t

    s o m e p r o t e c t i o n .

    Figure 4 contains photographs

    o f t w o previously unpublished

    corrensites

    with

    accompanying energy dispersive system ( E D A X ) s p e c t r a . I n

    figure 4 A , t h e corrensite i s t h e darker

    band

    o f near-vertical

    grains

    through

    t h e center o f

    t h e p i c t u r e .

    Figure 4 B i s

    an enlargement

    o f t h e

    lower right

    corner

    o f

    Figure 4 A . T h i s sample

    i s t h e

    low-grade

    metamorphic

    chlorite-

    swelling

    chlorite from Washington. T h e curled

    edges are probably an

    artifact

    o f

    t h e electron b e a m .

    T h e

    configuration

    shown

    i n these

    t w o

    pictures i s

    2 0

  • 5/20/2018 CORRENSITE Mineralogical Ambiguities and Geologic Significance

    28/54

    Figure

    4 . S c a n n i n g

    electron microscope photographs

    and

    energy dispersive

    spectra o f corrensite

    specimens.

    A .

    Chlorite-swelling chlorite from Washington

    magnification

    2 , 4 0 0 X .

    B . Chlorite-swelling chlorite from Washington

    magnification

    6 , 6 0 0 X ; t h i s i s an enlargement

    o f A .

    C .

    Chlorite-saponite from Nevada

    magnification -

    10,200X.

    D . Energy dispersive spectra

    f o r

    A

    a n d

    B .

    E .

    Energy dispersive

    spectra

    f o r

    C .

    21

  • 5/20/2018 CORRENSITE Mineralogical Ambiguities and Geologic Significance

    29/54

    similar

    t o

    the cornflake habit described

    by Almon,

    e t a l .

    (1976).

    Figure 4D

    i s t h e corresponding energy dispersive

    spectra

    for t h e Washington

    corrensite. The first three peaks shown are M g , A l , S i , respectively, and

    most probably relate

    t o

    the corrensite. Figure

    4 C

    represents

    the

    h y d r o t h e r m a l

    chlorite-saponite

    from Nevada. EDAX spect ra

    o f this

    saponite

    i s

    shown

    in

    Figure

    4 E

    and also shows

    M g , A l , S i a s

    the major elemental constituents.

    This

    habit

    i s

    similar

    t o a

    smectite.

    These pictures are included here t o illustrate

    one more

    p o t e n t i a l method

    that

    can

    be

    used t o

    c h a r a c t e r i z e

    corrensite. Until

    numerous

    samples

    o f

    corrensite

    are

    studied w i t h the S E M ,

    no

    v alid conclusions relative

    t o

    habit

    can

    be

    drawn.

    SWELLING

    LAYER CHARACTERISTICS

    An explanation for the

    behavior

    o f

    the swelling layer o f

    t h e

    corrensite

    species was proposed

    by

    Martin Vivaldi and MacEwan

    (1960).

    These researchers

    h y p o t h e s i z e d

    that t h e

    brucite layer w i t h i n the

    swelling-layer

    component

    o f t h e

    mixed-layer

    species was gapped having lost

    magnesium

    and hyd roxyl ions

    resulting

    in

    an island

    or

    pillar configuration. Twenty

    years

    later

    this

    explanation seems less

    sophisticated

    than

    required

    t o explain the

    b e h a v i o r a l

    idiosyncracies

    o f this

    complex mineral.

    Utilizing a

    simplified

    projection of t h e

    basic structure

    o f a

    14A-chlorite,

    shown

    in part A o f

    Figure

    5 ,

    and

    that same

    chlorite w i t h

    a

    gapped brucite

    layer (Figure 5 B ) , s